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Solving a linear equation in a set of integers II
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Imre Z. Ruzsa (Budapest)

1. Introduction. We continue the study of linear equations started in
Part I of this paper.

Let (ai)1≤i≤k and b be integers. We try to solve the equation

(1.1) a1x1 + . . .+ akxk = b

with x1, . . . , xk in a prescribed set of integers.
We saw that the vanishing of the constant term b and the sum of coef-

ficients s = a1 + . . . + ak had a strong effect on the behaviour of equation
(1.1). The condition b = 0 is equivalent to homogeneity or multiplication
invariance (if x1, . . . , xk is a solution, so is tx1, . . . , txk), while s = 0 means
translation invariance (if x1, . . . , xk is a solution, so is x1 + t, . . . , xk+ t). We
called equations with b = s = 0 invariant , and those with b 6= 0 or s 6= 0
noninvariant .

In Part I of the paper we studied invariant equations; now we treat
noninvariant ones. We recall the principal notations.

Definition 1.1. Let

r(N) = max{|A| : A ⊂ [1, N ]}
over sets A such that equation (1.1) has no nontrivial solution with xi ∈ A,
and let R(N) be the analogous maximum over sets such that equation (1.1)
has no solution with distinct integers xi ∈ A.

“Trivial” and “nontrivial” solutions were also defined in Part I; we recall
that only invariant equations have trivial solutions, so in the noninvariant
case r(N) is simply the size of the maximal subset of {1, . . . , N} without a
solution.

The vanishing of b and s affect the behaviour of r(N). The following
result can be considered as known.
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Theorem 1.2. If b = s = 0, then

(1.2) r(N) ≤ R(N) = o(N).

On the other hand , if b 6= 0 or s 6= 0, then r(N) > λN with some λ > 0 for
all N large enough.

(1.2) can be proved with Roth’s method, and it also follows immediately
from the famous theorem of Szemerédi (1975) on arithmetical progressions.
One can also adapt the methods of Heath–Brown (1987) and Szemerédi
(1990) to obtain

(1.3) r(N) ≤ R(N)� N(logN)−α

with a positive constant α depending on the coefficients a1, . . . , ak. The
fact that r(N) � N if b = 0 and s 6= 0 is stated by Komlós, Sulyok and
Szemerédi (1975), and was known probably long before that.

Noninvariant equations have drawn little attention so far. The estimate
r(N) � N is easy, but there remain many nontrivial unsolved problems.
We list what we think are the most important problems and give partial
solutions. Besides, in the last two sections we give a new proof of the theorem
of Komlós, Sulyok and Szemerédi (1975) on systems of linear equations in
an arbitrary set. While this concerns invariant equations as well, we include
it here because of the common method applied to it and to several problems
on noninvariant equations.

Notation. Sets of integers will be denoted by script letters. If a letter,
say A, denotes a set, the corresponding Roman letter is used to denote its
counting function without any further explanation, so that

A(N) = |A ∩ [1, N ]|.

2. Bounds for r(N). We consider the general equation

(2.1) a1x1 + . . .+ akxk = b,

where now either b 6= 0 or s = a1 + . . .+ ak 6= 0.
Define

λ0 = lim sup
r(N)
N

, λ1 = lim inf
r(N)
N

.

One can also consider infinite sets. Write

λ2 = sup d(A), λ3 = sup d(A), λ4 = sup d(A),

where d, d and d denote upper density, lower density and asymptotic density,
and A runs over sets of positive integers in which (2.1) has no solution; in
the definition of λ4 only sets having an asymptotic density are considered.
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We have obviously

(2.2) 1 ≥ λ0 ≥
{
λ1

λ2

}
≥ λ3 ≥ λ4 ≥ 0.

Our main project is to find estimates for these quantities.

Theorem 2.1. Let q be the smallest positive integer that does not divide
gcd(s, b). Further , write

S =
∑
|ai|.

We have

(2.3) λ4 ≥ λ = max(q−1, S−1, (2k)−k).

R e m a r k 2.2. From the three bounds given in (2.3), the first is better
than the second whenever s 6= 0. (The prime number theorem implies that
q � log |s|.) The third has the remarkable property that it does not depend
on the coefficients, only on the number of unknowns.

P r o o f o f T h e o r e m 2.1. First we show that λ4 ≥ 1/q. Since q - (s, b),
at least one of the divisibilities q | b and q | s − b fails. Choose t = 0 or 1 so
that q - ts− b. Equation (2.1) has no solution within the set

A = {n : n ≡ t (mod q)}
which satisfies d(A) = 1/q.

We prove the second and third inequalities together.
Take positive numbers δ1, . . . , δk such that

δ1 + . . .+ δk = 1/2,

and let U ⊂ [0, 1) be the set of numbers 0 ≤ u < 1 satisfying

‖uai‖ < δi, i = 1, . . . , k.

(‖t‖ is the distance of t from the nearest integer.) U is a very simple set, a
union of finitely many intervals.

We prove that λ4 ≥ µ(U), where µ denotes measure. To this end let α, β
be real numbers satisfying

(2.4) αb+ βs = 1/2,

and put
A = {n : {αn+ β} ∈ U}.

Here {x} denotes the fractional part of x.
If α is irrational, then from the uniform distribution of αn modulo 1 we

infer that d(A) = µ(U). If s 6= 0, then we can fix the value of α at any
irrational number and then choose β to satisfy (2.4).

If s = 0, then the above argument does not work, and (2.4) is equivalent
to αb = 1/2. Without restricting generality we may assume that b > 0.
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The value α = 1/(2b) is fixed, and the set A is determined by β. It will
be a union of certain residue classes modulo 2b; let f(β) denote the number
of these classes. We have

f(β) =
2b∑

j=1

fj(β),

where fj(β) = 1 if {αj + β} ∈ U and 0 otherwise. We have
1∫

0

fj(β) dβ = µ(U),

hence
1∫

0

f(β) dβ = 2bµ(U).

Thus for a suitable value of β we have

d(A) = f(β)/(2b) ≥ µ(U).

Now we show that the equation has no solution in A. Suppose that
x1, . . . , xk ∈ A form a solution. By definition we have

‖ai(αxi + β)‖ < δi,

hence ∥∥∥
∑

ai(αxi + β)
∥∥∥ <

∑
δi = 1/2.

On the other hand,∑
ai(αxi + β) = α

∑
aixi + β

∑
ai = αb+ βs = 1/2,

a contradiction.
We have yet to estimate µ(U). A possible choice of the numbers δi is

δi =
|ai|
2S

,

and in this case U contains the interval (−1/(2S), 1/(2S)) modulo one, hence
µ(U) ≥ 1/S.

To prove the third estimate in (2.3) we put δi = 1/(2k) for all i. To
estimate µ(U) consider the map

x→ ({a1x}, . . . , {akx})
from [0, 1) to [0, 1)k. Divide the set [0, 1)k into (2k)k cubes of side 1/(2k).
Via the above map, this induces a division of [0, 1) into (2k)k parts. At least
one of these parts, say V , satisfies µ(V ) ≥ (2k)−k. Take an arbitrary v ∈ V .
The set V − v modulo 1 is a part of U , hence

µ(U) ≥ µ(V ) ≥ (2k)−k.
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Problem 2.3. Decide the cases of equality in (2.2).

It seems safe to conjecture that always λ0 = λ1, that is, the limit
lim r(N)/N exists. If s = 0, then the equation is translation invariant, hence
r(N) is subadditive, which immediately implies the existence of this limit.
In general, we cannot solve this innocent-looking problem.

Statement 2.4. If either all coefficients ai are of the same sign, or
gcd(a1, . . . , ak) does not divide b, then λ0 = . . . = λ4 = 1, otherwise λ0 < 1.

P r o o f. If all coefficients ai are of the same sign, then there are no
solutions in the set (M,∞) for a suitable M . If gcd(a1, . . . , ak) does not
divide b, then there are no solutions at all.

Assume now that (a1, . . . , ak) | b. This implies that there are (signed)
integers X1, . . . , Xk that form a solution of the equation. If there are both
positive and negative coefficients, then there are positive integers y1, . . . , yk
that satisfy

a1y1 + . . .+ akyk = 0.

The numbers xi = Xi + tyi form a solution of the equation and they are
positive for t > t0. Write X = maxXi and Y = max yi.

Consider now a set A ⊂ [1, N ] without solution. For each integer t with
t0 < t < (N − X)/Y , the numbers Xi + tyi are in [1, N ] and at least one
is missing from A. One missing element is counted at most k times, and
consequently we have

|A| ≤ N − 1
k

(
N −X
Y

− t0
)
,

which implies

λ0 ≤ 1− 1
kY

< 1.

Next we show that λ0 cannot be bounded from below by a positive
absolute constant.

Theorem 2.5. Consider the equation in 2k variables

(2.5) (x1 − y1) + 2(x2 − y2) + . . .+ 2k−1(xk − yk) = b,

where the integer b is of the form

(2.6) b = lcm[1, . . . ,m] < 2k.

This equation satisfies r(N) ≤ N/m; with the maximal possible choice of m
we have r(N) ≤ 2N/k.

P r o o f. Let d be the smallest difference between consecutive terms of a
set A, say d = x − y, x, y ∈ A. If d > m, then |A| < N/m for N > m.
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Assume that d ≤ m; we show that equation (2.5) has a solution in A. Write
u = b/d; by the assumptions on b, u is an integer and 1 ≤ u < 2k. Let

u =
k−1∑

i=0

ei2i, ei = 0 or 1,

be the binary representation of u. Let yi = y for all i, xi = x if ei = 1 and
xi = y if ei = 0; this is a solution of (2.5).

The estimation m ≥ k/2 follows from Chebyshev’s estimate on primes
and the prime number theorem yields m ∼ log 2k = (log 2)k.

Problem 2.6. Find an equation with small λ0 and s 6= 0.

Let
s+ =

∑
ai>0

ai, s− =
∑
ai<0

|ai|.

Without restricting generality we may assume that s+ ≥ s−. By considering
the integers in the interval (

s−

s+N,N

]

we obtain

λ1 ≥ s+ − s−
s+ .

For an integer m > 1, let %(m) denote the maximal cardinality of a set
B of residue classes modulo m such that the congruence

(2.7) a1x1 + . . .+ akxk ≡ b (mod m)

has no solution with xi ∈ B, and put

(2.8) % = sup
%(m)
m

.

By considering the set of integers satisfying a ≡ u (mod m) for some u ∈ B
we see that λ1 ≥ %(m) for any m, thus λ1 ≥ %.

Problem 2.7. Is it true that always

λ0 = λ1 = max
(
%,
s+ − s−
s+

)
?

Problem 2.8. When is the supremum in (2.8) a maximum?

It may not be, as the following example shows. Consider the equation
x = 2y. We show that %(m) ≤ (2m − 1)/3. Let B be a set such that con-
gruence (2.4) has no solution in B, |B| = l. For each x ∈ B consider the
residues 2x. These lie outside B and each z 6∈ B has at most two represen-
tations in this form. Furthermore, 0 6∈ B, and the residue 0 has only one
representation in the form 0 = 2y, y ∈ B, because one of the at most two
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solutions is 0 itself. This yields l ≤ 2(m − l) − 1 or l ≤ (2m − 1)/3, as
claimed. Now by considering m = 22q+1 and the set of residues in the form
22i(2j + 1), 0 ≤ i ≤ q, we see that %(m) ≥ (2m− 1)/3 for these values of m,
and consequently % = 2/3.

Recall that we defined

R(N) = max |A|
over sets A ⊂ [1, N ] of integers such that equation (2.1) has no solution with
distinct numbers xi ∈ A. In Section 3 of Part I we saw that the behaviour
of r(N) and R(N) can be very different in the invariant case. We think that
this does not happen for noninvariant equations.

Conjecture 2.9. We always have

R(N) = r(N) + o(N).

Any lower bound for r(N) automatically yields a lower bound for R(N).
In the only nontrivial upper bound we gave, in Theorem 2.5, we can prove
only a weaker bound for R(N) with a modification of the method.

3. Infinite sets. For Sidon’s equation (x+ y = u+ v), the problems for
finite and infinite sets behave very differently. In the noninvariant case the
difference is less dramatic but still does exist.

λ1 and λ2 may be different. Consider, for instance, the equation x =
y + az with an integer a > 1. This equation has no solution in the interval

(
N

a+ 1
, N

]
,

hence λ1 ≥ a/(a+1) (one can show that λ0 = λ1 = a/(a+1)). On the other
hand, we have λ2 ≤ 1/2. Indeed, let A be a set without solution. Fix any
number d ∈ A. There are no integers x, y ∈ A satisfying x− y = ad, that is,
the sets A and A + ad are disjoint. This implies 2A(N) ≤ N + ad, whence
λ2 ≤ 1/2. (If a is odd, then λ2 = λ3 = λ4 = 1/2 follows from the previous
observation and Theorem 2.1.)

Problem 3.1. Is there an absolute constant C such that we always have
λ2 ≥ Cλ1?

The quantity % was defined in (2.8). We have obviously λ4 ≥ %.

Problem 3.2. Is it true that always λ2 = λ3 = λ4 = %?

If s = 0, then the equality of the λi’s can be asserted.

Theorem 3.3. If s = 0 and b 6= 0, then λ0 = λ1 = λ2 = λ3 = λ4.
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P r o o f. The proof is based on translating and combining solution-free
sets. There are several ways to express this idea, a popular one applies
compactness in the space {0, 1}Z. We use the method developed in Ruzsa
(1978). We recall some concepts and results from this paper.

By a homogeneous system we mean a collection H of finite sets of integers
such that for every A ∈ H all the subsets and translates of A belong to H
as well. The counting function of a homogeneous system H is defined as

H(x) = max
A∈H

|A ∩ [1, x]|.
The density of H is the limit

d(H) = lim
x→∞

H(x)/x,

which always exists.

Lemma 3.4. For an arbitrary homogeneous system H there is a set A
of positive integers such that A has asymptotic density , d(A) = d(H) and
every translate of every finite subset of A belongs to H.

This is Theorem 4 of Ruzsa (1978).

Now let S be the collection of all finite sets of integers in which (2.1) has
no solution. Then S is a homogeneous system and its density is λ0. By the
lemma above, there is a set A of density d(A) = d(S) = λ0 such that all
finite subsets of A belong to S. This is equivalent to saying that equation
(2.1) has no solution in A, hence λ4 = λ0. The other equalities follow from
the obvious inequalities listed in (2.2).

The case s 6= 0, when there is no obvious connection between values of
r(n), may be more difficult.

4. Equations in a general set. Besides solutions of an equation

(4.1) a1x1 + . . .+ akxk = b

in a subset of the first N integers, one can ask about solution-free subsets
of an arbitrary set.

Definition 4.1. We define r′(N) as the largest number m with the
following property: every set B of N integers contains a subset A ⊂ B of m
elements such that equation (4.1) has no nontrivial solution in A. We define
R′(N) similarly, admitting only solutions with k distinct integers xj .

We have obviously r′(N) ≤ r(N) and R′(N) ≤ R(N). Komlós, Sulyok
and Szemerédi (1975) proved that in both cases the difference is at most a
constant factor. In this section we give a different proof of their result, based
on ideas similar to that of Theorem 2.1. This also leads to an improvement
in the values of the constants.
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We consider the invariant and noninvariant cases separately. In the non-
invariant case we know that r(N)� N (Theorem 2.1), and instead of com-
paring r′(N) and r(N) we shall estimate r′(N) directly. We prove essentially
the same lower bound for r′(N) as we did for r(N) in Theorem 2.1.

We write

(4.2) s =
∑

ai, S =
∑
|ai|, λ = max(S−1, (2k)−k).

Theorem 4.2. Assume that either b 6= 0 or
∑
ai 6= 0. With the number

λ of (4.2) we have r′(N) ≥ λ(N − 1) for every N.

P r o o f. We define U as in the proof of Theorem 2.1, take two reals
satisfying (2.4) and define A by

A = {n ∈ B : {αn+ β} ∈ U}.
The same argument yields that equation (4.1) has no solution in A. We need
to estimate |A|.

If s 6= 0, we can rewrite (2.4) as

β =
1
2s
− αb

s
,

therefore

(4.3) αn+ β = γ(sn− b) +
1
2s
,

where γ = α/s. The set A is determined uniquely by γ; write |A| = f(γ).
We have

f(γ) =
∑

n∈B
fn(γ),

where fn(γ) = 1 if γ(sn−b)+1/(2s) ∈ U and 0 otherwise. For a fixed n ∈ B
the measure of those γ ∈ [0, 1) for which this condition holds is equal to
µ(U) unless sn− b = 0, that is, with at most one exception. Consequently,

1∫
0

f(γ) dγ ≥ µ(U)(N − 1),

so with a suitable selection of γ we have

|A| = f(γ) ≥ µ(U)(N − 1) ≥ λ(N − 1)

as claimed.
If s = 0, then we fix α = 1/(2b) and obtain the same result by averaging

in β, as we did in the proof of Theorem 2.1.

Since the four numbers r(N), r′(N), R(N) and R′(N) are all between
λ(N−1) and N , they have the same order of magnitude. For invariant equa-
tions the order of magnitude of these quantities is unknown but a comparison
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is possible even in a more general situation. Instead of a single equation we
consider a system of equations

(4.4) aj1x1 + . . .+ ajkxk = 0, j = 1, . . . , J,

with integral coefficients aji. We assume that the system is invariant, that is,

k∑

i=1

aji = 0

for every 1 ≤ j ≤ J .
We generalize the concept of a nontrivial solution as follows. For every

k-tuple x1, . . . , xk of integers we define its coincidence matrix as the k × k
matrix (δij) in which δij = 1 if xi = xj and 0 otherwise. Now assume that a
subset ∆ of all n× n 0-1 matrices is given. We call a solution admissible if
its coincidence matrix belongs to ∆. If ∆ has only one element, the identity
matrix, we get the notion of solutions with different values of the unknowns.
It is natural, but not necessary, to assume that the identity matrix belongs
to ∆.

Definition 4.3. Let a system (4.4) of equations and a set ∆ of n × n
0-1 matrices be given. We define r(N) as the maximal cardinality of a set
A ⊂ [1, N ] of integers such that the system (4.4) has no solution with xi ∈ A
whose coincidence matrix belongs to ∆. We define r′(N) as the maximal
integer m with the property that every set B of integers, |B| = N , contains
a subset A with |A| = m, such that the system (4.4) has no solution with
xi ∈ A whose coincidence matrix belongs to ∆.

Write

S = max
j

k∑

i=1

|aji|.

Theorem 4.4. For every system of equations and every set ∆ of admis-
sible coincidence matrices we have

(4.5) r′(N) ≥ 4
S2 + 4

r(N).

P r o o f. Take a set A∗ ⊂ [1, N ] such that |A∗| = r(N) and (4.4) has no
admissible solution in A∗. We put ε = 1/S and m = NS/2. (S is even, since∑
i aji = 0, thus m is an integer.) We define the set U as

U =
⋃

y∈A∗

(
y − ε
m

,
y + ε

m

)
=
⋃
Iy.

We take two real numbers α and β and define a set A ⊂ B as follows. If for
any y ∈ A∗ there is an n ∈ B such that {αn+ β} ∈ Iy, then we put one of
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these numbers n (say, the smallest) into A. We have definitely

A ⊂ A′ = {n ∈ B : {αn+ β} ∈ U}.
We show that (4.4) has no admissible solution in A. Assume that x1, . . .

. . . , xk is a solution. We have

(4.6) αxi + β = zi +
yi + εi
m

,

where |εi| < ε, yi ∈ A∗ and the zi’s are integers. Moreover, since we selected
only one n ∈ B for each interval, the coincidence matrix of y1, . . . , yk is the
same as that of x1, . . . , xk.

Equation (4.6) implies that
∑

aji

(
zi +

yi + εi
m

)
= 0

for every j. Multiplying this equation by m we see that
∑
ajiεi must be an

integer. Since this number is less in absolute value than

ε
∑
|aji| ≤ εS = 1,

its value is 0. We conclude that
∑

aji

(
zi +

yi
m

)
= 0.

This shows that
∑
ajiyi/m is always an integer. Since

∑
i aji = 0, we have

∣∣∣
∑

ajiyi

∣∣∣ =
∣∣∣∣
∑

aji

(
yi − N + 1

2

)∣∣∣∣ ≤ S
N − 1

2
.

Hence ∣∣∣
∑

ajiyi/m
∣∣∣ ≤ S (N − 1)/2

m
< 1,

and consequently its value is 0. We proved that y1, . . . , yk also forms a
solution, a contradiction.

We now estimate |A|. Write |A| = f(α, β), |A′| = g(α, β). Finally, let
h(α, β) be the number of those pairs (n, n′), n, n′ ∈ B, for which {αn + β}
and {αn′ + β} are in a common interval Iy, y ∈ A∗.

It is easy to compute an average of g. We have g(α, β) =
∑
n∈B gn(α, β),

where gn(α, β) = 1 if {αn + β} ∈ U and 0 otherwise. Now we have∫ 1
0 gn(α, β) dβ = µ(U) for every n and α, and consequently

1∫
0

1∫
0

g(α, β) dα dβ = Nµ(U).

One can hope that if the numbers {αn+ β} do not often lie in the same
Iy, that is, h is not too big, then f is not much smaller than g. An exact
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expression is the following. Let φy = φy(α, β) denote the number of integers
n ∈ B such that {αn+ β} ∈ Iy. We have

f =
∑

φy 6=0

1, g =
∑

φy, h =
∑

φ2
y,

and the inequality of arithmetic and square means yields

g(α, β)2 ≤ f(α, β)h(α, β).

By integrating this inequality we obtain

1∫
0

1∫
0

g(α, β)2 dα dβ ≤
1∫

0

1∫
0

h(α, β)f(α, β) dα dβ

≤ max f ·
1∫

0

1∫
0

h(α, β) dα dβ.

We also know that
1∫

0

1∫
0

g(α, β)2 dα dβ ≥
( 1∫

0

1∫
0

g(α, β) dα dβ
)2

= N2µ(U)2.

Combining these inequalities we find

(4.7) max f(α, β) ≥ N2µ(U)2

1∫
0

1∫
0

h(α, β) dα dβ

.

Our next task is to estimate the integral of h.
We can express h as

h(α, β) =
∑

hnn′(α, β),

where hnn′(α, β) = 1 if {αn + β} and {αn′ + β} are in a common interval
Iy, and 0 otherwise. They can be in the same Iy only if ‖α(n−n′)‖ ≤ 2ε/m,
and consequently we have

(4.8)
1∫

0

hnn′(α, β) dβ ≤
{

0 if ‖α(n− n′)‖ > 2ε/m,
µ(U) otherwise.

The measure of those α for which the condition ‖α(n− n′)‖ ≤ 2ε/m holds
is 1 if n = n′ and 2ε/m if n 6= n′, thus (4.8) implies

1∫
0

1∫
0

hnn′(α, β) dα dβ ≤
{
µ(U) if n = n′,
2εµ(U)/m if n 6= n′.
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On summing these estimates we obtain
1∫

0

1∫
0

h(α, β) dα dβ ≤ Nµ(U) +N(N − 1)
2εµ(U)
m

≤ Nµ(U)(1 + 2εN/m).

Substituting this estimate into (4.7) we get

max f(α, β) ≥ Nµ(U)
1 + 2εN/m

.

In view of µ(U) = 2εr(N)/m, ε = 1/S and m = NS/2 this is equivalent
to (4.5).
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