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On Shioda’s problem about Jacobi sums II
by

Hiroo Mik1 (Kyoto)

In the present paper, we will give a complete affirmative answer to the
[-part of Shioda’s problem ([5, Question 3.4]) on Jacobi sums Jl(a)(p), and
to the conjecture (F. Gouvéa and N. Yui [1, Conjecture (1.9)]) which comes
from Shioda’s problem and my congruences for Jacobi sums (see [3, Theo-
rem 2]) (see Theorem 1 and its Corollary of the present paper).

We retain the notation of [4], but [ is any odd prime number here. Fur-
thermore, let n be any positive integer and let (,, be a primitive mth root
of unity in C for any positive integer m. Let Q be the algebraic closure of
Q in C. We fix an algebraic closure Q; of Q;, and by a fixed imbedding
Q — Q, we consider Q as a subfield of Q,. Let M be any finite unramified
extension of Q; in Q;, and put M,, = M({;») and 7, = (;» — 1. Then 7,
is a prime element of M,. Let 0_1 € G = Gal(M,,/M) (the Galois group
of M,, over M) be such that (i‘l = Cﬁl. Let ord,s, denote the normalized
additive valuation of M, and let U, = U(M,) be the group of principal
units in M,,:

U,=U(M,)={xe€ M, |ordy, (x—1) > 1}.
As is well known, U, is a multiplicatively written Z;-module. In particular,

z1/2 € U,, makes sense for x € U,,.

LEMMA 1. Let the notation and assumptions be as above. Furthermore,
let J € U, be such that J ¢ M. Put ¢ = J*T°-1, and assume ¢’ € M.
Then ordy, (1 — J¢'~'/2) is odd. In particular, ordy;, (1 — J) is equal to
ordys, (1 —¢') or odd.

Proof.Pute_ =(1—0_1)/2and e, = (1+0_1)/2. Note that e_,e; €
7,|G] (the group ring of G over Z;), since [ # 2 and 1/2 € Z;. Put A = J°-.
Since e_ + e+ = 1, we have

(1) A=Jlme =g =12
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On the other hand, the equality e_o_; = —e_ implies
(2) A% = A7

If A =1, then by (1) we have J = ¢’*/? € M; this contradicts the assump-
tion. Hence A # 1, so we can write

A=1+ Ml (mod 75t1)

with some unit A in M and an integer ¢ > 1. Since

= Cﬁzl —-1=(1+ ﬂ'n)_l —1=—m, (mod 7T72L)’
we have
(72)7-1 = (=1)'7’ (mod 7).
Hence
(3) A1 =1+ (—l)i)\ﬂ'f1 (mod 7T’+1)
On the other hand,
(4) A7l =1- 27! (mod #ith).

Since A is a unit, by (2)—(4) we have (—1)* = —1, so i is odd.

For any positive integer m and any a € Z and for any prime ideal p of
Q(¢m) which is prime to m, let

gm(P:a) = gm (P, a; ) = = D Xp (@) (x) € Z[Gmp)
z€lF,
be the Gauss sum, where Fy = Z[(]/p, ¢ = Np = #(Fy), xp(z) = (%)m is

the mth power residue symbol in Q((,), i.e., xp(zmodp) is a unique mth
root of unity in C such that

Xp(z mod p) = z™P=D/™ (mod p)

for x € Z[Gnl, x € 9, xp(0) =0, and ¢y (x) = (p T@ (p is a prime number in
p and T is the trace from F, to Z/pZ).

For arbitrary positive integers m, r and any a = (ay,...,a,) € Z" (the
direct product of r copies of Z) and for any p as above, let

TWE) ==t YT @) g () € ZlGn)
r1+...4x.=—1
be the Jacobi sum.
THEOREM 1. Let the above notation and assumptions hold. Then:
(i) Assume that a £ 0 (mod I™) and that

(*) gin(p,a) # ¢*/?
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Then ordyy, (1 — gin(p,a)g~/?) is odd, where M = Q;((p). In particular,
ordys, (1 — gin(p,a)) is equal to ordys, (1 — q) or odd.
(ii) Assume that a = (ay,...,a,) Z (0,...,0) (mod ™) and that

(%) ) £,
where v’ = #{0 < i <r | a; =0 (mod ")} and ap = —>.._, a;. Then
ordMn(l—Jl(f) (p)g~ " =2/2) is odd, where M = Q. In particular, ordyy, (1—
Jl(f) (p)) is equal to ordyy, (1 — ¢" ~2) or odd.

Proof. (i) Put J = gin(p,a) and x = xj. Since a # 0 (mod ("), we have
x # 1. Hence by [6, Lemma 6.1(b)], we have
1) Tt =x(-1)g=q,
since (—1)!" = —1 and x(—1) = x(~=1)"" = 1. If J € M, then by (1) we
have J2 = ¢, so J = #+¢'/2. Since J = ¢ = 1 (mod 7,) and | # 2, this
implies J = ¢'/2; this contradicts our assumption (). Hence J ¢ M. Thus
the assertion follows from Lemma 1 for ¢’ = q.

(ii) Put J = Jl(f) (p). It is well known that
J=q " ] g (b, i)
i=0

if a# (0,...,0) (mod [™). By this equality and (1), we have

J1+o,1 —_ qr'72.

If J € M, then J? = q’”/_Q, so J = iq(’“l_z)/Z, hence J = q(T,_2)/27 since
J=¢g=1 (mod 7,) and | # 2. This contradicts the assumption (xx). Hence
J & M. Using Lemma 1 for ¢ = ¢" ~2, we have directly the assertion.

If r > 3 is odd (r is as in the definition of Jacobi sums) and if a; # 0
(mod I) for all i (0 <4 <7r) (ap = —Y.;_; a;), then by Shioda [5, Corol-
lary 3.3], we can write

Noso(t = I (p)a="=072) = BI*/q",
where B and w are non-negative integers, and w is defined by (2.8) of [5].

SHIODA’S PROBLEM (see [5, Question 3.4]). Is B a square?

By (ii) of the above Theorem 1, we have directly the following affirmative
answer to the [-part of Shioda’s problem.

COROLLARY. Let the notation and assumptions be as above. Assume that
B # 0. Then ordg,(B) is even.

In the following, we will show that the case where J # ¢''/? and
ordys, (1 — J) = ordy, (1 — ¢') actually happens in the above Theorem 1



376 H. Miki

when n = 1, as an application of our congruences for Gauss sums and Jacobi
sums previously obtained by the author ([3, Theorems 1 and 2]).
Assume [ > 5. For any odd m (3 <m <1 —2), put
-1
= H(l - Cld)md7

d=1
where mg € Z is such that mg = d™ ! (mod ) and Zd 1mq = 0. Put
kE=Q(¢) and K = k({/em | modd, 3<m <1—2).

THEOREM 2. Let I, k, and K be as above and put K' = K (V/1). Then:

(i) If a # 0 (mod 1) and degp = 1, then the following (a)—(c) are equiv-
alent:
) gi(p,a; () =1 (mod 1) for a suitable choice of (.
) gi(p,a; () =1+ pfl (mod 7}) for a suitable choice of Cp-
) p

c) p is completely decomposed with respect to K'/k.

(a
(b
(
(ii) (cf. [4 Theorem 3]). The following (d)—(f) are equivalent:
(d) J, ( ) =1 (mod l) for any a € Z".
(e) Jl(a)( ) =1+ T/T_Q(q —1) (mod %) for any a € Z", where ' is
as in (i) of Theorem 1.

(f) p is completely decomposed with respect to K/k.

Proof. (i) If r 20 (mod p), then
gl(p7 a; C;;) = X;a(r)gl (p? a; Cp)
Note that x, *(r) is a primitive /th root of unity if » ¢ (F))". Hence by 3,
Theorem 1] we see that g;(p,a) =1 (mod 7?) for a suitable choice of ¢, if
and only if a3 € F; (a1 is as in [3, Theorem 1]). By [3, Theorem 7], this is
equivalent to x,(I) = 1, i.e., I mod p € (F))". Hence by [3, Theorem 1] we
have the assertion.

(ii) See [4, Theorem 3.

LEMMA 2. Let k and K’ be as in Theorem 2. Then K' and k(\/;) are
linearly disjoint over k. In particular, there exist infinitely many prime ideals
p of k of degree 1 satisfying the condition (c) in Theorem 2 and p —1 # 0
(mod 1?).

Proof. The proof of the first part is similar to that of [4, Lemma 2].
The last part follows from the first part and Chebotarev’s density theorem.

Concerning condition J # ¢’*/2, the following theorem is known.

THEOREM 3. (i) ([2, (10)]). Assume that degp =1 and a Z 0 (mod I).

71};2” Q(G)(g1(p, @) = Q(¢pr)- In particular, gi(p,a) & Qi(¢y) and gi(p, a) #
q’e.
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(ii) ([2, Theorem]). Assume that l{r, r #1 (mod p) and degp = 1. Put
a=(1,1,...,1) € Z". Then @(Jl(a) () = Q(&)- In particular, Jl(a) (p) € Q
and Jl(a) (p) # ¢"—1)/2.

(iii) ([5, Theorem 7.1]). Let a = (a1,az,a3) € Z* be such that a; # 0
(mod 1) for all i (0 < i < 3) and such that a; +a; # 0 (mod 1) if i # j,
where ag = —(a1 + az + a3). Then Jl(a) (p) # q if degp = 1.

By Theorems 2 and 3, Lemma 2, Lemma 2 of [4], and Chebotarev’s
density theorem, there exist infinitely many prime ideals p of & of degree
1 satisfying both J # ¢*/? and ordy, (1 — J) = ordy, (1 — ¢'), where
J = qi(p,a) or Jl(a) (p) according to (i) or (ii) of Theorem 2.

I would like to thank Professors Don Zagier, Yuji Kida, and Masanobu
Kaneko for supplying me further numerical data on Shioda’s problem.
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