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To Professor Wolfgang Schmidt on his 60th birthday

Introduction. In his paper Diophantine approximation on abelian va-
rieties [1], Faltings proved, among other things, the following conjecture of
Weil and Lang: if A is an abelian variety over a number field k and X a
subvariety of A not containing a translate of a positive dimensional abelian
subvariety of A, then X contains only finitely many k-rational points. One
of Faltings’ basic tools was a new non-vanishing result of his, also proved in
[1], the so-called (arithmetic version of the) Product Theorem. It has turned
out that this Product Theorem has a much wider range of applicability in
Diophantine approximation. For instance, recently Faltings and Wüstholz
gave an entirely new proof [2] of Schmidt’s Subspace Theorem [15] based on
the Product Theorem.

Faltings’ Product Theorem is not only very powerful for deriving new
qualitative finiteness results in Diophantine approximation but, in an ex-
plicit form, it can be used also to derive significant improvements of existing
quantitative results. In the present paper, we work out an explicit version of
the arithmetic version of the Product Theorem; except for making explicit
some of Faltings’ arguments from [1] this did not involve anything new.
By using the same techniques we improve Roth’s lemma from [12]. Roth’s
lemma was used by Roth in his theorem on the approximation of algebraic
numbers by rationals [12] and later by Schmidt in his proof of the Subspace
Theorem [15].

In two subsequent papers we shall apply our improvement of Roth’s
lemma to derive significant improvements on existing explicit upper bounds
for the number of subspaces in the Subspace Theorem, due to Schmidt [16]
and Schlickewei [14] and for the number of solutions of norm form equations
[17] and S-unit equations [13].

[215]
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At the conference on Diophantine problems in Boulder in honour of
W. M. Schmidt (26 June – 1 July, 1994), Wüstholz announced that his stu-
dent R. Ferretti had independently obtained results similar to our Theorems
1 and 2. These results have been published in [3]. Part of the arguments used
in the proof of Theorem 1 had already been worked out by van der Put [11]
in his lecture at the conference “Diophantine approximation and Abelian
varieties”, Soesterberg, The Netherlands, 12–15 April 1992.

As the Product Theorem appears to have applications outside arithmetic
algebraic geometry, we have tried to make this paper accessible to non-
geometers with a modest knowledge of algebraic geometry.

1. Statement of the results. Let n = (n1, . . . , nm) be a tuple of pos-
itive integers. For h = 1, . . . ,m, denote by Xh the block of nh + 1 variables
Xh0, . . . , Xh,nh . For a ring R, denote by R[X] or R[X1, . . . ,Xm] the polyno-
mial ring in the (n1 + 1) + . . .+ (nm + 1) variables Xhj (h = 1, . . . ,m, j =
0, . . . , nh). For a tuple of non-negative integers d = (d1, . . . , dm), denote
by Γn

R(d) the R-module of polynomials in R[X] which are homogeneous of
degree d1 in the block X1, . . . , homogeneous of degree dm in Xm, i.e. the
R-module generated by the monomials

Xi :=
m∏

h=1

nh∏

j=0

X
ihj
hj with

nh∑

j=0

ihj = dh for h = 1, . . . ,m.

Let Γn
R :=

⋃
d∈(Z≥0)m Γ

n
R(d) be the set of polynomials which are homoge-

neous in each block Xh for h = 1, . . . ,m. An n-ideal of R[X] is an ideal
generated by polynomials from Γn

R . An essential n-prime ideal of R[X] is an
n-ideal which is a prime ideal and which does not contain any of the ideals
(Xh0, . . . , Xh,nh) (h = 1, . . . ,m).

Let k be an algebraically closed field and denote by Pn(k) the n-dimen-
sional projective space over k. Every point P ∈ Pn(k) can be represented by
a unique (up to a scalar multiple) non-zero vector x = (x0, . . . , xn) ∈ kn+1 of
homogeneous coordinates. Let again n = (n1, . . . , nm) be a tuple of positive
integers. Define the multi-projective space Pn(k) as the cartesian product

Pn(k) := Pn1(k)× . . .× Pnm(k).

In what follows, Pn(k) with a non-bold face superscript denotes the n-
dimensional (single-) projective space, and Pn(k) with a bold-face super-
script a multi-projective space. For f ∈ Γn

k and for P = (P1, . . . , Pm) ∈
Pn(k) with Ph ∈ Pnh(k) for h = 1, . . . ,m we say that f(P ) = 0 (or 6= 0) if
f(x1, . . . ,xm) = 0 (or 6= 0) for any vectors of homogeneous coordinates
x1, . . . ,xm, representing P1, . . . , Pm respectively. This is well defined. A
(Zariski -) closed subset of Pn(k) is a set

{P ∈ Pn(k) : f1(P ) = 0, . . . , fr(P ) = 0}



Faltings’ Product Theorem 217

(abbreviated {f1 = 0, . . . , fr = 0}), where f1, . . . , fr ∈ Γn
k \{0}. A closed

subset X of Pn(k) is called reducible if it is the union of two closed subsets
A,B of Pn(k) with A ( X,B ( X, and irreducible otherwise. Every closed
subset X of Pn(k) can be expressed uniquely as

X = Z1 ∪ . . . ∪ Zr,
where Z1, . . . , Zr are irreducible closed subsets of Pn(k) such that Zi * Zj
for i, j ∈ {1, . . . , r}, i 6= j (cf. [18], p. 23). Z1, . . . , Zr are called the irreducible
components of X. We use the term “subvariety” exclusively for a projective
subvariety, i.e. a closed irreducible subset.

There is a one-to-one correspondence between subvarieties of Pn(k) and
essential n-prime ideals I of k[X]:

I ↔ V (I) = {P ∈ Pn(k) : f(P ) = 0 for all f ∈ I}.
We say that the subvariety V of Pn(k) is defined over a subfield k1 of k if its
corresponding prime ideal can be generated by polynomials with coefficients
from k1. An important class of subvarieties of Pn(k) we will encounter are
the product varieties

Z1 × . . .× Zm = {(P1, . . . , Pm) : Ph ∈ Zh for h = 1, . . . ,m},
where Zh is a subvariety of Pnh(k) for h = 1, . . . ,m. It is a theorem (cf. [18],
pp. 61–62) that the cartesian product of subvarieties of Pn1(k), . . . ,Pnm(k),
respectively, is a subvariety of Pn(k).

Let F ∈ Γn
k . For a tuple of non-negative integers i = (ihj : h =

1, . . . ,m, j = 0, . . . , nh) define the partial derivative of F :

Fi :=
( m∏

h=0

nh∏

j=0

∂ihj

∂X
ihj
hj

)
F.

Let d = (d1, . . . , dm) be a tuple of positive integers. For a tuple i as above,
put

(i/d) :=
m∑

h=1

1
dh

(ih0 + . . .+ ih,nh).

The index of F with respect to P ∈ Pn(k) and d, notation id(F, P ), is the
largest number σ such that

Fi(P ) = 0 for all i with (i/d) ≤ σ.
The index of F at P is some kind of weighted multiplicity of F at P . The
index is independent of the choice of homogeneous coordinates on Pnh for
h = 1, . . . ,m. Namely, if for h = 1, . . . ,m, Yh0, . . . , Yh,nh are linearly inde-
pendent linear forms in Xh, then the differential operators ∂/∂Yhj are linear
combinations of the ∂/∂Xhj and vice versa, hence the index does not change
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when in its definition the operators ∂/∂Xhj (j = 0, . . . , nh) are replaced by
∂/∂Yhj (j = 0, . . . , nh) for h = 1, . . . ,m.

For σ ≥ 0, define the closed subset of Pn(k),

Zσ = Zσ(F,d) := {P ∈ Pn(k) : id(F, P ) ≥ σ}
= {P ∈ Pn(k) : Fi(P ) = 0 for all i with (i/d) ≤ σ}.

Zσ need not be irreducible. The Product Theorem of Faltings [1], Thm. 3.1,
states that if Z is an irreducible component of Zσ and also of Zσ+ε for some
ε > 0, and if the quotients d1/d2, . . . , dm−1/dm are sufficiently large in terms
of ε and m, then Z is a product variety. Below we have stated this result in
an explicit form. The degree degZ of a subvariety Z of Pn is the number of
points in the intersection of Z with a generic linear projective subspace L
of Pn such that dimZ + dimL = n. The codimension of Z is n− dimZ.

Theorem 1. Let k be an algebraically closed field of characteristic 0.
Further , let m be an integer ≥ 2, n = (n1, . . . , nm), d = (d1, . . . , dm) tuples
of positive integers and σ, ε reals such that σ ≥ 0, 0 < ε ≤ 1 and

(1.1)
dh
dh+1

≥
(
mM

ε

)M
for h = 1, . . . ,m− 1,

where M := n1 + . . . + nm. Finally , let F ∈ Γn
k (d)\{0}, and let Z be an

irreducible component of both Zσ(F,d) and Zσ+ε(F,d). Then Z is a product
variety

(1.2) Z = Z1 × . . .× Zm,
where Zh is a subvariety of Pnh(k) for h = 1, . . . ,m. Further , if F has
its coefficients in a subfield k0 of k, then Z1, . . . , Zm are defined over an
extension k1 of k0 with

(1.3) [k1 : k0] degZ1 . . . degZm ≤
(
ms

ε

)s
,

where s =
∑m
i=1 codimZi.

The idea behind the proof of Theorem 1 is roughly as follows. Any irre-
ducible component Z of both Zσ and Zσ+ε must have in some sense large
multiplicity (analogously, if for a polynomial f in one variable all derivatives
of f up to some order vanish at P then P has large multiplicity). On the
other hand, using intersection theory one shows that the multiplicity of Zσ
can be that large only if this component is a product variety.

Now let k = Q be the field of algebraic numbers. We need estimates for
the heights of Z1, . . . , Zm in terms of the height of F . First we define the
height of x = (x0, . . . , xn) ∈ Qn+1\{0}. Take any number field K containing
x0, . . . , xn. Denote by OK the ring of integers of K and let σ1, . . . , σf , f =
[K : Q], be the embeddings of K into C. Choose α ∈ OK\{0} such that
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αx0, . . . , αxn ∈ OK , let a = αx0OK + . . . + αxnOK be the ideal generated
by αx0, . . . , αxn, and Na = #(OK/a) the norm of a. Then the height of x
is defined by

(1.4) H(x) :=
{

1
Na

f∏

j=1

( n∑

i=0

|σj(αxi)|2
)1/2

}1/f

.

It is easy to show that this does not depend on the choices of α and K. The
height of a non-zero polynomial F ∈ Q[X1, . . . , Xn] is defined by H(F ) =
H(x), where x is the vector of non-zero coefficients of F .

It is obvious that H(λx) = H(x) for every λ ∈ Q∗. Hence we can define
a height on Pn(Q) by H(P ) = H(x), where x ∈ Qn+1\{0} is any vector rep-
resenting P . By using the arithmetic intersection theory of Gillet and Soulé
[5] for schemes over SpecZ, Faltings defined a height h(Z) for subvarieties
Z of Pn(Q) (cf. [1], pp. 552–553 and [7] for more details). This height is
always ≥ 0. Further, for points P ∈ Pn(Q) we have

(1.5) h(P ) = logH(P ).

Philippon [10] and Soulé [19] gave an explicit expression for the Faltings
height of Z in terms of the Chow form of Z. This is the unique (up to
a constant) polynomial FZ in the r + 1 blocks of n + 1 variables ζ0 =
(ζ00, . . . , ζ0n), . . . , ζr = (ζr0, . . . , ζrn), where r = dimZ such that FZ has
degree degZ in each block ζi (i = 0, . . . , r) and such that FZ(ζ0, . . . , ζr) = 0
if and only if Z and the r + 1 linear hyperplanes (ζi,X) = 0 (i = 0, . . . , r)
have a point in common (cf. [18], pp. 65–66). From the investigations of
Philippon and Soulé it follows that

(1.6) |h(Z)− logH(FZ)| ≤ c(n) degZ,

where c(n) is effectively computable in terms of n.
Below we give an explicit version of [1], Theorem 3.3.

Theorem 2. Let m,n,d, σ, ε, F, Z, Z1, . . . , Zm, k0, k1, s =
∑m
h=1 codimZh

be as in Theorem 1, except that k = Q. Then

(1.7) [k1 : k0] degZ1 . . . degZm

( m∑

h=1

1
degZh

dhh(Zh)
)

≤ 2(s/ε)smMM2(d1 + . . .+ dm + logH(F )).

As mentioned in the introduction, results similar to our Theorems 1
and 2 were obtained independently by Ferretti [3].

The following corollary of Theorems 1 and 2 is useful.

Corollary. Let m be an integer ≥ 2,n = (n1, . . . , nm),d = (d1, . . . , dm)
tuples of positive integers and ε a real such that 0 ≤ ε ≤M + 1 and
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(1.8)
dh
dh+1

≥
(
mM(M + 1)

ε

)M
for h = 1, . . . ,m− 1,

where again M := n1 + . . . + nm. Further , let F ∈ Γn
Q

(d)\{0}. Then each
irreducible component of Zε is contained in a product variety

Z1 × . . .× Zm  Pn(Q),

where for h = 1, . . . ,m, Zh is a subvariety of Pnh(Q). Further , if F has
its coefficients in an algebraic number field k0, then Z1, . . . , Zm are defined
over an extension k1 of k0 with

(1.9) [k1 : k0] degZ1 . . . degZm ≤
(
m(M + 1)s

ε

)s
,

where s =
∑m
h=1 codimZh, and

(1.10) [k1 : k0] degZ1 . . . degZm

( m∑

h=1

1
degZh

dhh(Zh)
)

≤ 2
(

(M + 1)s
ε

)s
mMM2(d1 + . . .+ dm + logH(F )).

P r o o f. Put ε′ := ε/(M + 1). Consider the sequence of closed subsets of
Pn(Q):

Pn(Q) = Z0 ⊇ Zε′ ⊇ Z2ε′ ⊇ . . . ⊇ Z(M+1)ε′ = Zε.

For i = 0, . . . ,M + 1, choose an irreducible component Wi of Ziε′ such that

Pn(Q) = W0 ⊇W1 ⊇ . . . ⊇WM+1 = Z.

By [18], p. 54, Pn(Q) has dimension n1 + . . .+nm = M and if V1, V2 are two
subvarieties of Pn(Q) with V1  V2 then dimV1 < dimV2. It follows that
there is an i ∈ {0, . . . ,M} with Wi = Wi+1. Clearly, W := Wi = Wi+1  
Pn(Q) as it is contained in {F = 0}. Further, W is an irreducible component
of both Ziε′ and Ziε′+ε′ . By (1.8), the conditions of Theorems 1 and 2 are
satisfied with iε′, ε′ replacing σ, ε. Hence W = Z1 × . . . × Zm, where Zh is
a subvariety of Pnh(Q), for h = 1, . . . ,m. Inequalities (1.9), (1.10) follow by
replacing ε by ε/(M + 1) in (1.3), (1.7), respectively.

Using the techniques of the proofs of Theorems 1 and 2 one can prove the
following sharpening of a non-vanishing result of Roth from 1955 [12], now
known as Roth’s lemma. Roth used this in his proof of his famous theorem,
also in [12], that for every algebraic number α and every κ > 2 there are only
finitely many rationals x/y with x, y ∈ Z, y > 0 and |α−x/y| < y−κ. In fact,
from the Corollary with n1 = . . . = nm = 1 one can derive Theorem 3 below
with instead of (1.11) the more restrictive condition dh/dh+1 ≥ (2m3/ε)m

for h = 1, . . . ,m− 1.
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Theorem 3 (Roth’s lemma). Let m be an integer ≥ 2, let d = (d1, . . .
. . . , dm) be a tuple of positive integers, let F ∈ Q[X10, X11; . . . ;Xm0, Xm1]
be a non-zero polynomial which is homogeneous of degree dh in the pair of
variables (Xh0, Xh1) for h = 1, . . . ,m and let ε be a real with 0 < ε ≤ m+1
such that

(1.11) dh/dh+1 ≥ 2m3/ε for h = 1, . . . ,m− 1.

Further , let P = (P1, . . . , Pm), where P1, . . . , Pm are points in P1(Q) with

(1.12) H(Ph)dh > {ed1+...+dmH(F )}(3m3/ε)m for h = 1, . . . ,m,

where e = 2.7182 . . . Then id(F, P ) < ε.

The original lemma proved by Roth in 1955 [12] differs from Theorem 3
in that instead of (1.11) it has the more restrictive condition

(1.13) dh/dh+1 ≥ (10m/ε)2m for h = 1, . . . ,m− 1.

Roth’s lemma with (1.13) was also used by Schmidt in his proof of the Sub-
space Theorem and by Schmidt and Schlickewei in their proofs of quantita-
tive versions of the Subspace Theorem. In our improvements of the results
of Schmidt and Schlickewei mentioned in the introduction, it was crucial
that (1.13) could be replaced by (1.11).

R e m a r k (inspired by a suggestion of the referee). We have formulated
the Product Theorem and its consequences for multi-homogeneous poly-
nomials. There are affine analogues for polynomials which are not multi-
homogeneous. For instance, for h = 1, . . . ,m, let Yh = (Yh1, . . . , Yh,nh)
be a block of affine variables, and let f ∈ k[Y1, . . . ,Ym] be a polynomial
whose total degree in the block Yh is at most dh, for h = 1, . . . ,m. De-
note by i and k tuples (ihj : h = 1, . . . ,m, j = 0, . . . , nh) and (khj :
h = 1, . . . ,m, j = 1, . . . , nh), respectively. Define the index of f at a
point p as the largest number σ such that fk(p) = 0 for all tuples k with∑m
h=1 d

−1
h (kh1 + . . . + kh,nh) ≤ σ, where fk = (

∏m
h=1

∏nh
j=1 ∂

khj/∂Y
khj
hj )f .

For h = 1, . . . ,m, define a block of variables Xh = (Xh0, . . . , Xhm) such
that Yhj = Xhj/Xh0 for j = 1, . . . , nh. Let F =

∏m
h=1X

dh
h0f be the multi-

homogeneous polynomial in X1, . . . ,Xm corresponding to f . One obtains an
analogue of Theorem 1 for f (the same statement with everywhere “affine
varieties” replacing “projective varieties”) simply by applying Theorem 1
to F .

We have to check that the index of f at p = (p11, . . . , p1,n1 ; . . . ; pm1, . . . ,
pm,nm), defined using the variables Yhj , is equal to the index of F at P =
(1, p11, . . . , p1,n1 ; . . . ; 1, . . . , pm,nm) defined using the variables Xhj . This fol-
lows by observing first that fk = H−1Fi, where H is a product of pow-
ers of Xh0 (h = 1, . . . ,m) and i is the same tuple as k augmented with
ih0 := 0 for h = 1, . . . ,m, and second, in view of Euler’s identity ∂H/∂Xh0 =
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X−1
h0 (ehH−

∑nh
j=1Xhj∂H/∂Xhj) for polynomials H homogeneous of degree

eh in Xh, that for each tuple i, Fi is a linear combination of fk over tuples k
with khj ≤ ihj for h = 1, . . . ,m, j = 1, . . . , nh, the coefficients being rational
functions whose denominators are products of powers of Xh0 (h = 1, . . . ,m).

2. Intersection theory. Most of the results from intersection theory we
need can be found in [4], Chaps. 1, 2 and in [9]. As in Section 1, k denotes an
algebraically closed field and n = (n1, . . . , nm) a tuple of positive integers.
The block Xh of nh + 1 variables, the ring k[X] = k[X1, . . . ,Xm] and the
sets Γn

k (d) will have the meaning of Section 1. We write Pn, Γn, Γn(d) for
Pn(k), Γn

k , Γ
n
k (d).

For every subvariety Z of Pn there is a unique essential n-prime ideal I
of k[X] such that Z = V (I) = {P ∈ Pn : f(P ) = 0 for every f ∈ I}. The
local ring of Z is defined by

(2.1) OZ := {f/g : ∃d ∈ (Z≥0)m with f, g ∈ Γn(d), g 6∈ I}.
For any n-ideal J of k[X] we put JOZ := {f/g : ∃d ∈ (Z≥0)m with f, g ∈

Γn(d), f ∈ J, g 6∈ I}. Then MZ := IOZ is the maximal ideal of OZ . The
residue field k(Z) := OZ/MZ is called the function field of Z. The dimension
of Z is dimZ := trdegk k(Z). In particular, dimPn = M := n1 + . . .+ nm.
The codimension of Z is codimZ := M − dimZ; if W is a subvariety of Z
then the codimension of W in Z is codim(W,Z) = dimZ − dimW .

A cycle in Pn is a finite formal linear combination with integer coefficients
of subvarieties V of Pn, Z =

∑
nV V , say. The components of Z are the

subvarieties V for which nV 6= 0, and nV is called the multiplicity of V in
Z. Z is called effective if all nV ≥ 0. Denote by Zk = Zk(Pn) the abelian
group of cycles in Pn all of whose components have dimension k and put
Zk := (0) for k < 0. We denote by Z cycles as well as varieties.

For a ring A and an A-module M , we define the length lA(M) to be the
integer l for which there exists a sequence of A-modules

M = M0 !M1 ! . . . !Ml = (0)

such that Mi−1/Mi
∼= A/pi for i = 1, . . . , l, where pi is a maximal ideal of

A (cf. [4], p. 406); lA(M) is independent of the choice of M0, . . . ,Ml. Now
let Z = V (I) be a subvariety of Pn and f ∈ Γn\{0} such that f does not
vanish identically on Z, i.e. f 6∈ I. We define the divisor of f restricted
to Z by attaching certain multiplicities to the irreducible components of
Z ∩ {f = 0}. These irreducible components are all of codimension 1 in V
(cf. [21], p. 196). For each subvariety W of Z with codim(W,Z) = 1, the
number

(2.2) ordW (f |Z) := lOW (OW /(I + (f))OW )
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is a finite, non-negative integer and ordW (f |Z) > 0 if and only if I + (f) is
contained in the prime ideal of W , i.e. if W is an irreducible component of
Z ∩ {f = 0}. Now define

(2.3) div(f |Z) =
∑

W

ordW (f |Z) ·W,

where the sum is taken over all subvarieties W of codimension 1 in Z. By [3],
App. A3, ordW (fg|Z) = ordW (f |Z) + ordW (g|Z) and hence div(fg|Z) =
div(f |Z) + div(g|Z) whenever f, g do not identically vanish on Z. By abuse
of terminology, we say that f does not identically vanish on a cycle Z =∑
nV V if for each component V of Z, f does not identically vanish on V .

In that case we define div(f |Z) =
∑
nV div(f |V ). Note that div(f |Z) is

effective if Z is effective. We write div(f) if Z = Pn.
Two cycles Z1, Z2 ∈ Zt(Pn) are called rationally equivalent if Z1 − Z2

is a linear combination of cycles div(f |V ) − div(g|V ), where V is a (t +
1)-dimensional subvariety of Pn and f, g ∈ Γn(d) for some d ∈ (Z≥0)n.
Addition of cycles induces addition of rational equivalence classes. Note that
all divisors div(f) with f ∈ Γn(d) (d ∈ (Z≥0)m) are rationally equivalent;
denote by O(d) the rational equivalence class of div(f), f ∈ Γn(d). Clearly,
O(d1) + O(d2) = O(d1 + d2). We define O(d) for d ∈ Zm by additivity.
Put Pic(n) = {O(d) : d ∈ Zm},Pic+(n) = {O(d) : d ∈ (Z≥0)m}. If
M = O(d) ∈ Pic+(n), then write Γ (M) or Γk(M) for Γn

k (d).
For a zero-dimensional cycle Z =

∑
P nPP we define its degree:

degZ :=
∑

P

nP .

Then we have:

Lemma 1. For t = 0, . . . ,M there is a unique function (intersection
number) from Zt(Pn)× Pic(n)t to Z : (Z,M1, . . . ,Mt) 7→ (Z ·M1 . . .Mt)
with the following properties:

(i) (Z · M1 . . .Mt) is additive in Z,M1, . . . ,Mt and invariant under
permutations of M1, . . . ,Mt;

(ii) (Z · M1 . . .Mt) = 0 if Z is rationally equivalent to 0;
(iii) if Z ∈ Z0(Pn) then (Z) = degZ;
(iv) if M1 ∈ Pic+(n) then there is an f ∈ Γ (M1) not identically van-

ishing on Z and for every such f we have
(Z ·M1 . . .Mt) = (div(f |Z) · M2 . . .Mt).

P r o o f. This comprises some of the results from [4], Chaps. 1, 2. Ra-
tionally equivalent cycles in Z0 have the same degree and if Z,Z ′ ∈ Zt are
rationally equivalent and f, f ′ ∈ Γ (M1), then div(f |Z),div(f |Z ′) are ratio-
nally equivalent. Hence the intersection number can be defined inductively
by (iii), (iv).



224 J.-H. Evertse

We write (M1 . . .Mm) for (Pn ·M1 . . .Mm). Further, for divisor classes
N1, . . . ,Ns and non-negative integers e1, . . . , es with e1 + . . . + es = t, we
write (Z ·N e1

1 . . .N es
s ) for (Z ·N1 . . .N1︸ ︷︷ ︸

e1 times

. . .Ns . . .Ns︸ ︷︷ ︸
es times

). The degree of Z ∈ Zt

is defined by degZ := (Z · O(1)t).

R e m a r k s . (i) By induction on the dimension it follows easily that if
Z ∈ Zt is effective and M1, . . . ,Mt ∈ Pic+(n) then (Z · M1 . . .Mt) ≥ 0.
Moreover, if Z is a subvariety of Pn and f1 ∈ Γ (M1), . . . , ft ∈ Γ (Mt) are
“generic”, then (Z · M1 . . .Mt) is precisely the cardinality of the set of
points V ∩ {f1 = . . . = ft = 0}.

(ii) Let k0 be a perfect subfield of k, i.e. every finite extension of k0 is
separable. A k0-subvariety of Pn is a set {P ∈ Pn : f(P ) = 0 for every f ∈ I},
where I is an essential n-prime ideal of k0[X]. Every such k0-subvariety Z
is a union of equal dimensional subvarieties of Pn, Z = Z1 ∪ . . .∪Zq, and we
put dim Z := dim Z1; now if dimZ = k and M1, . . . ,Mt ∈ Pic+(n) then
we define

(2.4) (Z ·M1 . . .Mt) :=
q∑

i=1

(Zi · M1 . . .Mt).

This is extended by linearity to k0-cycles, i.e. finite formal sums of k0-
subvarieties.

We need some further properties of the intersection number. Let e1 =
(1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , em = (0, . . . , 0, 1) and put Lh = O(eh)
for h = 1, . . . ,m. Further, fix d = (d1, . . . , dm) ∈ (Z>0)m and put L :=
O(d) = d1L1 + . . .+ dmLm. If Zh =

∑
Vh
nVhVh (h = 1, . . . ,m) is a cycle in

Pnh then of course we define

Z1 × . . .× Zm =
∑

nV1nV2 . . . nVmV1 × . . .× Vm.
Further, we denote by πh the projection to the hth factor Pn → Pnh and

by π∗h the inclusion (“pull back”) k[Xh] ↪→ k[X1, . . . ,Xm] = k[X].

Lemma 2. Let Zh ∈ Zδh(Pnh) (h = 1, . . . ,m) and Z = Z1 × . . . × Zm.
Put δ = δ1 + . . .+ δm.

(i) Suppose that f ∈ Γn1 does not vanish identically on Z1. Then π∗1f
does not vanish identically on Z and

(2.5) div(π∗1f |Z) = div(f |Z1)× Z2 × . . .× Zm.
(ii) Let e1, . . . , em be non-negative integers with e1 + . . .+ em = δ. Then

(Z · Le11 . . .Lemm ) =
{

degZ1 . . . degZm if (e1, . . . , em) = (δ1, . . . , δm),
0 otherwise.
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(iii) (Z ·Lδ) = (δ!/(δ1! . . . δm!))dδ11 . . . dδmm degZ1 . . . degZm. In particular
(LM ) = C := (M !/(n1! . . . nm!))dn1

1 . . . dnmm .

P r o o f. (i) ([4], p. 35, Ex. 2.3.1). This is analogous to the set-theoretic
statement that if Z1, . . . , Zm are varieties then Z ∩{π∗1f = 0} = (Z1 ∩{f =
0})× Z2 × . . .× Zm.

(ii) This follows easily from (i) by induction on δ. Another way is as
follows. For h = 1, . . . ,m assume that Zh is a subvariety of Pnh , take generic
linear forms fhj ∈ k[Xh] for j = 1, . . . , eh and put Wh = Zh ∩ {fh1 =
0, . . . , fh,eh = 0}. Then by remark (i) above (Z ·Le11 . . .Lemm ) is the cardinality
of the set W = W1 × . . . ×Wm. This cardinality is zero if (e1, . . . , em) 6=
(δ1, . . . , δm) since then one of the sets Wh is empty; while otherwise this
cardinality is

∏m
h=1 #Wh =

∏m
h=1 degZh.

(iii) By additivity we have

(Z · Lδ) = (Z · (d1L1 + . . .+ dmLm)δ)

=
∑

e1+...+em=d

δ!
e1! . . . em!

de11 . . . demm (Z · Le11 . . .Lemm )

=
δ!

δ1! . . . δm!
dδ11 . . . dδmm degZ1 . . . degZm.

Lemma 3. Suppose that m ≥ 2. Let Z be a δ-dimensional subvariety of
Pn that cannot be expressed as a product Z = Z1× . . .×Zm with Zh ⊆ Pnh
for h = 1, . . . ,m. Then there are at least two tuples of non-negative integers
(e1, . . . , em) with e1 + . . .+ em = δ and (Z · Le11 . . .Lemm ) > 0.

P r o o f (cf. [11], p. 79). The idea is as follows. By [18], p. 45, Thm. 2,
if X is a closed subset of Pn and f : X → Pn a morphism, then f(X)
is closed, and f maps subvarieties of X to subvarieties of f(X). We apply
this with the projections πh : Pn → Pnh . Put Zh := πh(Z), δh := dimZh
for h = 1, . . . ,m. Since Z is not a product, Z is a proper subvariety of
Z1× . . .×Zm and therefore, δ = dimZ < dimZ1× . . .×Zm = δ1 + . . .+ δm.
We prove by induction on m the following assertion: for each h ∈ {1, . . . ,m}
there is a tuple (e1, . . . , em) as in the statement of Lemma 3 with eh = δh.
This implies Lemma 3 since δ1 + . . .+ δm > δ.

This assertion is obviously true if m = 1. Suppose that the assertion
holds for m = r − 1 where r > 1. We prove the assertion for m = r, h = 1,
which clearly suffices. In the induction step we proceed by induction on
δ1. If δ1 = 0 then Z = Q ×W where Q ∈ Pn1 and W is a subvariety of
Pn2×. . .×Pnm and the assertion follows by applying the induction hypothesis
to W . If δ1 > 0 then choose a linear form f ∈ k[X1] that does not identically
vanish on Z1. Then g := π∗1f does not identically vanish on Z. Clearly, π1

maps the irreducible components of Z ∩ {g = 0} to those of Z1 ∩ {f = 0}
and the latter have dimension δ1 − 1. By applying the second induction
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hypothesis to the irreducible components of Z ∩{g = 0}, we infer that there
are non-negative integers e1, . . . , em with e1 + . . .+ em = δ and e1 = δ1 such
that (div(g|Z) · Le1−1

1 . . .Lemm ) > 0. Hence (Z · Le11 . . .Lemm ) > 0. This proves
the assertion.

Lemma 4. Let A be a set of polynomials from Γn(d)\{0} and I the ideal
generated by A. Let Z1, . . . , Zt be irreducible components of codimension t
of X := {P ∈ Pn : f(P ) = 0 for f ∈ A}. Then for all tuples of non-negative
integers (e1, . . . , em) with e1 + . . .+ em = M − t one has

r∑

i=1

mZi(Zi · Le11 . . .Lemm ) ≤ (Le11 . . .Lemm · Lt),

where mZi := lOZi (OZi/IOZi) for i = 1, . . . , r.

P r o o f. This is essentially Proposition 2.3 of [1] and Lemma 6.4, p. 76
of [9]. We give some details of the proof to which we have to refer later. For
a subvariety Z of Pn and f ∈ Γn\{0} not vanishing identically on Z, define
the truncated divisor

divX(f |Z) :=
∑

W 6⊂X
ordW (f |Z)W,

where the sum is taken over all irreducible components of div(f |Z) which are
not irreducible components of X. This is extended by linearity to cycles. Put
Z0 := Pn and choose inductively f1, . . . , ft ∈ I and define cycles C1, . . . , Ct
as follows:

(2.6) for j = 1, . . . , t, fj does not vanish identically on Cj−1, each Zi
(i = 1, . . . , r) is a subvariety of one of the irreducible components
of div(fj |Cj−1), and Cj := divX(fj |Cj−1);

in the next lemma we explicitly construct such fj . Clearly, the irreducible
components of Cj have codimension j. Therefore Z1, . . . , Zr are irreducible
components of Ct.

We need some more advanced results from intersection theory to estimate
the multiplicity mZi,Ct of Zi in Ct from below. By [4], Ex. 7.1.10, p. 123,
mZi,Ct is equal to lOZi (OZi/I ′OZi), where I ′ = (f1, . . . , ft). (Note that Pn

is smooth whence all local rings OZi are Cohen–Macaulay rings.) Further,
since I ′ ⊆ I we have lOZi (OZi/I ′OZi) ≥ lOZi (OZi/IOZi) = mZi . Hence
mZi,Ct ≥ mZi . It follows that

(2.7) Ct =
r∑

i=1

mZiZi + (effective cycle).

Further, by (2.6) we have

(2.8) div(fj |Cj−1) = Cj + (effective cycle) for j = 1, . . . , t.
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Now by (2.7), (2.8) and fj ∈ Γ (L) we have
r∑

i=1

mZi(Zi · Le11 . . .Lemm ) ≤ (Ct · Le11 . . .Lemm )

≤ (Ct−1 · L · Le11 . . .Lemm )

≤ (Ct−2 · L2 · Le11 . . .Lemm )

≤ . . . ≤ (Lt · Le11 . . .Lemm ).

Lemma 5. It is possible to choose f1, . . . , ft as in (2.6) such that

(2.9) fi =
C∑

j=1

nijgij for i = 1, . . . , t,

where C = (M !/(n1! . . . nm!))dn1
1 . . . dnmm and gij ∈ A,nij ∈ Z, |nij | ≤ C for

i = 1, . . . , t, j = 1, . . . , C.

P r o o f. We have (Ci · LM−i) ≤ (Ci−1 · LM−i+1) for i = 1, . . . , t by (2.6)
and Lemma 1. Hence

(Ci · LM−i) ≤ (LM ) = C for i = 1, . . . , t.

Letting Ci =
∑u
k=1 akVk, where the Vk are the components of Ci and ak > 0,

we see that u ≤∑u
k=1 ak(Vk · LM−i) = (Ci · LM−i) ≤ C. Hence each Ci has

at most C irreducible components.
Suppose we have already chosen f1, . . . , fs (0 ≤ s ≤ t−1) such that (2.6)

and (2.9) are satisfied for i = 1, . . . , s. Let V1, . . . , Vu′ be the components
of Cs which are not irreducible components of X. Then for j = 1, . . . , u′,
there is a gj ∈ A which does not vanish identically on Vj . We construct
h1, . . . , hu′ such that for j = 1, . . . , u′, hj is not identically zero on V1, . . . , Vj
inductively as follows: Take h1 = g1. Suppose that hj has been constructed.
There are x1 ∈ V1, . . . ,xj ∈ Vj such that hj(xi) 6= 0 for i = 1, . . . , j; further,
there is xj+1 ∈ Vj+1 with gj+1(xj+1) 6= 0. Now there is an a ∈ {0, . . . , u′}
with (hj + agj+1)(xi) 6= 0 for i = 1, . . . , j + 1; take hj+1 := hj + agj+1.
Obviously, fs+1 := hu′ does not identically vanish on Cs and f1, . . . , fs+1

satisfy (2.6), (2.9). By repeating this process we arrive at f1, . . . , ft satisfying
(2.6), (2.9).

3. The Faltings height. From [1] we have collected some properties
of the Faltings height of varieties over Q. We use the following notation.
The extension of a ring homomorphism ψ : R1 → R2 to R1[X1, . . . , Xt] →
R2[X1, . . . , Xt], defined by applying ψ to the coefficients of f ∈ R1[X1, . . .
. . . , Xt], is denoted also by ψ. The ring of integers of a number field K is
denoted by OK . For a non-zero prime ideal ℘ of OK , let

F℘ := OK/℘, N℘ := #F℘,
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and let F℘ denote the algebraic closure of F℘. The multi-projective space
Pn(C), as well as its algebraic subvarieties, can be given the structure of
a complex analytic variety. This implies that we can integrate differential
forms over these varieties (cf. [6], Chap. 0). With every divisor class M =
O(d) ∈ Pic(n) we associate a (1, 1)-differential form c1(M), called its Chern
form:

• if m = 1,M = O(1),n = (n), then

c1(M) := ωn =

√
1

2π
∂∂ log(|Z0|2 + . . .+ |Zn|2)

is the (1, 1)-form associated with the Fubini–Study metric on Pn(C), where
Z0, . . . , Zn are the homogeneous coordinates on Pn, cf. [6], p. 30 for an
explicit formula;
• if m ≥ 1,d = (d1, . . . , dm), then

c1(M) = d1π
∗
1ωn1 + . . .+ dmπ

∗
mωnm ,

where πh is the projection Pn → Pnh and π∗hωnh is the pull back of ωnh
from Pnh to Pn (i.e. π∗hωnh is defined by precisely the same formula as ωnh
in terms of the homogeneous coordinates of Pnh but it is considered as a
differential form on Pn).

(t, t)-forms can be integrated over t-dimensional subvarieties of Pn(C).
For a cycle Z =

∑
nV V ∈ Zt(Pn(C)) and a (t, t)-form % on Pn(C), we set∫

Z
% :=

∑
nV
∫
V
%. By Wirtinger’s theorem (cf. [6], p. 171 or [7], Prop. 3.6),

we have for Z ∈ Zt(Pn(C)) and M1, . . . ,Mt ∈ Pic(n),

(3.1)
∫
Z

c1(M1) ∧ . . . ∧ c1(Mt) = (Z ·M1 . . .Mt).

The form ωn is positive on Pn (cf. [6], p. 31). This implies that if Z ∈
Zt(Pn(C)) is effective, if M1, . . . ,Mt ∈ Pic+(n), and if f is a real function
which is non-negative everywhere on the components of Z, then

(3.2)
∫
Z

f · c1(M1) ∧ . . . ∧ c1(Mt) ≥ 0.

If Z =
∑
nPP is a zero-dimensional cycle in Pn(C) and f is a function on

Pn(C) then we write
∫
Z
f for

∑
nP f(P ). For f ∈ Γn

C (d) we define a function
‖f‖ on Pn(C) as follows: let Zh = (Zh0, . . . , Zh,nh) be the complex homoge-
neous coordinates in Pnh(C), Z = (Z1, . . . ,Zm), ‖Zh‖ = (

∑nh
j=0 |Zhj |2)1/2;

then put

‖f‖(Z) =
|f(Z)|

‖Z1‖d1 . . . ‖Zm‖dm ,

where (d1, . . . , dm) = d.
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Let Z be a subvariety of Pn(Q), defined over an algebraic number field
K. Suppose that f ∈ Γn has its coefficients in OK and does not vanish
identically on Z. Let M1, . . . ,Mt ∈ Pic(n). Define, for each embedding
σ : K ↪→ C,

κσ = κσ(Z, f,M1, . . . ,Mt)(3.3)

= − 1
[K : Q]

∫
Z×σC

log ‖σ(f)‖c1(M1) ∧ . . . ∧ c1(Mt),

where Z ×σ C = {P ∈ Pn(C) : σ(g)(P ) = 0 for every g ∈ K[X] vanishing
identically on Z}.

Now let ℘ be a non-zero prime ideal of OK . Let I = {f ∈ OK [X] :
f(P ) = 0 for all P ∈ Z}. This is an essential prime ideal of OK [X] with
I ∩ OK = 0. Let J1,℘, . . . , Jg,℘ be the minimal n-prime ideals of OK [X]
containing I + ℘OK [X]. Then

Wi℘ := {P ∈ Pn(F℘) : g(P ) = 0 for g ∈ Ji℘/℘OK [X]}
is an F℘-subvariety of Pn(F℘) for i = 1, . . . , g; W1℘, . . . ,Wg℘ may be con-
sidered as the irreducible components of the reduction of Z mod ℘. Define
the local ring

OWi℘ = {h/g : h, g ∈ Γn
OK (d) for some d ∈ (Z≥0)m, g 6∈ Ji℘},

put ordWi℘(f |Z) := lOWi℘ (OWi℘/(I+(f))OWi℘) (which is finite since I+(f)
is a primary ideal for the maximal ideal of OWi℘), and define the ℘-divisor
of f restricted to Z,

div℘(f |Z) =
g∑

i=1

ordWi℘(f |Z)Wi℘.

For all but finitely many ℘ we have div℘(f |Z) = 0. Now put

(3.4) κ℘ = κ℘(Z, f,M1, . . . ,Mt) =
logN℘
[K : Q]

(div℘(f |Z) ·M1 . . .Mt),

where the latter intersection number is for F℘- cycles. Finally, put

κK(Z, f,M1, . . . ,Mt) :=
∑
σ

κσ +
∑
℘

κ℘,

where the sums are over all embeddings σ : K ↪→ C and all non-zero prime
ideals ℘ of OK . By linearity we define κσ, κ℘, κK for cycles in Zt with com-
ponents defined over K.

The next result is due to Faltings [1]; implicitly, it implies that κK is
independent of K.
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Lemma 6. There are unique functions h : Zt(Pn(Q)) × Pic(n)t+1 → R
for t = 0, . . . ,M (heights) with the following properties:

(i) h(Z,M0, . . . ,Mt) is additive in Z,M0, . . . ,Mt and invariant under
permutations of M0, . . . ,Mt;

(ii) for Z ∈ Zt(Pn(Q)),M0 ∈ Pic+(n),M1, . . . ,Mt ∈ Pic(n), choose
any number field K over which all components of Z are defined , and choose
any f ∈ Γ (M0) with coefficients in OK such that f does not identically
vanish on Z. Then

(3.5) h(Z,M0, . . . ,Mt)

= h(div(f |Z),M1, . . . ,Mt) + κK(Z, f,M1, . . . ,Mt).

R e m a r k. (3.5) holds true also for t = 0, by agreeing that then div(f |Z)
= 0.

P r o o f o f L e m m a 6. Put R := OK and Pn
R = Pn1

R ×SpecR . . .×SpecR

PnmR . A subvariety of Pn
R is by definition an integral closed subscheme of Pn

R

and a cycle in Pn
R is a finite formal linear combination with integer coeffi-

cients of subvarieties of Pn
R. In [1], Faltings defined a logarithmic height for

cycles in Pn
R by means of the arithmetic intersection theory on Pn

R developed
by Gillet and Soulé [5], and he gave a sketchy proof of the analogue of our
Lemma 6 for cycles in Pn

R. A more detailed proof of this analogue was given
by Gubler [7], Props. 4.3, 5.3.

It is straightforward to translate Gubler’s results into Lemma 6 by going
through the definition of a scheme. Similar to [8], Ex. 3.12 on p. 92, 5.16 on
pp. 119–120 and Ex. 5.10 on p. 125, there is a one-to-one correspondence
I ↔ V (I) between essential n-prime ideals of R[X] and subvarieties of Pn

R,
such that V (I) is a subvariety of V (J) ⇔ I ⊇ J . Further, for subvarieties
V (I) of Pn

R we have either I ∩ R = (0), in which case V (I) is flat (over
SpecR) (cf. [8], p. 257, Prop. 9.7), or I ∩ R is a non-zero prime ideal ℘ of
R, in which case V (I) maps to ℘ (under V (I)→ SpecR).

Now let Z be a subvariety of Pn defined over K, and let I = {f ∈ R[X] :
f(P ) = 0 for P ∈ Z}. Then Z̃ := V (I) is a flat subvariety of Pn

R. Now the
height h(Z, ·) defined in Lemma 6 is equal to the height h(Z̃, ·) defined by
Gubler (and 1/[K : Q] times the height defined by Faltings). Faltings [1]
and Gubler [7], Proposition 4.3, have a similar recurrence relation as (3.5)
for the height of flat subvarieties Z̃ of Pn

R, with instead of κK only the sum
of infinite components κσ. The divisor div(f |Z̃) might have also non-flat
components and the terms κ℘ in (3.5) are precisely the contributions of the
heights of these non-flat components. By Proposition 5.3 of [7], the Faltings
height for subvarieties of Pn

R is invariant under base extensions from R to
the ring of integers of any finite extension of K. This implies that in Lemma
6, the height does not depend on the choice of the field K.
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For Z ∈ Zt(Pn) and non-negative integers e1, . . . , es with e1 + . . . +
es = t+ 1, we write h(Z,N e1

1 . . .N es
s ) for h(Z,N1, . . . ,N1︸ ︷︷ ︸

e1 times

, . . . ,Ns, . . . ,Ns︸ ︷︷ ︸
es times

).

Further, for Z ∈ Zt(Pn) we put h(Z) := h(Z,O(1)t+1). We write again Pn

for Pn(Q).

Lemma 7. (i) For P ∈ Pn we have h(P ) = logH(P ).

(ii) h(Pn) = 1
2

∑n
j=1

∑j
l=1 1/l.

(iii) If Z ∈ Zt(Pn) is effective and M0, . . . ,Mt ∈ Pic+(n), then
h(Z,M0, . . . ,Mt) ≥ 0.

(iv) Let Z,M0, . . . ,Mt be as in (iii) and f ∈ Γ (M0) such that f does
not identically vanish on Z. Then

h(div(f |Z),M1, . . . ,Mt) ≤ h(Z,M0, . . . ,Mt) + logH(f) · (Z ·M1 . . .Mt).

P r o o f. (i) In a sufficiently large number field K we can choose the
coordinates x = (x0, . . . , xn) of P such that x0, . . . , xn ∈ OK and the ideal
generated by these coordinates is (1). Then there are α0, . . . , αn ∈ OK with
α0x0 + . . .+ αnxn = 1. Take f(X) = α0X0 + . . .+ αnXn. Then f does not
vanish at P , div(f |M) = 0, κ℘(P, f) = 0 for each prime ideal ℘ 6= (0) of
OK and

κσ(P, f) = − 1
[K : Q]

log
|σ(f)(x)|

(
∑n
i=0 |σ(xi)|2)1/2

= log
{( n∑

i=0

|σ(xi)|2
)1/2[K:Q]}

.

Hence

h(P ) = h(div(f |P )) =
1

[K : Q]

∑
σ

κσ(P, f) = logH(P ).

(ii) (cf. [7], Prop. 4.4). This can be proved by induction on n. Take
f = X0. Then h(Pn) = h(div(f |Pn)) + κ = h(V ) + κ, where V = {X0 = 0}
and

κ = −
∫

Pn(C)

log
|z0|

(|z0|2 + . . .+ |zn|2)1/2
· ωn.

By the induction hypothesis, h(V ) = h(Pn−1) = 1
2

∑n−1
j=1

∑j
l=1 1/l and, by

a straightforward but elaborate integration, κ = 1
2

∑n
l=1 1/l.

(iv) We assume that Z is a subvariety of Pn, which is no restriction.
Choose a number field K such that Z and the components of div(f |Z) are
defined over K and the coefficients of f belong to K. By enlarging K if
need be, we may assume that the ideal a generated by the coefficients of f
is principal, a = (λ), say. Since div(f |Z) and H(f) do not change when f is
replaced by λ−1f , we may assume that a = (1) and shall do so in the sequel.
Suppose M0 = O(d), with d = (d1, . . . , dm) ∈ (Z≥0)m. Let J be the set of
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tuples of non-negative integers i = (ihj : h = 1, . . . ,m, j = 0, . . . , nh) with∑nh
j=0 ihj = dh for h = 1, . . . ,m. Then

f =
∑

i∈J
a(i)

m∏

h=1

nh∏

j=0

X
ihj
hj with a(i) ∈ K.

Let σ be an embedding K ↪→ C and Aσ := (
∑

i∈J |σ(a(i))|2)1/2. By
Schwarz’ inequality we have for z = (z1, . . . , zm) with zh = (zh0, . . . , zh,nh) ∈
Cnh+1 for h = 1, . . . ,m that

|σ(f)(z)| =
∣∣∣
∑

i∈J
σ(a(i))

m∏

h=1

nm∏

j=0

z
ihj
hj

∣∣∣ ≤ Aσ‖z1‖d1 . . . ‖zm‖dm .

Hence ‖σ(f)‖ ≤ Aσ. Together with (3.2), (3.1) this implies that

κσ ≥ − 1
[K : Q]

logAσ
∫
Z

c1(M1) ∧ . . . ∧ c1(Mt)

≥ − 1
[K : Q]

logAσ(Z · M1 . . .Mt),

where κσ = κσ(Z, f,M1, . . . ,Mt). Further, for every non-zero prime ideal
℘ of OK we have κ℘ = κ℘(Z, f,M1, . . . ,Mt) ≥ 0. Since a = (1) we have
H(f) = (

∏
σ Aσ)1/[K:Q]. It follows that

h(div(f |Z),M1, . . . ,Mt)

= h(Z,M0, . . . ,Mt)−
∑
σ

κσ −
∑
℘

κ℘

≤ h(Z,M0, . . . ,Mt) + (logH(f))(Z · M1 . . .Mt).

(iii) Apply (iv) with f a monomial. Then logH(f) = 0; and therefore

h(div(f |Z),M1, . . . ,Mt) ≤ h(M0, . . . ,Mt).

Now (iii) follows easily by induction on t.

Lemma 8. (i) Let Z = Z1 × . . . × Zm where Zh ∈ Zδh(Pnh) for h =
1, . . . ,m and put δ = δ1 + . . .+ δm. Further , let e1, . . . , em be non-negative
integers with e1 + . . .+ em = δ + 1. Then

(3.6) h(Z,Le11 . . .Lemm ) = h(Zh)
∏

j 6=h
degZj

if for some h ∈ {1, . . . ,m} we have (e1, . . . , em) = (δ1, . . . , δh−1, δh + 1, . . .
. . . , δm), and h(Z,Le11 . . .Lemm ) = 0 otherwise.
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h(Z,Lδ+1) = dδ11 . . . dδmm

m∑

h=1

(δ + 1)!
δ1! . . . (δh + 1)! . . . δm!

(ii)

×
(
dhh(Zh)

∏

j 6=h
degZj

)
.

P r o o f. (i) This was stated without proof by Faltings [1]. We assume
that e1 − δ1 ≥ . . . ≥ em − δm and that Zh is a δh-dimensional subvariety of
Pnh for h = 1, . . . ,m, which are no restrictions. For convenience of notation,
put c = 1 if (e1 − δ1, . . . , em − δm) = (1, 0, . . . , 0) and c = 0 otherwise.

We proceed by induction on δ1. Note that e1 − δ1 ≥ 1; hence e1 ≥ 1.
Choose a number field K and a linear form f ∈ OK [X1] such that f does
not vanish identically on Z1, and such that Z1, . . . , Zm and the components
of div(f |Z1),div(π∗1f |Z) are defined over K. Consider the quantities

U := h(Z,Le11 . . .Lemm )− ch(Z1)
m∏

h=2

degZh,

u := h(div(π∗1f |Z),Le1−1
1 Le22 . . .Lemm )− ch(div(f |Z1))

m∏

h=2

degZh.

If δ1 = 0 then div(π∗1f |Z) = 0, div(f |Z1) = 0 hence u = 0; if δ1 > 0 then
also u = 0 by the induction hypothesis. We have to show that U = 0.

By Lemma 6(ii) we have

(3.7) U = U − u =
∑
σ

λσ +
∑
℘

λ℘,

where

λv = κv(Z, π∗1f,Le1−1
1 . . .Lemm )− cdegZ2 . . . degZmκv(Z1, f,O(1)e1−1)

for v ∈ {σ} ∪ {℘}, where σ stands for the embeddings of K in C and ℘ for
the non-zero prime ideals of OK . If (e1 − δ1, . . . , em − δm) = (1, 0, . . . , 0),
then by (3.1) we have for each embedding σ : K ↪→ C,

κσ(Z, π∗1f,Le1−1
1 . . .Lemm )

= − 1
[K : Q]

∫
Z×σC

log ‖σ(π∗1f)‖c1(L1)e1−1 ∧ . . . ∧ c1(Lm)em

= − 1
[K : Q]

∫
Z1×σC

log ‖σ(f)‖ωe1−1
n1

·
m∏

h=2

∫
Zh×σC

ωehnh

= κσ(Z1, f1,O(1)e1−1) degZ2 . . . degZm.
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If (e1 − δ1, . . . , em − δm) 6= (1, 0, . . . , 0) then κσ(Z, π∗1f,Le1−1
1 . . .Lemm ) = 0;

namely in that case either e1 − 1 > δ1 or eh > δh for some h ≥ 2, which
implies that the restriction of the differential form c1(L1)e1−1∧. . .∧c1(Lm)em

to Zh has degree larger than 2 dimZh, which is the dimension of Zh over R.
It follows that in both cases,

(3.8) λσ = 0 for each embedding σ : K ↪→ C.

Let p be any prime number and for each prime ideal ℘ of OK dividing p,
put d℘ := [F℘ : Fp]. Then

∑

℘|p
λ℘ = np(f) log p,

where

np(f) =
1

[K : Q]

∑

℘|p
f℘{(div℘(π∗1f |Z) · Le1−1

1 . . .Lemm )

−cdegZ2 . . . degZm(div℘(f |Z1) · O(1)e1−1)}.
By (3.7), (3.8) we have

(3.9) U =
∑
p

np(f) log p;

hence the right-hand side of (3.9) is independent of the choice of f and K.
But by the unique prime decomposition in Z the numbers log p (p prime)
are Q-linearly independent; therefore the rational numbers np(f) are inde-
pendent of the choice of f and K.

We show that for every prime number p we can choose f with np(f) = 0.
Let I = {g ∈ OK [X] : g vanishes identically on Z} and J1, . . . , Jg the
minimal n-prime ideals of OK [X] containing at least one of the ideals I +
℘OK [X] with ℘ | p. Let I ′ = {g′ vanishes identically on Z1}, and J ′1, . . . , J

′
g′

the minimal homogeneous prime ideals of OK [X1] containing at least one
of the ideals I ′ + ℘OK [X1] with ℘ | p. Choose a linear form f ∈ OK [X1]
with f 6∈ π∗−1

1 (J1) ∪ . . . ∪ π∗−1
1 (Jg) ∪ J ′1 ∪ . . . ∪ J ′g′ . Such an f exists since

each of the ideals in the union is a homogeneous prime ideal not containing
(X10, . . . , X1,n1). Thus, div℘(π∗1f |Z) = 0, div℘(f |Z1) = 0 for every ℘ | p,
which implies that np(f) = 0. Now (3.9) implies that U = 0. This completes
the proof of (i).

(ii) By the additivity of the height and (i) we have

h(Z1,Lδ+1) = h(Z, (d1L1 + . . .+ dmLm)δ+1)

=
∑

e1+...+em=δ+1

(δ + 1)!
e1! . . . em!

de11 . . . demm h(Z,Le11 . . .Lemm )
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=
m∑

h=1

(δ + 1)!
δ1! . . . (δh + 1)! . . . δm!

dδ11 . . . dδh+1
h . . . dδmm

(
h(Zh)

∏

j 6=h
degZj

)
,

which is (ii).

Finally, we need an analogue of Lemma 4 for heights. For a polynomial
f(X1, . . . , Xr) =

∑
i a(i)Xi1

1 . . . Xir
r with coefficients in a number field K

and for each embedding σ : K ↪→ C, put

Hσ(f) =
(∑

i

|σ(a(i))|2
)1/2

.

Lemma 9. Let d = (d1, . . . , dm) ∈ (Z≥0)m and A a subset of Γn
Q (d)\{0}

such that every polynomial f ∈ A has algebraic integer coefficients in some
number field K and such that Hσ(f) ≤ Hσ for each embedding σ : K ↪→ C.
Put H := (

∏
σHσ)1/[K:Q]. Further , let Z1, . . . , Zr be irreducible compo-

nents of X := {P ∈ Pn(Q) : f(P ) = 0 for f ∈ A} of codimension t.
Then
r∑

i=1

mZih(Zi,LM−t+1) ≤ M !
n1! . . . nm!

dn1
1 . . . dnmm {M2(d1+. . .+dm)+t logH}.

P r o o f. Let f1, . . . , ft be polynomials satisfying (2.6) and Lemma 5, and
C0, . . . , Ct the cycles defined by (2.6); so C0 = Pn. From the definition of
the height of a polynomial and the fact that the quantities Hσ(f) satisfy
the triangle inequality it follows that

(3.10) H(fi) ≤ C2H for i = 1, . . . , t, where C =
M !

n1! . . . nm!
dn1

1 . . . dnmm .

By Lemma 7(iv) we have

h(Pn) =
1
2

n∑

j=1

j∑

l=1

1
l
≤ 1

2
(n+ log n!).

Together with Lemma 8(ii) this implies

h(Pn,LM+1) = dn1
1 . . . dnmm

m∑

h=1

(M + 1)!
n1! . . . (nh + 1)! . . . nm!

dhh(Pnh)(3.11)

≤ 1
2
C(M + 1)

m∑

h=1

nh + log nh!
nh + 1

dh

≤ 1
4
C(M + 1)

m∑

h=1

nhdh ≤ 1
4
CM2(d1 + . . .+ dm).

By (2.8) we have div(fj |Cj−1) = Cj + (effective cycle) for j = 1, . . . , t. By
Lemma 1(iv) we have (Cj ·LM−j) ≤ (Cj−1 ·LM−j+1) ≤ . . . ≤ (C0 ·LM ) = C
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for j = 0, . . . , t. Further, by Lemma 7(iii), (iv) and (3.10),

h(Cj ,LM−j+1) ≤ h(Cj−1,LM−j+2) + (logC2H)(Cj−1LM−j+1)(3.12)

≤ h(Cj−1,LM−j+2) + C log(C2H)

for j = 1, . . . , t. Now from Ct =
∑r
i=1mZiZi + (effective cycle), (3.12),

(3.11), C ≤ ∑j1+...+jm=M (M !/(j1! . . . jm!))dj11 . . . djmm = (d1 + . . . + dm)M ,
log(d1 + . . .+ dm) ≤ (log 3/3)(d1 + . . .+ dm) and t ≤M it follows that
r∑

i=1

mZih(Zi,LM−t+1)

≤ h(Ct,LM−t+1) ≤ h(Pn,LM+1) + Ct log(C2H)

≤ C
{

1
4
M2(d1 + . . .+ dm) + 2t logC + t logH

}

≤ C
{

1
4
M2(d1 + . . .+ dm) + 2tM log(d1 + . . .+ dm) + t logH

}

≤ C
{(

1
4

+ 2
log 3

3

)
M2(d1 + . . .+ dm) + t logH

}

≤ C{M2(d1 + . . .+ dm) + t logH},
which is Lemma 9.

4. Proof of Theorems 1 and 2. We use the notation of Theorem
1: k is an algebraically closed field of characteristic 0,m an integer ≥ 2,
n = (n1, . . . , nm) and d = (d1, . . . , dm) tuples of positive integers and σ, ε
reals with σ ≥ 0, 0 < ε ≤ 1 and

(1.1)
dh
dh+1

≥
(
mM

ε

)M
for h = 1, . . . ,m− 1,

where M := n1+. . .+nm. We write Pn for Pn(k). Further, F is a polynomial
from Γn

k (d)\{0}, and Z is an irreducible component of both Zσ(F,d) and
Zσ+ε(F,d). Let A be the set of polynomials

(4.1)
m∏

h=1

nh∏

j=0

X
chj
hj

( m∏

h=1

nh∏

j=0

1
ihj !
· ∂ihj

∂X
ihj
hj

F

)

for all tuples of non-negative integers i = (ihj : h = 1, . . . ,m, j = 0, . . . , nh),
c = (chj : h = 1, . . . ,m, j = 0, . . . , nh) with

(i/d) ≤ σ,
nh∑

j=0

(chj + ihj) = dh for h = 1, . . . ,m

and let I be the ideal in k[X] generated by A. Note that A ⊂ Γn
k (d), and

that X := Zσ(F,d) = {P ∈ Pn : f(P ) = 0 for P ∈ A}.
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Let k0 be a subfield of k containing the coefficients of F , and k1 the
smallest extension of k0 over which Z is defined. Thus, Z = V (J) with
J = (f1, . . . , fu), where f1, . . . , fu ∈ k1[X]. Letting σ1 = identity, σ2, . . . , σg
(g = [k1 : k0]) be the injective k0-homomorphisms from k1 into k, put
J (j) := (σj(f1), . . . , σj(fu)), Z(j) = V (J (j)) for j = 1, . . . , g. Since A ⊂
k0[X], Z(1), . . . , Z(g) are irreducible components of X. Each σj induces an
isomorphism σj from OZ to OZ(j) mapping the maximal ideal MZ to MZ(j) .

It follows that the fields k(Z(j)) and k(Z) are isomorphic, whence
dimZ(j) = dimZ for j = 1, . . . , g. Further, since I is generated by polynomi-
als from k0[X], σj induces an isomorphism from OZ/IOZ to OZ(j)/IOZ(j) .
Therefore,

(4.2) mZ(j) = mZ

(cf. Lemma 4). Let s := codimZ and let e1, . . . , em be non-negative integers
with e1 + . . . + em = M − s. Let L1, . . . ,Lm have the same meaning as in
Section 2, and put L := d1L1 + . . .+ dmLm. By applying Lemma 1(iv) with
polynomials from k0[X], we infer that

(Z(j) · Le11 . . .Lemm ) = (Z · Le11 . . .Lemm ) for j = 1, . . . , g.

Together with (4.2) and Lemma 4, this implies that

(4.3) [k1 : k0]mZ(Z · Le11 . . .Lemm ) ≤ (Le11 . . .Lemm · Ls).
We shall estimate mZ from below, using differential operators similar to

Wüstholz [20]. Here it will be crucial that Z is also an irreducible component
of Zσ+ε(F,d). If Z is not a product variety then by Lemma 3 there are at
least two tuples (e1, . . . , em) for which (Z · Le11 . . .Lemm ) > 0. Using (1.1)
and the lower bound for mZ , we show that for some tuple (e1, . . . , em), the
left-hand side of (4.3) is larger than the right-hand side, thus arriving at a
contradiction.

Lemma 10. For i = 1, . . . ,m, let pi : Pn → Pni × . . . × Pnm be the
projection onto the last m− i+ 1 factors of Pn and put δi := dim pi(Z)−
dim pi+1(Z) for i = 1, . . . ,m, where dim pm+1(Z) := 0. Let s := codimZ.
Then

mZ = lOZ (OZ/IOZ) ≥ (ε/s)sdn1−δ1
1 . . . dnm−δmm .

P r o o f. We follow the arguments of van der Put [11] and Wüstholz [20].
For convenience of the reader, we have worked out more details.

Choose P ∈ Z such that Z is smooth in P (i.e. the tangent space of
Z at P has dimension equal to that of Z) and for i = 1, . . . ,m, pi(Z) is
smooth in pi(P ) and the map pi is smooth at P (i.e. the linear map of
tangent spaces dpi corresponding to pi is surjective). Such a point P exists
since by [8], Lemma 10.5, p. 271, the set of such points is a non-empty
Zariski open subset of Z. After applying a linear transformation if need be,
we may assume that P = (P1, . . . , Pm) with Ph = (1 : 0 : . . . : 0) ∈ Pnh for
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h = 1, . . . ,m. Now define the affine variety

A := AM = An1 × . . .× Anm = Pn ∩ {X10 6= 0, . . . , Xm0 6= 0}.
On A we choose the affine coordinates Yhj = Xhj/Xh0 (h = 1, . . . ,m, j =
1, . . . , nh). Let k[Y] be the polynomial ring in these coordinates. Put F ′(Y)
:= F (1, Y11, . . . , Y1,n, . . . , 1, Ym1, . . . , Ym,nm) and let I ′µ be the ideal gener-
ated by the polynomials

m∏

h=1

nm∏

j=1

∂ihj

∂Y
ihj
hj

F ′ with
m∑

h=1

1
dh

( nh∑

j=1

ihj

)
≤ µ;

by the Remark at the end of Section 1, this is the defining ideal of Zµ(f,d)∩
A. Further, let Z ′ := Z ∩ A and J ′ = {f ∈ k[Y] : f(P ) = 0 for P ∈ Z ′}.
Then J ′ is a minimal prime ideal containing I ′σ and also a minimal prime
ideal containing I ′σ+ε. The local ring of Z ′,

R̂ := {f/g : f, g ∈ k[Y], g 6∈ J ′}
is isomorphic to OZ and has maximal ideal M̂ := J ′R̂. Put Î := I ′R̂. Then
R̂/Î ∼= OZ/IOZ . Therefore, mZ = l

R̂
(R̂/Î), so it suffices to show that

(4.4) l
R̂

(R̂/Î) ≥ (ε/s)sdn1−d1
1 . . . dnm−δmm .

Since M̂ = (f1, . . . , fu)R̂, the tangent space of Z ′ at 0 is given by

T0(Z ′) =
{

w = (whj : h = 1, . . . ,m, j = 1, . . . , nh) ∈ kM :

m∑

h=1

nh∑

j=1

∂fl
∂Yhj

(0)whj = 0 for l = 1, . . . , u
}
.

The linear mapping dpi induced by pi from T0 to the tangent space
Tpi(0)(pi(Z ′)) of pi(Z ′) at pi(0) can be given by dpi(w) = (whj : h =
i, . . . ,m, j = 1, . . . , nh). Our smoothness assumptions at the beginning of
the proof imply that dimT0(Z ′) = dimZ ′, dimTpi(0)(pi(Z ′)) = dim pi(Z ′) =
δi + . . .+ δm, and that dpi is surjective. Therefore,

(4.5)





dim ker(dpi) = dimT0(Z ′)− dimTpi(0)(pi(Z
′))

= δ1 + . . .+ δi−1 for i = 2, . . . ,m,

ker dp1 = (0).

Note that

(4.6) ker(dpi) =
{

w ∈ kM :
i−1∑

h=1

nh∑

j=1

∂fl
∂Yhj

(0)whj = 0 for l = 1, . . . , u,

whj = 0 for h = i, . . . ,m, j = 1, . . . , nh

}
.
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By (4.5) and (4.6), the (n1 + . . .+ ni−1)× u-matrix

Ai =
(
∂fl
∂Yhj

(0)
)
h=1,...,i−1,j=1,...,nh

l=1,...,u

with rows being indexed by (h, j) and columns by l, has rank (n1 − δ1) +
. . . + (ni−1 − δi−1). Hence among the rows (∂fl/∂Yij)(0) (j = 1, . . . , ni) of
Ai+1 there are precisely ni− δi rows which are linearly independent of each
other and also linearly independent of the rows of Ai; we assume without
loss of generality that these rows are (∂fl/∂Yij)(0) with j = 1, . . . , ni − δi
and l = 1, . . . , u. This gives altogether (n1−δ1)+. . .+(nm−δm) = s linearly
independent rows (∂fl/∂Yhj)(0) (h = 1, . . . ,m, j = 1, . . . , nh − δh).

For convenience, write Y1, . . . , Ys for the variables Yhj (h = 1, . . . ,m,
j = 1, . . . , nh − δh) and put ci = dh whenever Yi = Yhj . Obviously (4.4)
follows once we have shown that

(4.7) l
R̂

(R̂/Î) ≥ (ε/s)sc1 . . . cs.

By what we have seen above, the matrix ((∂fl/∂Yj)(0))j=1,...,s,l=1,...,u

has rank s. We assume without loss of generality that det((∂fl/∂Yj)(0))i≤j,l≤s
is non-zero. Then

D(Y) := det
(
∂fl
∂Yj

)

i≤j,l≤s
6∈ J ′.

Hence the elements of the inverse matrix (gkl) = (∂fl/∂Yj)−1 belong to R̂.
Define the rational functions

Tj :=
s∑

l=1

gljfl (j = 1, . . . , s).

Further, define differential operators ∂/∂Ti by
(

∂

∂T1
, . . . ,

∂

∂Ts

)
=
(

∂

∂Y1
, . . . ,

∂

∂Ys

)(
∂Ti
∂Yj

)−1

,

where (∂Ti/∂Yj)−1 is the inverse matrix of (∂Ti/∂Yj)1≤i,j≤s. Then T1, . . . , Ts
belong to M̂ since glj ∈ R̂ and fl ∈ M̂ . If h ∈ R̂ then ∂h/∂Yj ∈ R̂ for
j = 1, . . . , s, namely if h = f/g with f, g ∈ k[Y], g 6∈ J ′, then

∂h

∂Yj
= g−2

{
g
∂f

∂Yj
− f ∂g

∂Yj

}
∈ R̂.

Further,

∂Ti
∂Yj

=
s∑

l=1

gli
∂fl
∂Yj

+
s∑

l=1

(
∂gli
∂Yj

)
fl ≡ δij mod M̂.
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Hence det(∂Ti/∂Yj) is a unit in R̂, which implies that the elements of
(∂Ti/∂Yj)−1 belong to R̂. It follows that ∂h/∂Tj ∈ R̂ for h ∈ R̂, j =
1, . . . , s. The operators ∂/∂Ti satisfy the usual rules for differentiation, e.g.,
∂Ti/∂Tj = δij and ∂T li /∂Ti = lT l−1

i for l = 1, 2, . . . We have the following
crucial fact:

(4.8) ∂j1+...+jsf/∂T j11 . . . ∂T jss ∈ M̂ for every f ∈ Î and all tuples of
non-negative integers (j1, . . . , js) with j1/c1 + . . .+ js/cs ≤ ε.

Namely, let f ∈ Î and j1/c1+. . .+js/cs ≤ ε. f can be expressed as g1f1+. . .+
grfr with g1, . . . , gr ∈ R̂, f1, . . . , fr ∈ I ′σ. Hence ∂j1+...+jsf/∂T j11 . . . ∂T jss can
be expressed as

∑
hikDifk with hik ∈ R̂ and Di = ∂i1+...+is/∂T i11 . . . ∂T

is
s

for certain i1 ≤ j1, . . . , is ≤ js. Furthermore, Difk can be expressed as∑
plkiD

′
lfk with plki ∈ R̂ and D′l = ∂l1+...+ls/∂Y l11 . . . ∂Y lss with l1 ≤ i1 ≤

j1, . . . , ls ≤ is ≤ js. Since I ′σ+ε ⊆ J ′ we have D′lfk ∈ J ′; this implies (4.8).

We are now ready to prove Lemma 10. Define an ordering on (Z≥0)s

by defining i < j if the first non-zero coordinate of j − i is > 0. For
i = (i1, . . . , is), put Di = ∂i1+...+is/∂T i11 . . . ∂T iss and Ti = T i11 . . . T iss .
Let i1, . . . , il be the tuples with i1/c1 + . . . + is/cs ≤ ε, ordered so that
i1 > i2 > . . . > il. Define the ideals in R̂:

J0 = Î + (Tj : all j = (j1, . . . , js) with j1/c1 + . . .+ js/cs > ε),

Jt = J0 + (Ti1 , . . . ,Tit) for t = 1, . . . , l.

We have

(4.9) J0  J1  . . .  Jl.

Namely, suppose that for some t we have Jt+1 = Jt. Then Tit+1 ∈ Jt, i.e.
Tit+1=

∑
i giT

i + f , where the sum is taken over tuples i > it+1 and where
gi ∈ R̂ and f ∈ Î. Since T1, . . . , Ts ∈ M̂ we have DkTi ∈ M̂ if k 6= i. Note
that Dit+1Tit+1 is a non-zero constant, whence it does not belong to M̂ . On
the other hand, Dit+1(giTi) can be expressed as

∑
hi,kD

kTi with hi,k ∈ R̂
and k ≤ it+1 < i, hence Dit+1(giTi) ∈ M̂ . Further, by (4.8), Dit+1f ∈ M̂ .
Thus we arrive at a contradiction and we must conclude that Jt+1 ! Jt.
This proves (4.9). Consequently,

(4.10) R̂/Î ⊇ R̂/J0 ! R̂/J1 ! . . . ! R̂/Jl ⊇ (0).

Hence l
R̂

(R̂/Î) ≥ l. The tuples (i1, . . . , is) with 0 ≤ ij ≤ [εcj/s] (j =
1, . . . , s) satisfy i1/c1 + . . .+ is/cs ≤ ε. Hence

l ≥
s∏

j=1

([εcj/s] + 1) ≥ (ε/s)sc1 . . . cs.

This proves (4.7) and hence Lemma 10.



Faltings’ Product Theorem 241

P r o o f o f T h e o r e m 1 . Let s = codimZ = M − (δ1 + . . . + δm),
where δ1, . . . , δm are the integers from Lemma 10. Let (e1, . . . , em) be a
tuple of non-negative integers with e1 + . . . + em = M − s = δ1 + . . . + δm
and (Z · Le11 . . .Lemm ) > 0. We have

ηi := (δi + . . .+ δm)− (ei + . . .+ em) ≥ 0 for i = 2, . . . ,m.

Namely, take generic fhj ∈ Γ (Lh) (h = 1, . . . ,m, j = 1, . . . , eh) and put
W := Z ∩ {fhj = 0 for h = 1, . . . ,m, j = 1, . . . , eh}. Then W is not
empty, hence pi(W ) is not empty. Further, pi(W ) ⊆ pi(Z) ∩ {fhj = 0 for
h = i, . . . ,m, j = 1, . . . , eh}. Hence dim pi(Z) = δi+ . . .+δm ≥ ei+ . . .+em.

From (4.3), Lemma 4 and Lemma 10 it follows that

(4.11) [k1 : k0](Z · Le11 . . .Lemm )

≤ m−1
Z (Le11 . . .Lemm · Ls)

= m−1
Z (Le11 . . .Lemm · (d1L1 + . . .+ dmLm)s)

= m−1
Z

s!
(n1 − e1)! . . . (nm − em)!

dn1−e1
1 . . . dnm−emm

≤ m−1
Z msdn1−e1

1 . . . dnm−emm

≤
(
ms

ε

)s
dδ1−n1

1 . . . dδm−nmm · dn1−e1
1 . . . dnm−emm

=
(
ms

ε

)s(
d2

d1

)η2

. . .

(
dm
dm−1

)ηm
.

Suppose that Z is not a product variety Z1 × . . . × Zm with Zh a sub-
variety of Pnh for h = 1, . . . ,m. Then by Lemma 3 there are at least two
tuples (e1, . . . , em) with (Z · Le11 . . .Lemm ) > 0 so there is such a tuple with
(e1, . . . , em) 6= (δ1, . . . , δm). But then, at least one of the numbers ηi is ≥ 1.
Together with (4.11) and condition (1.1) on d1/d2, . . . , dm−1/dm this implies
that

[k1 : k0](Z · Le11 . . .Lemm ) ≤
(
ms

ε

)s(
mM

ε

)−M(η2+...+ηm)

< 1,

which is impossible as (Z · Le11 . . .Lemm ) is a positive integer. It follows that
Z is a product variety Z1 × . . .× Zm with Zh a subvariety of Pnh and that
eh = δh = dimZh for h = 1, . . . ,m. Hence η1 = . . . = ηm = 0. By inserting
this into (4.11) and using Lemma 2(ii) we get

[k1 : k0] degZ1 . . . degZm = [k1 : k0](Z · Le11 . . .Lemm ) ≤
(
ms

ε

)s
.

This completes the proof of Theorem 1.
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P r o o f o f T h e o r e m 2 . We use the notation introduced at the begin-
ning of this section, except that k = Q. We assume that F has its coefficients
in some number field K, and that the ideal generated by the coefficients of F
is (1). As in the proof of Lemma 7(iv), this is no restriction. The coefficients
of each polynomial

Fi :=
m∏

h=1

nh∏

j=0

X
chj
hj

( m∏

h=1

nh∏

j=0

1
ihj !
· ∂ihj

∂X
ihj
hj

F

)

are obtained by multiplying the coefficient of F attached to the monomial∏m
h=1

∏nh
j=0X

lhj
hj with

∏m
h=1

∏nh
j=0

(
lhj
ihj

)
, which is an integer

≤ 2Σmh=1Σ
nh
j=1lhj ≤ 2d1+...+dm .

It follows that for each embedding σ : K ↪→ C,

(4.12) Hσ(Fi) ≤ 2d1+...+dmHσ(F ) =: Hσ.

Recall that the coefficients of F generate the ideal (1), so that

(4.13)
(∏

σ

Hσ

)1/[K:Q]
≤ 2d1+...+dmH(F ).

By applying Lemma 6(iv) with f having coefficients in k0 and using induc-
tion on the dimension, we see that

h(Z(i),LM−s+1) = h(Z,LM−s+1) for i = 1, . . . , [k1 : k0].

Together with Lemma 9, (4.12) and (4.13) this implies

(4.14) [k1 : k0]mZh(Z,LM−s+1)

≤ M !
n1! . . . nm!

dn1
1 . . . dnmm {(M2 + log 2)(d1 + . . .+ dm) + s logH(F )}

≤ 2mMM2dn1
1 . . . dnmm (d1 + . . .+ dm + logH(F )).

We have shown that Z = Z1 × . . . × Zm, where Zh is a δh-dimensional
subvariety of Pnh for h = 1, . . . ,m. By Lemmas 10, 9 and 8(ii) we have

[k1 : k0]mZh(Z,LM−s+1)

≥ [k1 : k0](ε/s)sdn1−δ1
1 . . . dnm−δmm

× dδ11 . . . dδmm degZ1 . . . degZm

( m∑

h=1

dhh(Zh)
degZh

)

= [k1 : k0] degZ1 . . . degZm · (ε/s)sdn1
1 . . . dnmm

m∑

h=1

dhh(Zh)
degZh

.

By comparing this with (4.14) we see that the term dn1
1 . . . dnmm cancels and

that
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[k1 : k0] degZ1 . . . degZm

( m∑

h=1

dhh(Zh)
degZh

)

≤ 2
(
s

ε

)s
mMM2(d1 + . . .+ dm + logH(F )),

which is Theorem 2.

5. Proof of Theorem 3 (Roth’s lemma). Let m be an integer ≥ 2.
Put P := P1(Q)× . . .×P1(Q) (m times) and denote by P1

i the ith factor of P.
Define the blocks of two variables Xh := (Xh0, Xh1), for d = (d1, . . . , dm) ∈
(Z≥0)m let Γ (d) be the set of polynomials from Q[X1, . . . ,Xm] which are
homogeneous of degree dh in Xh for h = 1, . . . ,m and let Γ :=

⋃
d Γ (d). As

usual, we put Lh = O(0, . . . , 1, . . . , 0) (1 on the hth place).
Now let 0 < ε ≤ m + 1 and let d = (d1, . . . , dm) be a tuple of positive

integers satisfying (1.11). Further, let F be a non-zero polynomial from Γ (d)
and let P = (P1, . . . , Pm), where Ph ∈ P1 for h = 1, . . . ,m. Assume that
id(F, P ) ≥ ε. We shall show that for at least one h, Ph does not satisfy
(1.12), i.e.

(5.1) H(Ph)dh ≤ (ed1+...+dmH(F ))(3m3/ε)m .

This clearly implies Theorem 3.

Put ε′ := ε/(m + 1). As in the proof of the Corollary, there is an
i ∈ {0, . . . ,m} such that Ziε′ and Z(i+1)ε′ have a common irreducible compo-
nent, Z, say, containing P . Put s := codimZ. As in Lemma 10, let pi be the
projection of P onto the product of its last m−i+1 factors P1

i × . . .×P1
m and

put δi := dim pi(Z)−dim pi+1(Z) for i = 1, . . . ,m, where dim pm+1(Z) := 0;
note that δi ∈ {0, 1}. Further, let πh be the projection of P onto its hth factor
P1
h. Then either πh(Z) = P1

h or πh(Z) is a point, in which case πh(Z) = Ph.
We shall show that for some h we have πh(Z) = Ph and that this Ph satisfies
(5.1). To this end we need the following improvement of Lemma 3 for the
case n = (1, . . . , 1).

Lemma 11. There are e1, . . . , em ∈ {0, 1} with e1 + . . .+ em = dimZ =
m− s, (Z · Le11 . . .Lemm ) > 0, ηi :=

∑m
j=i(δj − ej) ≥ 0 for i = 2, . . . ,m and

m∑

i=2

ηi ≥
( m∑

i=1

dimπi(Z)
)
− dimZ.

P r o o f. For any subset i = {i1, . . . , it} of {1, . . . ,m} denote by πi the
projection of P onto P1

i1
× . . .× P1

it
and put ci := dimπi(Z).

We proceed by induction on m. For m = 1, Lemma 11 is trivial. Sup-
pose that m ≥ 2. For the moment, suppose also that π1(Z) = P1

1. Let X
be the set of points P in Z such that for some i ⊆ {1, . . . ,m} either πi(Z)
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is not smooth at πi(P ) or the restriction πi|Z of πi to Z is not smooth at
P . Then X is a proper, Zariski-closed subset of Z. For Q = (p : q) ∈ P1

1,
let fQ = qX10 − pX11, ZQ = Z ∩ {fQ = 0}. There are only finitely many
Q ∈ P1

1 such that one of the irreducible components of ZQ is contained in
X. Namely, X has only finitely many irreducible components and if some
irreducible component Z ′ of ZQ is contained in X, then Z ′ is an irreducible
component of X since dimZ ′ = dimZ − 1. Now choose Q ∈ P1

1 such that
no irreducible component of ZQ is contained in X and let Z ′ be any irre-
ducible component of ZQ. We are going to apply the induction hypothesis
to Z ′.

We have to consider tangent spaces at an appropriate point. Choose
P ∈ Z ′ such that for each i ⊆ {1, . . . ,m}, πi(Z) is smooth at πi(P ), πi|Z is
smooth at P , πi(Z ′) is smooth at πi(P ) and the restriction πi|Z ′ is smooth
at P . Such a P exists since Z ′ is not contained in X and the set of P ∈ Z ′
such that for some i ⊆ {1, . . . ,m} either πi(Z ′) is not smooth at πi(P ) or
πi|Z ′ is not smooth at P is a proper Zariski-closed subset of Z ′.

We assume without loss of generality that P = (1 : 0; . . . ; 1 : 0).
Let A := {X10 6= 0, . . . , Xm0 6= 0} and define affine coordinates Y1 =
X11/X10, . . . , Ym = Xm1/Xm0. Thus, Z ′ ∩A is an irreducible component of
(Z ∩ A) ∩ {Y1 = 0}. There are polynomials f1, . . . , fr ∈ Q[Y1, . . . , Ym] such
that Z ∩A = {y ∈ A : f1(y) = . . . = fr(y) = 0}. The tangent space of Z at
P is given by

T :=
{

y = (y1, . . . , ym) ∈ Qm :
m∑

j=1

(∂fi/∂Yj)(0)yj = 0 for i = 1, . . . , r
}
.

Since πi|Z is smooth at P , the linear map dπi corresponding to πi, which
is the projection y 7→ (yi : i ∈ i), maps T surjectively to the tangent space
Ti of πi(Z) at πi(P ). Since Z is smooth at P we have dimT = dimZ and
since πi(Z) is smooth at πi(P ) we have dimTi = dimπi(Z) = ci.

Similarly, dπi maps the tangent space T ′ of Z ′ at P surjectively to the
tangent space T ′i of πi(Z ′) at πi(P ) and dimT ′i = dimπi(Z ′). Since Y1 ≡ 0
on Z ′ ∩ A we have y1 ≡ 0 on T ′. Hence T ′ ⊆ T ∩ {y1 = 0}. Further, y1

is not identically zero on T since dim f{1}(T ) = dimZ1 = 1 and dimT ′ =
dimZ ′ = dimZ − 1 = dimT − 1. Hence T ′ = T ∩ {y1 = 0}.

We consider y1, . . . , ym as linear functions on T . Thus, for i ⊆ {1, . . . ,m}
we have ci = dimTi = rank {yi : i ∈ i}.

We have the following crucial fact:

(5.2) dimπi(Z ′) =





dimπi(Z)
for each subset i of {1, . . . ,m} with c{1}∪i > ci,

dimπi(Z)− 1
for each subset i of {1, . . . ,m} with c{1}∪i = ci.
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Namely, for i ⊆ {1, . . . ,m} let Vi = ker dπi ∩ T = T ∩ {yi = 0 for i ∈ i},
V ′i = ker dπi ∩ T ′ = T ′ ∩ {yi = 0 for i ∈ i}. Thus, V ′i = V{1}∪i. Further, put
ei = c{1}∪i − ci; then ei ∈ {0, 1}. Now for i ⊆ {1, . . . ,m} we have

dimπi(Z ′) = dimT ′ − dimV ′i = dimT − 1− dimV{1}∪i

= dimπ{1}∪i(Z
′)− 1 = dimπi(Z) + ei − 1,

which is precisely (5.2).
We now complete the induction step. Put δ′i := dim pi(Z ′)−dim pi+1(Z ′)

for i = 1, . . . ,m, where dim pm+1(Z ′) := 0. Put also ci := dimπi(Z), c′i :=
dimπi(Z ′). Recall that Z ′ = Q ×W , where Q ∈ P1

1 and W is a subvariety
of P1

2 × . . .× P1
m. By applying the induction hypothesis to W we infer that

there are e2, . . . , em ∈ {0, 1} such that

e2 + . . .+ em = dimZ ′ = dimZ − 1,

(Z ′ · Le22 . . .Lemm ) > 0,

η′i :=
m∑

j=i

(δ′j − ej) ≥ 0 for i = 3, . . . ,m,

η′3 + . . .+ η′m ≥
m∑

j=2

c′j − dimZ ′.

Put e1 = 1. Obviously, (Z · Le11 . . .Lemm ) > 0. Let t be the largest index
such that y1 is linearly dependent on {yi : i ≥ t}. Then δt = dim pt(Z) −
dim pt+1(Z) = rank{yi : i ≥ t} − rank{yi : i ≥ t+ 1} = 1. Further, by (5.2)
we have δ′i = δi, η

′
i = ηi, c

′
i = ci for i > t, δ′t = δt−1 = 0, δ′i = δi for 2 ≤ i < t

and η′i = ηi − 1 for 2 ≤ i ≤ t, where η′2 :=
∑m
j=2(δ′j − ej) = 0. Moreover,

c′i ≥ ci − 1 for i ≤ t and dimZ ′ = dimZ − 1. It follows that

m∑

j=2

ηj =
m∑

j=3

η′j + t− 1

≥
( m∑

j=2

c′j
)

+ t− 1− dimZ ′ ≥
( m∑

j=1

cj

)
− dimZ.

This completes the induction step for the case dimπ1(Z) > 0. In the other
case we have Z = Q×W , where Q ∈ P1

1 and W is a subvariety of P1
2× . . .×

P1
m, and then the induction step is completed by applying the induction

hypothesis to W . This proves Lemma 11.

P r o o f o f T h e o r e m 3 . Suppose that the integers d1, . . . , dm satisfy
(1.11), i.e. dh/dh+1 > 2m3/ε for h = 1, . . . ,m − 1. Put L := d1L1 + . . . +
dmLm. Let e1, . . . , em be the integers from Lemma 11. Assume that πh(Z) =
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P1
h for h = 1, . . . ,m. Then by Lemma 11,

η2 + . . .+ ηm ≥ codimZ = s.

Together with (4.11) (cf. proof of Theorem 1 with iε′, ε′ replacing σ, ε, re-
spectively) and η1 = 0 this implies that

1 ≤ (Z · Le11 . . .Lemm ) ≤
(
ms

ε′

)s(
d2

d1

)η2

. . .

(
dm
dm−1

)ηm

<

(
m(m+ 1)

ε

)s(2m3

ε

)−s
≤ 1,

which is impossible. Therefore there is an h ∈ {1, . . . ,m} with πh(Z) = Ph.
We now show that Ph satisfies (5.1). By precisely the same argument as

in the proof of Theorem 2 we have

(5.3) h(Z,Lm−s+1)

≤ m−1
Z ·m!d1 . . . dm((m2 + log 2)(d1 + . . .+ dm) + s logH(F ))

≤
(
s

ε′

)s
2m2m! · dδ11 . . . dδmm (d1 + . . .+ dm + logH(F ))

≤
(

3m3

ε

)m
dδ11 . . . dδmm (d1 + . . .+ dm + logH(F )).

By Lemmas 6 and 7 we have

h(Z,Lm−s+1) =
∑

f1+...+fm=m−s+1

(m− s+ 1)!
f1! . . . fm!

df1
1 . . . dfmm h(Z,Lf1

1 . . .Lfmm )

≥ de11 . . . demm · dh · h(Z,Le11 . . .Leh+1
h . . .Lemm ).

Together with (5.3) and ηi ≥ 0 for i = 2, . . . ,m this implies

(5.4) dh · h(Z,Le11 . . .Leh+1
h . . .Lemm )

≤
(

3m3

ε

)m
dδ1−e11 . . . dδm−emm (d1 + . . .+ dm + logH(F ))

≤
(

3m3

ε

)m(
d2

d1

)η2

. . .

(
dm
dm−1

)ηm
(d1 + . . .+ dm + logH(F ))

≤
(

3m3

ε

)m
(d1 + . . .+ dm + logH(F )).

It is no restriction to assume that Ph = (a : b) where a, b belong to some
number field K and (a, b) = (1). Then there are α, β ∈ OK with αa+βb = 1.
Put f = αXh0 +βXh1. Then div(f |Z) = 0 and κ℘ = κ℘(Z, f,Le11 . . .Lemm ) =
0 for each non-zero prime ideal ℘ of OK . Further, for each embedding σ :
K ↪→ C we see that ‖σ(f)‖ = (|σ(a)|2 + |σ(b)|2)−1/2 is constant on Z ×σ C.
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Hence, using (3.1),

κσ = κσ(Z, f,Le11 . . .Lemm )

= − 1
[K : Q]

∫
Z×σC

log ‖σ(f)‖ · c1(L1)e1 ∧ . . . ∧ c1(Lm)em

= − 1
[K : Q]

log((|σ(a)|2 + |σ(b)|2)−1/2)
∫

Z×σC
c1(L1)e1 ∧ . . . ∧ c1(Lm)em

= log((|σ(a)|2 + |σ(b)|2)1/2[K:Q]) · (Z · Le11 . . .Lemm ).

By inserting this into (3.5) and using that (a, b) = (1) we obtain

h(Z,Le11 . . .Leh+1
h . . .Lemm ) =

∑
σ

κσ +
∑
℘

κ℘

= logH(Ph) · (Z · Le11 . . .Lemm ) ≥ logH(Ph).

Together with (5.4) this implies (5.1). This completes the proof of Theo-
rem 3.
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