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1. Introduction. Let

(1.1) F (q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + . . .
, |q| < 1,

denote the Rogers–Ramanujan continued fraction. On page 365 of his Lost
Notebook [9], S. Ramanujan wrote five identities which show the relations
between F (q) and the five continued fractions F (−q), F (q2), F (q3), F (q4)
and F (q5) ([9], p. 365, (10), (11), (12), (13), (14)). An example of these
identities is

(1.2) F 5(q) = F (q5)
1− 2F (q5) + 4F 2(q5)− 3F 3(q5) + F 4(q5)
1 + 3F (q5) + 4F 2(q5) + 2F 3(q5) + F 4(q5)

,

which shows a relation between F (q) and F (q5). The proofs of (1.2) can
be found in [10, p. 392, (7.1)], [7] and [11]. The proofs of those identities
involving F (−q), F (q2), F (q3) and F (q4) can be found in [1, p. 28], [1,
p. 31], [10, p. 362, (6.2)] and [1, p. 34] respectively. For detailed discussions
of (1.1), see [2, pp. 83–86], [7], [11] and [12].

On page 366 of his Lost Notebook [9], Ramanujan investigated another
continued fraction

(1.3) G(q) =
q1/3

1 +
q + q2

1 +
q2 + q4

1 +
q3 + q6

1 + . . .

and claimed that there are many results of G(q) which are analogous to
those for (1.1). Motivated by Ramanujan’s claim, we discovered many new
identities which perhaps are the identities to which Ramanujan vaguely
referred. In Section 2, we will establish the relations between G(q) and the
other three continued fractions G(−q), G(q2) and G(q3). These relations are
analogous to those relations for F (q) which are mentioned above.

[343]
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In his second letter to G. H. Hardy, Ramanujan claimed that

(1.4)
(√

5 + 1
2

+ F (e−2πα)
)(√

5 + 1
2

+ F (e−2πβ)
)

=
5 +
√

5
2

,

where αβ = 1. A companion identity of (1.4) is

(1.5)
(√

5− 1
2

− F (−e−πα)
)(√

5− 1
2

− F (−e−πβ)
)

=
5−√5

2
.

Identities (1.4) and (1.5) were first proved by Watson [12]. Other proofs can
be found in [2, p. 83] and [7]. In Section 3, we will prove some identities for
G(q) which are similar to (1.4) and (1.5).

In Section 4, we will apply the results of the previous two sections to
compute some interesting numerical values of G(q). In particular, we will
give an analogue (see (4.3)) of Ramanujan’s famous continued fraction

(1.6)
e−2π/5

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + . . .
=

√
5 +
√

5
2

−
√

5 + 1
2

.

Identity (1.6) appeared in Ramanujan’s first letter to Hardy and it is a direct
consequence of (1.4) obtained by setting α = β = 1. In this section, we will
also present a new algorithm for computing π.

On page 46 of his Lost Notebook [9], Ramanujan stated that

(1.7)
e−
√

3π/5

1 −
e−
√

3π

1 +
e−2
√

3π

1 −
e−3
√

3π

1 + . . .

=
−(3 +

√
5) +

√
6(5 +

√
5)

4
.

The proof of (1.7) was first given by K. G. Ramanathan [8]. He proved (1.7)
using Kronecker’s Limit Formula and asserted that it was probably not Ra-
manujan’s original proof. In Section 5, we will deduce (1.7) using a modular
equation discovered by Ramanujan. We believe that we have rediscovered
Ramanujan’s proof. The use of modular equations in the computation of
numerical continued fractions also provide an explanation for the presence
of such complicated identities in Ramanujan’s work. We will end this section
with a computation of G(−e−

√
5π), which is an analogue of (1.7).

In the final section, we will show the equivalence of Borweins’ cubic theta
function identity and an identity for G(q).

We end this introduction with definitions of certain functions which will
be used in the sequel. We define

(a; q)∞ :=
∞∏
n=1

(1− aqn−1), |q| < 1,
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f(−q) := (q; q)∞,(1.8)

ϕ(q) :=
∞∑

n=−∞
qn

2
=

(−q;−q)∞
(q;−q)∞ ,(1.9)

ψ(q) := f(q, q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,(1.10)

and

(1.11) χ(−q) = (q; q2)∞.

2. Statement and proof of Theorem 1

Theorem 1. Let G(q) be as defined in (1.3). Then

G(q) +G(−q) + 2G2(−q)G2(q) = 0,(2.1)

G2(q) + 2G2(q2)G(q)−G(q2) = 0(2.2)

and

(2.3) G3(q) = G(q3)
1−G(q3) +G2(q3)

1 + 2G(q3) + 4G2(q3)
.

P r o o f o f (2.1). Let v = G(q) and u = G(−q). (We will take (−1)1/3 =
−1.) From [2, p. 345, Entry 1(i)], G(q) and G(−q) have the evaluations

(2.4) v = q1/3 χ(−q)
χ3(−q3)

and u = −q1/3 χ(q)
χ3(q3)

.

When

q = exp
(
− π 2F1

(
1
2 ,

1
2 ; 1; 1− α)

2F1
(

1
2 ,

1
2 ; 1;α

)
)

and q3 = exp
(
− π 2F1

(
1
2 ,

1
2 ; 1; 1− β)

2F1
(

1
2 ,

1
2 ; 1;β

)
)
,

we find that (see [2], p. 124, Entry 12(v), (vi))

v = 2−1/3 (1− α)1/12β1/8

(1− β)1/4α1/24
and u = −2−1/3 (β(1− β))1/8

(α(1− α))1/24
.

Observe that

u

v
= −

(
(1− β)3

1− α
)1/8

and vu2 =
1
2

(
β3

α

)1/8

.

From [2, p. 230, Entry 5(i)], we see that

1 =
(

(1− β)3

1− α
)1/8

−
(
β3

α

)1/8

.

Hence, we have −u/v− 2vu2 = 1. Simplifying, we obtain v+u+ 2v2u2 = 0,
which is (2.1).
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P r o o f o f (2.2). From the identities given in (2.4), we compute

−G(q)G(−q) = q2/3 χ(−q)χ(q)
χ3(−q3)χ3(q3)

(2.5)

= q2/3 χ(−q2)
χ3(−q6)

= G(q2).

If we multiply (2.1) by G(q) and invoke (2.5), we obtain (2.2).

P r o o f o f (2.3). Let w := G(q3) and v as defined in the proof of (2.1).
From [2, p. 345, Entry 1(ii), (iv) and p. 347], we have

ϕ(−q3)
ϕ(−q1/3)

=
1

1− 2v
,(2.6)

3 +
f3(−q1/3)
q1/3f3(−q3)

=
1
v

+ 4v2 =
(

27 +
f12(−q)
qf12(−q3)

)1/3

(2.7)

and

(2.8)
ϕ4(−q)
ϕ4(−q3)

= 1− 8v3,

where f(−q) and ϕ(q) are the functions defined in (1.8) and (1.9). Using
(2.6)–(2.8), with q replaced by q3 and v replaced by w, we obtain

ϕ(−q9)
ϕ(−q) =

1
1− 2w

,(2.9)

3 +
f3(−q)
qf3(−q9)

=
1
w

+ 4w2 =
(

27 +
f12(−q3)
q3f12(−q9)

)1/3

(2.10)

and

(2.11)
ϕ4(−q3)
ϕ4(−q9)

= 1− 8w3.

To prove (2.3), we also require the following identity [2, p. 345, Entry 1(iv)]:

(2.12) 1 + 9q
f3(−q9)
f3(−q) =

(
1 + 27q

f12(−q3)
f12(−q)

)1/3

.

We first establish an identity that relates v and w. Now, from the second
equality of (2.7), we have

(2.13)
1
27

((
1
v

+ 4v2
)3

− 27
)

=
1
27
· f12(−q)
qf12(−q3)

.

By (2.12) and (2.10), we obtain
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1
27
· f12(−q)
qf12(−q3)

=
((

1 + 9q
f3(−q9)
f3(−q)

)3

− 1
)−1

(2.14)

=
((

1 + 9
(

1
w

+ 4w2 − 3
)−1)3

− 1
)−1

=
(1− 3w + 4w3)3

(1 + 6w + 4w3)3 − (1− 3w + 4w3)3 .

Hence, we can deduce that

(2.15)
1
27

((
1
v

+ 4v2
)3

− 27
)

=
(1− 3w + 4w3)3

(1 + 6w + 4w3)3 − (1− 3w + 4w3)3 .

From (1.8)–(1.10) and Euler’s identity, namely

(−q; q)∞ =
1

(q; q2)∞
,

we find that

(2.16) χ(−q) =
ϕ(−q)
f(−q) .

Using (2.4) and (2.16) we deduce that

v = q1/3ϕ(−q)
f(−q) ·

f3(−q3)
ϕ3(−q3)

and w = q
ϕ(−q3)
f(−q3)

· f
3(−q9)
ϕ3(−q9)

.

Thus,
w

v
= q2/3ϕ

4(−q3)
ϕ4(−q9)

· ϕ(−q9)
ϕ(−q) ·

f3(−q9)
f3(−q) ·

f4(−q)
f4(−q3)

.

By (2.11), (2.9), the first equality of (2.10), and the second equality of (2.7),
we have

w

v
= q2/3(1 + 2w + 4w2)

(
q

(
1
w

+ 4w2 − 3
))−1

(2.17)

× q1/3
((

1
v

+ 4v2
)3

− 27
)1/3

=
(1 + 2w + 4w2)w

1 + 4w3 − 3w

((
1
v

+ 4v2
)3

− 27
)1/3

.

Finally, we cube both sides of (2.17) and use (2.15) to arrive at

(2.18) v3 =
(1 + 6w + 4w3)3 − (1− 3w + 4w3)3

(3(1 + 2w + 4w2))3 .

Simplifying the right hand side of (2.18), we deduce (2.3).

R e m a r k. The author would like to thank P. Borwein and B. Gordon
for indicating the simplification of (2.18) which gives (2.3).
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3. Reciprocity theorems for G(q)

Theorem 2. Let αβ = 1. Then

(3.1)
(

4G2(e−2πα) +
1

G(e−2πα)
− 3
)

×
(

4G2(e−2πβ) +
1

G(e−2πβ)
− 3
)

= 27,

(3.2) (1− 2G(−e−πα))(1− 2G(−e−πβ)) = 3,

and

(3.3) (1− 2G(e−
√

2πα))
(

1 +
1

G(e−
√

2πβ)

)
= 3.

P r o o f o f (3.1). We recall a transformation formula for f(−q) [2, p. 43,
Entry 27(iii)]:

(3.4) e−2πz/24f(−e−2πz) =
1√
z
e−2π/(24z)f(−e−2π/z).

From the first equality of (2.7), we observe that

(3.5)
(

4G2(e−2πα) +
1

G(e−2πα)
− 3
)(

4G2(e−2πβ) +
1

G(e−2πβ)
− 3
)

=
f3(−e−2πα/3)

e−2πα/3f3(−e−6πα)
· f3(−e−2πβ/3)
e−2πβ/3f3(−e−6πβ)

.

If we cube both sides of (3.4) and let z = α/3, we have

(3.6) e−πα/12f3(−e−2πα/3) =
(

3
α

)3/2

e−3πβ/4f3(−e−6πβ),

since αβ = 1. Similarly, with z = β/3, we obtain

(3.7) e−πβ/12f3(−e−2πβ/3) =
(

3
β

)3/2

e−3πα/4f3(−e−6πα).

Using (3.6) and (3.7), we can rewrite the right hand side of (3.5) as

eπα/12e−3πβ/4

e−2πα/3

(
3
α

)3/2
eπβ/12e−3πα/4

e−2πβ/3

(
3
β

)3/2

= 27,

as required.

P r o o f o f (3.2). We recall a transformation formula for ϕ(q) [2, p. 43,
Entry 27(i)]:

(3.8) ϕ(e−πz) =
1√
z
ϕ(e−π/z), Re z > 0.
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From (2.6), we have

(3.9) (1− 2G(−e−πα))(1− 2G(−e−πβ))

=
ϕ(e−πα/3)
ϕ(e−3πα)

· ϕ(e−πβ/3)
ϕ(e−3πβ)

=
ϕ(e−πα/3)
ϕ(e−3π/β)

· ϕ(e−πβ/3)
ϕ(e−3π/α)

,

since αβ = 1. If we set z = β/3 in (3.8), then

(3.10) ϕ(e−βπ/3) =

√
3
β
ϕ(e−3π/β).

Similarly, with z = α/3,

(3.11) ϕ(e−απ/3) =

√
3
α
ϕ(e−3π/α).

Using (3.10), (3.11) and αβ = 1, we find from (3.9) that

(1− 2G(−e−πα))(1− 2G(−e−πβ)) =

√
3
β

√
3
α
· ϕ(e−3π/α)
ϕ(e−3π/β)

· ϕ(e−3π/β)
ϕ(e−3π/α)

= 3,

as required.

P r o o f o f (3.3). We quote the following transformation formula [2,
p. 43, Entry 27(ii)]:

(3.12) e−πz/8ψ(e−πz) =
1√
2z
ϕ(−e−2π/z),

where ψ(q) is the function defined in (1.10). We also require the identity [2,
p. 345, Entry 1(i)]:

(3.13) 1 +
1

G(q)
=

ψ(q1/3)
q1/3ψ(q3)

.

If we let q = e−
√

2πα in (3.13) and invoke (3.12), we obtain

(3.14) 1 +
1

G(e−
√

2πα)
=

ψ(e−
√

2πα/3)

e−
√

2πα/3ψ(e−3
√

2πα)
= 3

ϕ(−e−3
√

2π/α)

ϕ(−e−
√

2π/(3α))
.

On the other hand, by (2.6) with q = e−
√

2π/α, we deduce that

(3.15)
ϕ(−e−3

√
2π/α)

ϕ(−e−
√

2π/(3α))
=

1

1− 2G(e−
√

2π/α)
=

1

1− 2G(e−
√

2πβ)
,

since αβ = 1. Combining (3.14) and (3.15), we conclude our proof of (3.3).
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4. Some numerical values of G(q) and an algorithm for
computing π

Theorem 3.

G(−e−π) =
1−√3

2
,(4.1)

G(e−π) =
(1 +

√
3)(−(1 +

√
3) +

√
6
√

3)
4

,(4.2)

G(e−2π) =
−(1 +

√
3) +

√
6
√

3
4

,(4.3)

G(e−
√

2π) =
−2 +

√
6

2
,(4.4)

G3(e−
√

2π/3) =
G(e−

√
2π)

2
.(4.5)

P r o o f o f (4.1). If α = β = 1 in (3.2), then

(1− 2G(−e−π))2 = 3,

and this proves (4.1).

P r o o f o f (4.2). To evaluate G(e−π), we solve the quadratic equation

2G2(−e−π)x2 + x+G(−e−π) = 0,

which is obtained from (2.1).

P r o o f o f (4.3). Using (2.5), (4.1) and (4.2), we deduce that

G(e−2π) = −G(−e−π)G(e−π) =
−(1 +

√
3) +

√
6
√

3
4

.

P r o o f o f (4.4). For simplicity, we let A := G(e−
√

2π). If we set α =
β = 1 in (3.3), then we obtain

(4.6) (A+ 1)(2A− 1) = −3A.

Solving (4.6) yields (4.4).

P r o o f o f (4.5). We substitute (4.4) into (2.3) to obtain (4.5).

We will end this section with a new algorithm for computing π.

Theorem 4. Let

A1 =
−(1 +

√
3) +

√
6
√

3
4

, An =
2A2

n−1

1 +
√

1− 8A3
n−1

, n > 1.

Then

lim
n→∞

−3
lnAn

2n
= π.
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P r o o f. Let Bn := G(exp(−2nπ)). Then by (2.2) and (4.3), we have

B1 =
−(1 +

√
3) +

√
6
√

3
4

= A1

and

Bn =
1−
√

1− 8A3
n−1

4An−1
=

2A2
n−1

1 +
√

1− 8A3
n−1

= An, n > 1.

Since G(q) = q1/3(1 +O(q)), we have

An ∼ exp
(−2nπ

3

)
as n→∞.

Hence the assertion follows.

R e m a r k s. Using Mathematica and the algorithm given in Theorem 4,
we are able to verify that our approximation agrees with π up to 10, 22,
42, 88, 175, 350, and 701 decimal places when n = 3, 4, 5, 6, 7, 8, and 9,
respectively. The computation of the logarithm is non-trivial. One can get
rid of the logarithm and obtain an efficient algorithm for computing eπ. For
more efficient algorithms for computing π, see [4].

5. Modular equations and Ramanujan’s continued fractions. In
this section, we will present a new proof of (1.7) and a computation of
G(e−

√
5π).

To prove (1.7), we recall a transformation formula for f(q) [2, p. 43,
Entry 27(iv)]:

(5.1) e−πz/24f(e−πz) =
1√
z
e−π/(24z)f(e−π/z).

We also require the following modular equation.

Lemma 1. Let

P =
f(q)

q1/12f(q3)
and Q =

f(q5)
q5/12f(q15)

.

Then

(PQ)2 +
9

(PQ)2 =
(
Q

P

)3

−
(
P

Q

)3

+ 5.

For a proof of Lemma 1, see [3, Chapter 25, Entry 62].
Let q = e−π/

√
3 in Lemma 1. By (5.1), we deduce that

P =
f(e−π/

√
3)

e−π/(12
√

3)f(e−
√

3π)
= 31/4.
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Similarly,

Q =
f(e−5π/

√
3)

e−5π/(12
√

3)f(e−5
√

3π)
=

31/4
√

5
e
√

3π/5 f(e−
√

3π/5)

f(e−5
√

3π)
.

If we let

(5.2) B := e
√

3π/5 f(e−
√

3π/5)

f(e−5
√

3π)
,

then

(5.3) PQ =

√
3
5
B and

Q

P
=

B√
5
.

Substituting (5.3) into Lemma 1, we obtain

(5.4)
3
5
B2 +

15
B2 =

(
B√

5

)3

−
(√

5
B

)3

+ 5.

We may rewrite (5.4) as

3
((

B√
5
−
√

5
B

)2

+ 2
)

=
(
B√

5
−
√

5
B

)3

+ 3
(
B√

5
−
√

5
B

)
+ 5,

which implies that

(5.5)
((

B√
5
−
√

5
B

)
− 1
)3

= 0.

Solving (5.5), we obtain

(5.6) B = (5 +
√

5)/2.

Now, from [2, p. 84, (39.1)], we know that

(5.7)
−1

F (−e−
√

3π)
+ F (−e−

√
3π) + 1 = e

√
3π/5 f(e−

√
3π/5)

f(e−5
√

3π)
.

By (5.2) and (5.6), we conclude that the right hand side of (5.7) equals
(5 +

√
5)/2. Solving the quadratic equation (5.7), we obtain (1.7).

R e m a r k. In (1.7), F (q) is evaluated at q = −e−
√

3π. An analogous
result for G(q) would be its value at q = −e−

√
5π.

Next, we state and prove

Theorem 5.

(5.8) G(−e−
√

5π) =
(
√

5− 3)(
√

5−√3)
4

.

To prove (5.8), we require the following identity.
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Lemma 2. Let P = ϕ(q)/ϕ(q5) and Q = ϕ(q3)/ϕ(q15). Then

PQ+
5
PQ

=
(
Q

P

)2

+ 3
Q

P
+ 3

P

Q
−
(
P

Q

)2

.

For a proof of Lemma 2, see [3, Chapter 25, Entry 67].

P r o o f o f T h e o r e m 5. We let q = e−π/
√

5 and invoke (3.8) to deduce
that

P =
ϕ(e−π/

√
5)

ϕ(e−
√

5π)
= 51/4, Q =

ϕ(e−3π/
√

5)

ϕ(e−3
√

5π)
=

51/4
√

3
· ϕ(e−

√
5π/3)

ϕ(e−3
√

5π)
.

If we let

(5.9) C :=
ϕ(e−

√
5π/3)

ϕ(e−3
√

5π)
,

then

(5.10) PQ =

√
5
3
C and

P

Q
=

√
3
C
.

Substituting (5.10) into Lemma 2, we obtain
√

5
3
C +

√
15
C

=
(
C√

3

)2

+ 3
C√

3
+ 3

√
3
C
−
(√

3
C

)2

,

which may be rewritten as

√
5
(
C√

3
+

√
3
C

)
=
(
C√

3
−
√

3
C

)(
C√

3
+

√
3
C

)
+ 3
(
C√

3
+

√
3
C

)
.

Since C/
√

3 +
√

3/C 6= 0, we have

(5.11)
√

5 =
(
C√

3
−
√

3
C

)
+ 3.

Solving the quadratic equation (5.11), we find that

(5.12) C = (−3
√

3 +
√

15 + 3(
√

5− 1))/2.

From (2.6), we know that

(5.13) 1− 2G(−e−
√

5π) =
ϕ(e−

√
5π/3)

ϕ(e−3
√

5π)
.

Thus, (5.8) follows from (5.9), (5.12) and (5.13).

R e m a r k. A completely different proof of (5.12) can be found in [2,
p. 210, (23.5)].
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6. A proof of the Borweins’ cubic theta function identity. We
first define

a(q) =
∞∑

m,n=−∞
qm

2+mn+n2
, b(q) =

∞∑
m,n=−∞

ωn−mqn
2+mn+m2

and

c(q) =
∞∑

m,n=−∞
q(n+1/3)2+(n+1/3)(m+1/3)+(m+1/3)2

,

where ω is a primitive cube root of unity. In [5], P. Borwein and J. Borwein
showed that

(6.1) a3(q) = b3(q) + c3(q).

Furthermore, the Borweins and F. Garvan [6] proved that

a(q) =
f3(−q1/3) + 3q1/3f3(−q3)

f(−q) , b(q) =
f3(−q)
f(−q3)

and

c(q) = 3q1/3 f
3(−q3)
f(−q) .

From the above theta function representations of a(q), b(q) and c(q), we
note that in order to prove (6.1), it suffices to show that

(6.2)
(
f3(−q1/3) + 3q1/3f3(−q3)

f(−q)
)3

=
(
f3(−q)
f(−q3)

)3

+
(

3q1/3 f
3(−q3)
f(−q)

)3

.

If we multiply both sides of (6.2) by
(

f(−q)
q1/3f3(−q3)

)3

, we obtain

(
f3(−q1/3)
q1/3f3(−q3)

+ 3
)3

=
f12(−q)
qf12(−q3)

+ 27,

which is identity (2.7).

R e m a r k. One can deduce (2.7) from (6.1). For more details, see [6,
Corollary 2.5].
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