Ideal class groups of cyclotomic number fields I

by
Franz Lemmermeyer (Heidelberg)

1. Notation. Let $K \subset L$ be number fields; we will use the following notation:

- \mathfrak{O}_{K} is the ring of integers of K;
- E_{K} is its group of units;
- W_{K} is the group of roots of unity contained in K;
- w_{K} is the order of W_{K};
- $\mathrm{Cl}(K)$ is the ideal class group of K;
- $[\mathfrak{a}]$ is the ideal class generated by the ideal \mathfrak{a};
- K^{1} denotes the Hilbert class field of K, that is the maximal abelian extension of K which is unramified at all places;
- $j_{K \rightarrow L}$ denotes the transfer of ideal classes for number fields $K \subset L$, i.e. the homomorphism $\mathrm{Cl}(K) \rightarrow \mathrm{Cl}(L)$ induced by mapping an ideal \mathfrak{a} to $\mathfrak{a} \mathfrak{O}_{L}$;
- $\kappa_{L / K}$ denotes the capitulation kernel ker $j_{K \rightarrow L}$;

Now let K be a CM-field, i.e. a totally complex quadratic extension of a totally real number field; the following definitions are standard:

- σ is complex conjugation;
- K^{+}denotes the maximal real subfield of K; this is the subfield fixed by σ;
- $\mathrm{Cl}^{-}(K)$ is the kernel of the map $N_{K / K^{+}}: \mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K^{+}\right)$and is called the minus class group;
- $h^{-}(K)$ is the order of $\mathrm{Cl}^{-}(K)$, the minus class number;
- $Q(K)=\left(E_{K}: W_{K} E_{K^{+}}\right) \in\{1,2\}$ is Hasse's unit index.

We will need a well known result from class field theory. Assume that $K \subset L$ are CM-fields; then $\operatorname{ker}\left(N_{L / K}: \mathrm{Cl}(L) \rightarrow \mathrm{Cl}(K)\right)$ has order $\left(L \cap K^{1}: K\right)$. Since K / K^{+}is ramified at the infinite places, the norm $N_{K / K^{+}}: \mathrm{Cl}(K) \rightarrow \mathrm{Cl}\left(K^{+}\right)$is onto.

[^0]2. Hasse's unit index. Hasse's book $[\mathrm{H}]$ contains numerous theorems (Sätze 14-29) concerning the unit index $Q(L)=\left(E_{L}: W_{L} E_{K}\right)$, where $K=L^{+}$is the maximal real subfield of a cyclotomic number field L. Hasse considered only abelian number fields L / \mathbb{Q}, hence he was able to describe these fields in terms of their character groups $X(L)$; as we are interested in results on general CM-fields, we have to proceed in a different manner. But first we will collect some of the most elementary properties of $Q(L)$ (see also $[\mathrm{H}]$ and $[\mathrm{W}]$; a reference "Satz *" always refers to Hasse's book $[\mathrm{H}]$) in

Proposition 1. Let $K \subset L$ be $C M$-fields; then
(a) $\left(\right.$ Satz 14) $Q(L)=\left(E_{L}: W_{L} E_{L^{+}}\right)=\left(E_{L}^{\sigma-1}: W_{L}^{2}\right)=\left(E_{L}^{\sigma+1}: E_{L^{+}}^{2}\right)$; in particular, $Q(L) \in\{1,2\}$;
(b) (Satz 16, 17) If $Q(L)=2$ then $\kappa_{L / L^{+}}=1$;
(c) (Satz 25) If L^{+}contains units with any given signature, then $Q(L)=1$;
(d) (Satz 29) $Q(K) \mid Q(L) \cdot\left(W_{L}: W_{K}\right)$;
(e) (compare Satz 26) Suppose that $N_{L / K}: W_{L} / W_{L}^{2} \rightarrow W_{K} / W_{K}^{2}$ is onto. Then $Q(L) \mid Q(K)$;
(f) $([\mathrm{HY}$, Lemma 2] $)$ If $(L: K)$ is odd, then $Q(L)=Q(K)$;
(g) (Satz 27) If $L=\mathbb{Q}\left(\zeta_{m}\right)$, where $m \not \equiv 2 \bmod 4$ is composite, then $Q(L)=2$;
(h) (see Example 4 below) Let $K_{1} \subseteq \mathbb{Q}\left(\zeta_{m}\right)$ and $K_{2} \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ be abelian $C M$-fields, where $m=p^{\mu}$ and $n=q^{\nu}$ are prime powers such that $p \neq q$, and let $K=K_{1} K_{2}$; then $Q(K)=2$.

The proofs are straightforward:
(a) The $\operatorname{map} \varepsilon \rightarrow \varepsilon^{\sigma-1}$ induces an epimorphism $E_{L} \rightarrow E_{L}^{\sigma-1} / W_{L}^{2}$. If $\varepsilon^{\sigma-1}=\zeta^{2}$ for some $\zeta \in W_{L}$, then $(\zeta \varepsilon)^{\sigma-1}=1$, and $\zeta \varepsilon \in E_{L+}$. This shows that $\sigma-1$ gives rise to an isomorphism $E_{L} / W_{L} E_{L^{+}} \rightarrow E_{L}^{\sigma-1} / W_{L}^{2}$, hence we have $\left(E_{L}: W_{L} E_{L^{+}}\right)=\left(E_{L}^{\sigma-1}: W_{L}^{2}\right)$. The other claim is proved similarly.
(b) Since W_{L} / W_{L}^{2} is cyclic of order 2 , the first claim follows immediately from (a). Now let \mathfrak{a} be an ideal in \mathfrak{O}_{K} such that $\mathfrak{a} \mathfrak{O}_{L}=\alpha \mathfrak{O}_{L}$. Then $\alpha^{\sigma-1}=\zeta$ for some root of unity $\zeta \in L$, and $Q(L)=2$ shows that $\zeta=\varepsilon^{\sigma-1}$ for some $\varepsilon \in E_{L}$. Now $\alpha \varepsilon^{-1}$ generates \mathfrak{a} and is fixed by σ, hence lies in K. This shows that \mathfrak{a} is principal in K, i.e. that $\kappa_{L / L^{+}}=1$.
(c) Units in L^{+}which are norms from L are totally positive; our assumption implies that totally positive units are squares, hence we get $E_{L}^{\sigma+1}=$ $E_{L^{+}}^{2}$, and our claim follows from (a).
(d) First note that $\left(W_{L}: W_{K}\right)=\left(W_{L}^{2}: W_{K}^{2}\right)$; then

$$
\begin{aligned}
Q(L) \cdot\left(W_{L}: W_{K}\right) & =\left(E_{L}^{\sigma-1}: W_{L}^{2}\right)\left(W_{L}^{2}: W_{K}^{2}\right)=\left(E_{L}^{\sigma-1}: E_{K}^{\sigma-1}\right)\left(E_{K}^{\sigma-1}: W_{K}^{2}\right) \\
& =\left(E_{L}^{\sigma-1}: E_{K}^{\sigma-1}\right) \cdot Q(K)
\end{aligned}
$$

proves the claim.
(e) Since $Q(L)=2$, there is a unit $\varepsilon \in E_{L}$ such that $\varepsilon^{\sigma-1}=\zeta$ generates W_{L} / W_{L}^{2}. Taking the norm to K shows that $\left(N_{L / K} \varepsilon\right)^{\sigma-1}=N_{L / K}(\zeta)$ generates W_{K} / W_{K}^{2}, i.e. we have $Q(K)=2$.
(f) If $(L: K)$ is odd, then $\left(W_{L}: W_{K}\right)$ is odd, too, and we get $Q(K) \mid Q(L)$ from (d) and $Q(L) \mid Q(K)$ from (e).
(g) In this case, $1-\zeta_{m}$ is a unit, and we find $\left(1-\zeta_{m}\right)^{1-\sigma}=-\zeta_{m}$. Since $-\zeta_{m} \in W_{L} \backslash W_{L}^{2}$, we must have $Q(L)=2$.
(h) First assume that m and n are odd. A subfield $F \subseteq L=\mathbb{Q}\left(\zeta_{m}\right)$, where $m=p^{\mu}$ is an odd prime power, is a CM-field if and only if it contains the maximal 2-extension contained in L, i.e. if and only if $(L: F)$ is odd. Since $\left(\mathbb{Q}\left(\zeta_{m}\right): K_{1}\right)$ and $\left(\mathbb{Q}\left(\zeta_{n}\right): K_{2}\right)$ are both odd, so is $\left(\mathbb{Q}\left(\zeta_{m n}\right): K_{1} K_{2}\right)$; moreover, $\mathbb{Q}\left(\zeta_{m n}\right)$ has unit index $Q=2$, hence the assertion follows from (f) and (g).

Now assume that $p=2$. If $\sqrt{-1} \in K_{1}$, then we must have $K_{1}=\mathbb{Q}\left(\zeta_{m}\right)$ for $m=2^{\alpha}$ and some $\alpha \geq 2$ (complex subfields of the field of 2^{μ} th roots of unity containing $\sqrt{-1}$ necessarily have this form). Now n is odd and $K_{2} \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ is complex, hence $\left(\mathbb{Q}\left(\zeta_{n}\right): K_{2}\right)$ is odd. By (f) it suffices to show that $K_{1}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{m n}\right)$ has unit index 2 , and this follows from (g).

If $\sqrt{-1} \notin K_{1}$, let $\widetilde{K}_{1}=K_{1}(i)$; then $\widetilde{K}_{1}=\mathbb{Q}\left(\zeta_{m}\right)$ for $m=2^{\alpha}$ and some $\alpha \geq 2$, and in the last paragraph we have seen that $Q\left(\widetilde{K}_{1} K_{2}\right)=2$. Hence we only need to show that the norm map

$$
N: W_{\widetilde{K}_{1}} / W_{\widetilde{K}_{1}}^{2} \rightarrow W_{K_{1}} / W_{K_{1}}^{2}
$$

is onto: since $\left(W_{\widetilde{K}_{1} K_{2}}: W_{\widetilde{K}_{1}}\right)$ is odd, this implies $2=Q\left(\widetilde{K}_{1} K_{2}\right) \mid Q\left(K_{1} K_{2}\right)$ by (e). But the observation that the non-trivial automorphism of $\mathbb{Q}\left(\zeta_{m}\right) / K_{1}$ maps ζ_{m} to $-\zeta_{m}^{-1}$ implies at once that $N\left(\zeta_{m}\right)=-1$, and -1 generates $W_{K_{1}} / W_{K_{1}}^{2}$.

Now let L be a CM-field with maximal real subfield K; we will call L / K essentially ramified if $L=K(\sqrt{\alpha})$ and there is a prime ideal \mathfrak{p} in \mathfrak{O}_{K} such that the exact power of \mathfrak{p} dividing $\alpha \mathfrak{O}_{K}$ is odd; it is easily seen that this does not depend on which α we choose. Moreover, every ramified prime ideal \mathfrak{p} above an odd prime p is necessarily essentially ramified. We leave it as an exercise to the reader to verify that our definition of essential ramification coincides with Hasse's [H, Sect. 22]; the key observation is the ideal equation $(4 \alpha)=\mathfrak{a}^{2} \mathfrak{d}$, where $\mathfrak{d}=\operatorname{disc}(K(\sqrt{\alpha}) / K)$ and \mathfrak{a} is an integral ideal in \mathfrak{O}_{K}.

We will also need certain totally real elements of norm 2 in the field of
2^{m} th roots of unity: to this end we define

$$
\begin{aligned}
\pi_{2} & =2=2+\zeta_{4}+\zeta_{4}^{-1} \\
\pi_{3} & =2+\sqrt{2}=2+\zeta_{8}+\zeta_{8}^{-1} \\
& \vdots \\
\pi_{n} & =2+\sqrt{\pi_{n-1}}=2+\zeta_{2^{n}}+\zeta_{2^{n}}^{-1}
\end{aligned}
$$

Let $m \geq 2, L=\mathbb{Q}\left(\zeta_{2^{m+1}}\right)$ and $K=\mathbb{Q}\left(\pi_{m}\right)$; then L / K is an extension of type $(2,2)$ with subfields $K_{1}=\mathbb{Q}\left(\zeta_{2^{m}}\right), K_{2}=\mathbb{Q}\left(\sqrt{\pi_{m}}\right)$ and $K_{3}=\mathbb{Q}\left(\sqrt{-\pi_{m}}\right)$. Moreover, K_{2} / K and K_{3} / K are essentially ramified, whereas K_{1} / K is not.

THEOREM 1. Let L be a CM-field with maximal real subfield K.
(i) If $w_{L} \equiv 2 \bmod 4$, then:

1. If L / K is essentially ramified, then $Q(L)=1$, and $\kappa_{L / K}=1$.
2. If L / K is not essentially ramified, then $L=K(\sqrt{\alpha})$ for some $\alpha \in \mathfrak{O}_{K}$ such that $\alpha \mathfrak{D}_{K}=\mathfrak{a}^{2}$, where \mathfrak{a} is an integral ideal in \mathfrak{O}_{K}, and
(a) $Q(L)=2$ if \mathfrak{a} is principal, and
(b) $Q(L)=1$ and $\kappa_{L / K}=\langle[\mathfrak{a}]\rangle$ if \mathfrak{a} is not principal.
(ii) If $w_{L} \equiv 2^{m} \bmod 2^{m+1}$, where $m \geq 2$, then L / K is not essentially ramified, and:
3. If $\pi_{m} \mathfrak{O}_{K}$ is not an ideal square, then $Q(L)=1$ and $\kappa_{L / K}=1$.
4. If $\pi_{m} \mathfrak{O}_{K}=\mathfrak{b}^{2}$ for some integral ideal \mathfrak{b}, then
(a) $Q(L)=2$ if \mathfrak{b} is principal, and
(b) $Q(L)=1$ and $\kappa_{L / K}=\langle[\mathfrak{b}]\rangle$ if \mathfrak{b} is not principal.

For the proof of Theorem 1 we will need the following
Lemma 1. Let $L=K(\sqrt{\pi})$, and let σ denote the non-trivial automorphism of L / K. Moreover, let \mathfrak{b} be an ideal in \mathfrak{O}_{K} such that $\mathfrak{b} \mathfrak{O}_{L}=(\beta)$ and $\beta^{\sigma-1}=-1$ for some $\beta \in L$. Then $\pi \mathfrak{O}_{K}$ is an ideal square in \mathfrak{O}_{K}. If, on the other hand, $\beta^{\sigma-1}=\zeta$, where ζ is a primitive 2^{m} th root of unity, then $\pi_{m} \mathfrak{O}_{K}$ is an ideal square in \mathfrak{O}_{K}.

Proof. We have $(\beta \sqrt{\pi})^{\sigma-1}=1$, hence $\beta \sqrt{\pi} \in K$. Therefore \mathfrak{b} and $\mathfrak{c}=(\beta \sqrt{\pi})$ are ideals in \mathfrak{O}_{K}, and $\left(\mathfrak{c b}^{-1}\right)^{2}=\pi \mathfrak{O}_{K}$ proves our claim.

Now assume that $\beta^{\sigma-1}=\zeta$; then σ fixes $(1-\zeta) \beta^{-1}$, hence $((1-\zeta) \beta)$ and $\mathfrak{c}=(1-\zeta)=\mathfrak{c}^{\sigma}$ are ideals in \mathfrak{O}_{K}, and $\mathfrak{c}^{2}=N_{L / K}(1-\zeta)=\left(2+\zeta+\zeta^{-1}\right) \mathfrak{O}_{K}$ is indeed an ideal square in \mathfrak{V}_{K} as claimed.

Proof of Theorem 1. (i) Assume that $w_{L} \equiv 2 \bmod 4$.

Case 1: L / K is essentially ramified. Assume we had $Q(L)=2$; then $E_{L}^{\sigma-1}=W_{L}$, hence there is a unit $\varepsilon \in E_{L}$ such that $\varepsilon^{\sigma-1}=-1$. Write $L=K(\sqrt{\pi})$, and apply Lemma 1 to $\mathfrak{b}=(1), \beta=\varepsilon$: this will yield the contradiction that L / K is not essentially ramified.

Case 2: L / K is not essentially ramified. Then $L=K(\sqrt{\alpha})$ for some $\alpha \in \mathfrak{O}_{K}$ such that $\alpha \mathfrak{O}_{K}=\mathfrak{a}^{2}$, where \mathfrak{a} is an integral ideal in \mathfrak{O}_{K}.
(a) If \mathfrak{a} is principal, say $\mathfrak{a}=\beta \mathfrak{O}_{K}$, then there is a unit $\varepsilon \in E_{K}$ such that $\alpha=\beta^{2} \varepsilon$, and we see that $L=K(\sqrt{\varepsilon})$. Now $\sqrt{\varepsilon}^{\sigma-1}=-1$ is no square since $w_{L} \equiv 2 \bmod 4$, and Proposition 1(a) gives $Q(L)=2$.
(b) If \mathfrak{a} is not principal, then the ideal class [a] capitulates in L / K because $\mathfrak{a} \mathfrak{O}_{L}=\sqrt{\alpha} \mathfrak{O}_{L}$. Proposition $1(\mathrm{~b})$ shows that $Q(L)=1$.
(ii) Assume that $w_{L} \equiv 2^{m} \bmod 2^{m+1}$ for some $m \geq 2$.

Case 1: Assume that $Q(L)=2$ or $\kappa_{L / K} \neq 1$. Then Lemma 1 says that $\pi_{m} \mathfrak{O}_{K}=\mathfrak{b}^{2}$ is an ideal square in \mathfrak{O}_{K} contrary to our assumption.

Case 2: $\pi_{m}=\mathfrak{b}^{2}$ is an ideal square in \mathfrak{O}_{K}. If \mathfrak{b} is not principal, then $\mathfrak{b} \mathfrak{O}_{L}=(1-\zeta)$ shows that $\kappa_{L / K}=\langle[\mathfrak{b}]\rangle$, and Proposition $1(\mathrm{~b})$ gives $Q(L)=1$. If, on the other hand, $\mathfrak{b}=\beta \mathfrak{O}_{K}$, then $\eta \beta^{2}=\pi_{m}$ for some unit $\eta \in E_{K}$. If η were a square in \mathfrak{O}_{K}, then π_{m} would also be a square, and $L=K(\sqrt{-1})$ would contain the 2^{m+1} th roots of unity. Now $\eta \beta^{2}=\pi_{m}=\zeta^{-1}(1+\zeta)^{2}$, hence $\eta \zeta$ is a square in L, and we have $Q(L)=2$ as claimed.

Remark. For L / \mathbb{Q} abelian, Theorem 1 is equivalent to Hasse's Satz 22; we will again only sketch the proof: suppose that $w_{L} \equiv 2^{m} \bmod 2^{m+1}$ for some $m \geq 2$, and define $L^{\prime}=L\left(\zeta_{2^{m+1}}\right), K^{\prime}=L^{\prime} \cap \mathbb{R}$. Then K^{\prime} / K is essentially ramified if and only if π_{m} is not an ideal square in \mathfrak{O}_{K} (because $\left.K^{\prime}=K\left(\pi_{m+1}\right)=K\left(\sqrt{\pi_{m}}\right)\right)$. The asserted equivalence should now be clear. Except for the results on capitulation, Theorem 1 is also contained in [O] (for general CM-fields).

Examples. 1. Complex subfields L of $\mathbb{Q}\left(\zeta_{p^{m}}\right)$, where p is prime, have unit index $Q(L)=1$ (Hasse's Satz 23) and $\kappa_{L / L^{+}}=1$: since p ramifies completely in $\mathbb{Q}\left(\zeta_{p^{m}}\right) / \mathbb{Q}, L / L^{+}$is essentially ramified if $p \neq 2$, and the claim follows from Theorem 1. If $p=2$ and L / L^{+}is not essentially ramified, then we must have $L=\mathbb{Q}\left(\zeta_{2^{\mu}}\right)$ for some $\mu \in \mathbb{N}$, and we find $Q(L)=1$ by Theorem 1(ii.1).
2. $L=\mathbb{Q}\left(\zeta_{m}\right)$ has unit index $Q(L)=1$ if and only if $m \not \equiv 2 \bmod 4$ is a prime power (Satz 27). This follows from Example 1 and Proposition 1(e).
3. If K is a CM-field, which is essentially ramified at a prime ideal \mathfrak{p} above $p \in \mathbb{N}$, and if F is a totally real field such that $p \nmid \operatorname{disc} F$, then $Q(L)=1$ and $\kappa_{L / L^{+}}=1$ for $L=K F$: this is again due to the fact that either L / L^{+}is essentially ramified at the prime ideals above \mathfrak{p}, or $p=2$ and
$K=K^{+}(\sqrt{-1})$. In the first case, we have $Q(L)=1$ by Theorem 1(i.1), and in the second case by Theorem 1(ii.1).
4. Suppose that the abelian CM-field K is the compositum $K=K_{1} \ldots K_{t}$ of fields with pairwise different prime power conductors; then $Q(K)=1$ if and only if exactly one of the K_{i} is imaginary (Uchida [U, Prop. 3]). The proof is easy: if there is exactly one complex field among the K_{j}, then $Q(K)=1$ by Example 3. Now suppose that K_{1} and K_{2} are imaginary; we know $Q\left(K_{1} K_{2}\right)=2($ Proposition $1(\mathrm{~h}))$, and from the fact that the K_{j} have pairwise different conductors we deduce that $\left(W_{K}: W_{K_{1} K_{2}}\right) \equiv 1 \bmod 2$. Now the claim follows from Hasse's Satz 29 (Proposition 1(c)). Observe that $\kappa_{K / K^{+}}=1$ in all cases.
5. Cyclic extensions L / \mathbb{Q} have unit index $Q(L)=1$ (Hasse's Satz 24): Let F be the maximal subfield of L such that $(F: \mathbb{Q})$ is odd. Then F is totally real, and $2 \nmid \operatorname{disc} F$ (this follows from the theorem of Kronecker and Weber). Similarly, let K be the maximal subfield of L such that $(K: \mathbb{Q})$ is a 2-power: then K is a CM-field, and $L=F K$. If K / K^{+}is essentially ramified at a prime ideal \mathfrak{p} above an odd prime p, then so is L / L^{+}, because L / \mathbb{Q} is abelian, and all prime ideals in F have odd ramification index. Hence the claim in this case follows by Example 3 above.

If, however, K / K^{+}is not essentially ramified at a prime ideal \mathfrak{p} above an odd prime p, then disc K is a 2-power (recall that K / \mathbb{Q} is cyclic of 2-power degree). Applying the theorem of Kronecker and Weber, we find that $K \subseteq \mathbb{Q}(\zeta)$, where ζ is some primitive 2^{m} th root of unity. If K / K^{+}is essentially ramified at a prime ideal above 2 , then so is L / L^{+}, and Theorem 1 gives us $Q(L)=1$. If K / K^{+}is not essentially ramified at a prime ideal above 2 , then we must have $K=\mathbb{Q}(\zeta)$, where ζ is a primitive 2^{m} th root of unity; but now $\pi_{m} \mathfrak{O}_{L^{+}}$is not the square of an integral ideal, and we have $Q(L)=1$ by Theorem 1. Alternatively, we may apply Proposition 1(e) and observe that $Q(K)=1$ by Example 1 .
6. Let $p \equiv 1 \bmod 8$ be a prime such that the fundamental unit $\varepsilon_{2 p}$ of $\mathbb{Q}(\sqrt{2 p})$ has norm +1 (by $[\mathrm{S}]$, there are infinitely many such primes; note also that $N \varepsilon_{2 p}=+1 \Leftrightarrow(2, \sqrt{2 p})$ is principal). Put $K=\mathbb{Q}(i, \sqrt{2 p})$ and $L=\mathbb{Q}(i, \sqrt{2}, \sqrt{p})$. Then $Q(K)=2$ by Theorem 1(ii.2)(a), whereas the fact that L is the compositum of $\mathbb{Q}\left(\zeta_{8}\right)$ and $\mathbb{Q}(\sqrt{p})$ shows that $Q(L)=1$ (Example 4). This generalization of Lenstra's example given by Martinet in $[\mathrm{H}]$ is contained in Theorem 4 of [HY], where several other results of this kind can be found.
3. Masley's theorem $h_{m}^{-} \mid h_{m n}^{-}$. Now we can prove a theorem which will contain Masley's result $h^{-}(K) \mid h^{-}(L)$ for cyclotomic fields $K=\mathbb{Q}\left(\zeta_{m}\right)$ and $L=\mathbb{Q}\left(\zeta_{m n}\right)$ as a special case:

Theorem 2. Let $K \subset L$ be $C M$-fields; then

$$
h^{-}(K)\left|h^{-}(L) \cdot\right| \kappa_{L / L^{+}} \left\lvert\, \cdot \frac{\left(L \cap K^{1}: K\right)}{\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)}\right.
$$

and the last quotient is a power of 2 .
Proof. Let ν_{K} and ν_{L} denote the norms $N_{K / K^{+}}$and $N_{L / L^{+}}$, respectively; then the following diagram is exact and commutative:

The snake lemma gives us an exact sequence

$$
1 \rightarrow \operatorname{ker} N^{-} \rightarrow \operatorname{ker} N \rightarrow \operatorname{ker} N^{+} \rightarrow \operatorname{cok} N^{-} \rightarrow \operatorname{cok} N \rightarrow \operatorname{cok} N^{+} \rightarrow 1
$$

Let $h(L / K)$ denote the order of ker N, and let $h^{-}(L / K)$ and $h\left(L^{+} / K^{+}\right)$be defined accordingly. The remark at the end of Section 1 shows

$$
|\operatorname{cok} N|=\left(L \cap K^{1}: K\right), \quad\left|\operatorname{cok} N^{+}\right|=\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)
$$

The alternating product of the orders of the groups in exact sequences equals 1 , so the above sequence implies

$$
h^{-}(L / K) \cdot h\left(L^{+} / K^{+}\right) \cdot|\operatorname{cok} N|=h(L / K) \cdot\left|\operatorname{cok} N^{-}\right| \cdot\left|\operatorname{cok} N^{+}\right|
$$

The exact sequence

$$
1 \rightarrow \operatorname{ker} N^{-} \rightarrow \mathrm{Cl}^{-}(L) \rightarrow \mathrm{Cl}^{-}(K) \rightarrow \operatorname{cok} N^{-} \rightarrow 1
$$

gives us

$$
h^{-}(L / K) \cdot h^{-}(K)=h^{-}(L) \cdot\left|\operatorname{cok} N^{-}\right|
$$

Collecting everything we find that

$$
\begin{equation*}
h^{-}(K) \cdot \frac{h(L / K)}{h\left(L^{+} / K^{+}\right)} \cdot \frac{\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)}{\left(L \cap K^{1}: K\right)}=h^{-}(L) \tag{*}
\end{equation*}
$$

Now the claimed divisibility property follows if we can prove that $h\left(L^{+} / K^{+}\right)$ divides $h(L / K) \cdot\left|\kappa_{L / L^{+}}\right|$. But this is easy: exactly $h\left(L^{+} / K^{+}\right) /\left|\kappa_{L / L^{+}}\right|$ideal classes of ker $N^{+} \subset \mathrm{Cl}\left(L^{+}\right)$survive the transfer to $\mathrm{Cl}(L)$, and if the norm of L^{+} / K^{+}kills an ideal class $c \in \mathrm{Cl}\left(L^{+}\right)$, the same thing happens to the transferred class c^{j} when the norm of L / K is applied. We remark in passing that $\left|\kappa_{L / L^{+}}\right| \leq 2$ (see Hasse [H, Satz 18]).

It remains to show that $\left(L \cap K^{1}: K\right) /\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)$is a power of 2 . Using induction on $(L: K)$, we see that it suffices to prove that if L / K is an unramified abelian extension of CM-fields of odd prime degree $(L: K)=q$, then so is L^{+} / K^{+}. Suppose otherwise; then there exists a
finite prime \mathfrak{p} which ramifies, and since L^{+} / K^{+}is cyclic, \mathfrak{p} has ramification index q. Now L / K^{+}is cyclic of order $2 q$, hence K must be the inertia field of \mathfrak{p}, contradicting the assumption that L / K is unramified. We conclude that L^{+} / K^{+}is also unramified, and so odd factors of $\left(L \cap K^{1}: K\right)$ cancel against the corresponding factors of $\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)$.

Corollary 1 ([LOO]). Let $K \subset L$ be CM-fields such that $(L: K)$ is odd; then $h^{-} K \mid h^{-}(L)$.

Proof. From (*) and the fact that $\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)=1$ (this index is a power of 2 and divides $(L: K)$, which is odd), we see that it is sufficient to show that $h\left(L^{+} / K^{+}\right) \mid h(L / K)$. This in turn follows if we can prove that no ideal class from ker $N^{+} \subseteq \mathrm{Cl}\left(L^{+}\right)$capitulates when transferred to $\mathrm{Cl}(L)$. Assume therefore that $\kappa_{L / L^{+}}=\langle[\mathfrak{a}]\rangle$. If $w_{L} \equiv 2 \bmod 4$, then by Theorem 1(i.2) we may assume that $L=L^{+}(\sqrt{\alpha})$, where $\alpha \mathfrak{O}_{L^{+}}=\mathfrak{a}^{2}$. Since $(L: K)$ is odd, we can choose $\alpha \in O_{K^{+}}$, hence $N^{+}(\mathfrak{a})=\mathfrak{a}^{(L: K)}$ shows that the ideal class [a] is not contained in ker N^{+}. The proof in the case $w_{L} \equiv 0 \bmod 4$ is completely analogous.

Remark. For any prime p, let $\mathrm{Cl}_{p}^{-}(K)$ denote the p-Sylow subgroup of $\mathrm{Cl}^{-}(K)$; then $\mathrm{Cl}_{p}^{-}(K) \subseteq \mathrm{Cl}_{p}^{-}(L)$ for every $p \nmid(L: K)$. This is trivial, because ideal classes with order prime to $(L: K)$ cannot capitulate in L / K.

Corollary $2([\mathrm{MM}])$. If $K=\mathbb{Q}\left(\zeta_{m}\right)$ and $L=\mathbb{Q}\left(\zeta_{m n}\right)$ for some $m, n \in$ \mathbb{N}, then $h^{-}(K) \mid h^{-}(L)$.

Proof. We have shown in Section 2 that $j_{K^{+} \rightarrow K}$ and $j_{L^{+} \rightarrow L}$ are injective in this case. Moreover, L / K does not contain a non-trivial subfield of K^{1} (note that p is completely ramified in L / K if $n=p$, and use induction).

The special case $m=p^{a}, n=p$ of Corollary 2 can already be found in [We]. Examples of CM-fields L / K such that $h^{-}(K) \nmid h^{-}(L)$ have been given by Hasse $[\mathrm{H}]$; here are some more:

1. Let $d_{1} \in\{-4,-8,-q(q \equiv 3 \bmod 4)\}$ be a prime discriminant, and suppose that $d_{2}>0$ is the discriminant of a real quadratic number field such that $\left(d_{1}, d_{2}\right)=1$. Put $K=\mathbb{Q}\left(\sqrt{d_{1} d_{2}}\right)$ and $L=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$; then $Q(L)=1$ and $\kappa_{L / L^{+}}=1$ by Example 4, and $\left(L \cap K^{1}: K\right)=2 \cdot\left(L^{+} \cap\left(K^{+}\right)^{1}: K^{+}\right)$ since L / K is unramified but L^{+} / K^{+}is not. The class number formula (1) below shows that in fact $h^{-}(K) \nmid h^{-}(L)$.
2. Let $d_{1}=-4, d_{2}=8 m$ for some odd $m \in \mathbb{N}$, and suppose that $2=$ $(2, \sqrt{2 m})$ is not principal in \mathfrak{O}_{k}, where $k=\mathbb{Q}(\sqrt{2 m})$. Then $h^{-}(K) \nmid h^{-}(L)$ for $K=\mathbb{Q}(\sqrt{-2 m}), L=\mathbb{Q}(\sqrt{-1}, \sqrt{2 m})$. Here $\left(L \cap K^{1}: K\right)=\left(L^{+} \cap\left(K^{+}\right)^{1}\right.$: $\left.K^{+}\right)$, but $\kappa_{L / L^{+}}=\langle[2]\rangle$, since $2 \mathfrak{O}_{L}=(1+i)$. This example shows that we cannot drop the factor $\kappa_{L / L^{+}}$in Theorem 2.

Other examples can be found by replacing d_{1} in Example 2 by $d_{1}=-8$ or d_{2} by $d_{2}=4 m, m \in \mathbb{N}$ odd. The proof that in fact $h^{-}(K) \nmid h^{-}(L)$ for these fields uses Theorem 1, as well as Propositions 2 and 3 below.
4. Metsänkylä's factorization. An extension L / K is called a $V_{4^{-}}$ extension of $C M$-fields if

1. L / K is normal and $\operatorname{Gal}(L / K) \simeq V_{4}=(2,2)$;
2. Exactly two of the three quadratic subfields are CM-fields; call them K_{1} and K_{2}, respectively.

This implies, in particular, that K is totally real, and that L is a CM-field with maximal real subfield $L^{+}=K_{3}$. We will write $Q_{1}=Q\left(K_{1}\right), W_{1}=W_{K_{1}}$, etc.

Louboutin [Lou, Prop. 13] has given an analytic proof of the following class number formula for V_{4}-extension of CM-fields, which contains Lemma 8 of Ferrero $[\mathrm{F}]$ as a special case:

Proposition 2. Let L / K be a V_{4}-extension of CM-fields; then

$$
h^{-}(L)=\frac{Q(L)}{Q_{1} Q_{2}} \cdot \frac{w_{L}}{w_{1} w_{2}} h^{-}\left(K_{1}\right) h^{-}\left(K_{2}\right) .
$$

Proof. Kuroda's class number formula (for an algebraic proof see [L]) yields

$$
\begin{equation*}
h(L)=2^{d-\kappa-2-v} q(L) h\left(K_{1}\right) h\left(K_{2}\right) h\left(L^{+}\right) / h(K)^{2}, \tag{1}
\end{equation*}
$$

where

- $d=(K: \mathbb{Q})$ is the number of infinite primes of K ramified in L / K;
- $\kappa=d-1$ is the \mathbb{Z}-rank of the unit group of K;
- $v=1$ if and only if all three quadratic subfields of L / K can be written as $K(\sqrt{\varepsilon})$ for units $\varepsilon \in E_{K}$, and $v=0$ otherwise;
- $q(L)=\left(E_{L}: E_{1} E_{2} E_{3}\right)$ is the unit index for extensions of type (2,2); here E_{j} is the unit group of K_{j} (similarly, let W_{j} denote the group of roots unity in L_{j}).

Now we need to find a relation between the unit indices involved; we assert

Proposition 3. If L / K is a V_{4}-extension of CM-fields, then

$$
\frac{Q(L)}{Q_{1} Q_{2}} \cdot \frac{w_{L}}{w_{1} w_{2}}=2^{-1-v} q(L) .
$$

Proof of Proposition 3. We start with the observation

$$
Q(L)=\left(E_{L}: W_{L} E_{3}\right)=\left(E_{L}: E_{1} E_{2} E_{3}\right) \frac{\left(E_{1} E_{2} E_{3}: W_{1} W_{2} E_{3}\right)}{\left(W_{L} E_{3}: W_{1} W_{2} E_{3}\right)} .
$$

In [L] we have defined groups $E_{j}^{*}=\left\{\varepsilon \in E_{j}: N_{j} \varepsilon\right.$ is a square in $\left.E_{K}\right\}$, where N_{j} denotes the norm of K_{j} / K; we have also shown that

$$
\left(E_{1} E_{2} E_{3}: E_{1}^{*} E_{2}^{*} E_{3}^{*}\right)=2^{-v} \prod\left(E_{j}: E_{j}^{*}\right)
$$

and $E_{j} / E_{j}^{*} \simeq E_{K} / N_{j} E_{j}$. Now Proposition 1(a) gives $\left(E_{K}: N_{j} E_{j}\right)=Q_{j}$ for $j=1,2$, and we claim

1. $\left(W_{L} E_{3}: W_{1} W_{2} E_{3}\right)=\left(W_{L}: W_{1} W_{2}\right)=2 \cdot \frac{w_{L}}{w_{1} w_{2}} ;$
2. $E_{1}^{*} E_{2}^{*} E_{3}^{*}=W_{1} W_{2} E_{3}^{*}$;
3. $\left(W_{1} W_{2} E_{3}: W_{1} W_{2} E_{3}^{*}\right)=\left(E_{3}: E_{3}^{*}\right)$.

This will give us

$$
\begin{equation*}
Q(L)=2^{-1-v} q(L) Q_{1} Q_{2} \frac{w_{1} w_{2}}{w_{L}} \tag{2}
\end{equation*}
$$

completing the proof of Proposition 3 ; inserting (2) into equation (1) and recalling the definition of the minus class number yields Louboutin's formula.

We still have to prove the three claims above:

1. $W_{L} E_{3} / W_{1} W_{2} E_{3} \simeq W_{L} /\left(W_{L} \cap W_{1} W_{2} E_{3}\right) \simeq W_{L} / W_{1} W_{2}$, and the claim follows from $W_{1} \cap W_{2}=\{-1,+1\}$;
2. We only need to show that $E_{1}^{*} E_{2}^{*} E_{3}^{*} \subset W_{1} W_{2} E_{3}^{*}$; but Proposition 1(a) shows that $\varepsilon \in E_{1}^{*} \Leftrightarrow \varepsilon^{\sigma+1} \in E_{K}^{2} \Leftrightarrow \varepsilon \in W_{1} E_{K}$, and this implies the claim;
3. $W_{1} W_{2} E_{3} / W_{1} W_{2} E_{3}^{*} \simeq E_{3} / E_{3} \cap W_{1} W_{2} E_{3}^{*} \simeq E_{3} / E_{3}^{*}$.

Combining the result of Section 3 with Proposition 2, we get the following
Theorem 3. Let L_{1} and L_{2} be $C M$-fields, and let $L=L_{1} L_{2}$ and $K=L_{1}^{+} L_{2}^{+}$; then L / K is a V_{4}-extension of $C M$-fields with subfields $K_{1}=$ $L_{1} L_{2}^{+}, K_{2}=L_{1}^{+} L_{2}, K_{3}=L^{+}$, and

$$
h^{-}(L)=\frac{Q(L)}{Q_{1} Q_{2}} \cdot \frac{w_{L}}{w_{1} w_{2}} h^{-}\left(L_{1}\right) h^{-}\left(L_{2}\right) T_{1} T_{2}
$$

where $T_{1}=h^{-}\left(L_{1} L_{2}^{+}\right) / h^{-}\left(L_{1}\right)$ and $T_{2}=h^{-}\left(L_{2} L_{1}^{+}\right) / h^{-}\left(L_{2}\right)$.
If we assume that $\kappa_{1}=\kappa_{2}=1\left(\kappa_{1}\right.$ is the group of ideal classes capitulating in $L_{1} L_{2}^{+} / K$ and κ_{2} is defined similarly) and that

$$
\begin{aligned}
& \left(L_{1} L_{2}^{+} \cap L_{1}^{1}: L_{1}\right)=\left(L_{1}^{+} L_{2}^{+} \cap\left(L_{1}^{+}\right)^{1}: L_{1}^{+}\right) \\
& \left(L_{2} L_{1}^{+} \cap L_{2}^{1}: L_{2}\right)=\left(L_{2}^{+} L_{1}^{+} \cap\left(L_{2}^{+}\right)^{1}: L_{2}^{+}\right)
\end{aligned}
$$

then T_{1} and T_{2} are integers.
Proof. Theorem 3 follows directly from Theorem 2 and Proposition 2.

The following Hasse diagram explains the situation:

Now let $m=p^{\mu}$ and $n=q^{\nu}$ be prime powers, and suppose that $p \neq q$. Moreover, let $L_{1} \subseteq \mathbb{Q}\left(\zeta_{m}\right)$ and $L_{2} \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ be CM-fields. Then
(1) $Q(L)=2, Q_{1}=Q\left(L_{1} L_{2}^{+}\right)=Q_{2}=Q\left(L_{2} L_{1}^{+}\right)=1$: this has been proved in Proposition 1(h) and Example 4 in Section 2;
(2) $w_{1} w_{2}=2 w_{L}$ (obviously);
(3) $\kappa_{1}=\kappa_{2}=1$: see Example 4 in Section 2;
(4) $\left(L_{1} L_{2}^{+} \cap L_{1}^{1}: L_{1}\right)=\left(L_{1}^{+} L_{2}^{+} \cap\left(L_{1}^{+}\right)^{1}: L_{1}^{+}\right)$: this, as well as the corresponding property for K_{2}, is obvious, because the prime ideals above p and q ramify completely in L / L_{2} and L / L_{1}, respectively.

In particular, we have the following
$\operatorname{Corollary}([\mathrm{M}])$. Let $L_{1} \subseteq \mathbb{Q}\left(\zeta_{m}\right)$ and $L_{2} \subseteq \mathbb{Q}\left(\zeta_{n}\right)$ be $C M$-fields, where $m=p^{\mu}$ and $n=q^{\nu}$ are prime powers, and let $L=L_{1} L_{2}$; then

$$
h^{-}(L)=h^{-}\left(L_{1}\right) h^{-}\left(L_{2}\right) T_{1} T_{2},
$$

where $T_{1}=h^{-}\left(L_{1} L_{2}^{+}\right) / h^{-}\left(L_{1}\right)$ and $T_{2}=h^{-}\left(L_{2} L_{1}^{+}\right) / h^{-}\left(L_{2}\right)$ are integers.
It still remains to identify the character sums T_{01} and T_{10} in $[\mathrm{M}]$ with the class number factors T_{1} and T_{2} given above. But this is easy: the character group $X\left(L_{1}\right)$ corresponding to the field L_{1} is generated by a character χ_{1}, and it is easily seen that

$$
\begin{aligned}
X\left(L_{1}\right) & =\left\langle\chi_{1}\right\rangle, & X\left(L_{1} L_{2}^{+}\right) & =\left\langle\chi_{1}, \chi_{2}^{2}\right\rangle, \\
X\left(L_{2}\right) & =\left\langle\chi_{2}\right\rangle, & X\left(L_{2} L_{1}^{+}\right) & =\left\langle\chi_{2}, \chi_{1}^{2}\right\rangle, \\
X(L) & =\left\langle\chi_{1}, \chi_{2}\right\rangle, & X\left(L^{+}\right) & =\left\langle\chi_{1} \chi_{2}, \chi_{1}^{2}\right\rangle .
\end{aligned}
$$

The analytical class number formula for an abelian CM-field K reads

$$
\begin{equation*}
h^{-}(K)=Q(K) w_{K} \prod_{\chi \in X^{-}(K)} \frac{1}{2 \mathfrak{f}(\chi)} \sum_{a \bmod +\mathfrak{f}(\chi)}(-\chi(a) a), \tag{3}
\end{equation*}
$$

where $a \bmod ^{+} \mathfrak{f}(\chi)$ indicates that the sum is extended over all $1 \leq a \leq \mathfrak{f}(\chi)$ such that $(a, \mathfrak{f}(\chi))=1$, and $X^{-}(L)=X(L) \backslash X\left(L^{+}\right)$is the set of $\chi \in X(L)$ such that $\chi(-1)=-1$. Applying formula (3) to the CM-fields listed above and noting that $Q(L)=2, Q\left(L_{1}\right)=Q\left(L_{2}\right)=Q\left(L_{1} L_{2}^{+}\right)=Q\left(L_{2} L_{1}^{+}\right)=1$ and $2 w_{L}=w_{1} w_{2}$, we find

$$
h^{-}(L)=h^{-}\left(L_{1}\right) \cdot h^{-}\left(L_{2}\right) \prod_{\chi \in X^{*}(L)} \frac{1}{2 \mathfrak{f}(\chi)} \sum_{a \bmod +\mathfrak{f}(\chi)}(-\chi(a) a),
$$

where $X^{*}(L)$ is the subset of all $\chi \in X^{-}(L)$ not lying in $X^{-}\left(L_{1}\right)$ or $X^{-}\left(L_{2}\right)$. Now define $X_{1}(L)=\left\{\chi=\chi_{1}^{x} \chi_{2}^{y} \in X^{*}(L): x \equiv 1 \bmod 2, y \equiv 0 \bmod 2\right\}$, and let $X_{2}(L)$ be defined accordingly. Then $X^{*}(L)=X_{1}(L) \cup X_{2}(L)$, and

$$
h^{-}\left(L_{1}\right) \cdot \prod_{\chi \in X_{1}(L)} \frac{1}{2 \mathfrak{f}(\chi)} \sum_{a \bmod +\mathfrak{f}(\chi)}(-\chi(a) a)=h^{-}\left(L_{1} L_{2}^{+}\right)
$$

and we have shown that

$$
T_{1}=\prod_{\chi \in X_{1}(L)} \frac{1}{2 \mathfrak{f}(\chi)} \sum_{a \bmod +\mathfrak{f}(\chi)}(-\chi(a) a) .
$$

Comparing with the definition of Metsänkylä's factor T_{10}, this shows that indeed $T_{1}=T_{10}$.

Acknowldegements. I would like to thank Stéphane Louboutin and Ryotaro Okazaki for several helpful suggestions and for calling my attention to the papers of Horie and Uchida.

References

$[\mathrm{F}] \quad$ B. Ferrero, The cyclotomic \mathbb{Z}_{2}-extension of imaginary quadratic number fields, Amer. J. Math. 102 (1980), 447-459.
[H] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Springer, Berlin, 1985.
[HY] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields, Manuscripta Math. 60 (1988), 423-436.
[Ho] K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505521.
[L] F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245260.
[Lou] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc., to appear.
[LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, preprint, 1994.
[M] T. Metsänkylä, Über den ersten Faktor der Klassenzahl des Kreiskörpers, Ann. Acad. Sci. Fenn. Ser. A I 416, 1967.
[MM] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
[O] R. Okazaki, On evaluation of L-functions over real quadratic fields, J. Math. Kyoto Univ. 31 (1991), 1125-1153.
[S] A.Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111.
[U] K. Uchida, Imaginary quadratic number fields with class number one, Tôhoku Math. J. 24 (1972), 487-499.
[W] L. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
[We] J. Westlund, On the class number of the cyclotomic number field, Trans. Amer. Math. Soc. 4 (1903), 201-212.

ERWIN-ROHDE-STR. 19
D-69120 HEIDELBERG, GERMANY
E-mail: HB3@IX.URZ.UNI-HEIDELBERG.DE

[^0]: 1991 Mathematics Subject Classification: Primary 11R18; Secondary 11R29.

