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On the approximate roots of polynomials

by Janusz Gwoździewicz and Arkadiusz P loski (Kielce)

Abstract. We give a simplified approach to the Abhyankar–Moh theory of approxi-
mate roots. Our considerations are based on properties of the intersection multiplicity of
local curves.

Introduction. In the fundamental paper [2] S. S. Abhyankar and
T. T. Moh developed the theory of approximate roots of polynomials with
coefficients in the meromorphic series field. In [3] they applied approximate
roots to the polynomial automorphisms of the plane. Later on S. S. Ab-
hyankar gave a simplified version [1] of [2] and T. T. Moh published gener-
alized versions of the central theorems of [2] in [7] and [8].

Our main results are Theorems 1.1 and 1.2 presented in Section 1 of this
paper. As an application we get the theorems of [2] (Theorem 1.4). To prove
Theorem 1.1 which implies the main property of approximate roots (1.4(1))
we use, as in [1], the Tschirnhausen operator and some properties of the
semigroup of a local analytic curve. We do not need deformations of power
series which are essential for Abhyankar–Moh’s method. We use Puiseux
expansions only to construct “pseudoroots” (cf. [1, Ch. II] and Lemma 3.1
of this paper).

Our Theorem 1.2 is a generalization of Abhyankar’s irreducibility cri-
terion [1, Ch. V]. Its proof is based on the Max Noether formula for the
intersection multiplicity of plane curves and is more intrinsic.

We restrict our considerations to the classical case of power series—
the “algebroid case” according to Abhyankar [1]. We show in Section 2
that we can reduce the “pure meromorphic case” (important for polynomial
automorphisms) to the algebroid case by a suitable choice of coordinates.

Throughout this paper the field C may be replaced by any algebraically
closed field of characteristic zero.
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1. The main results. For any power series f, g ∈ C[[x, y]] we define
the intersection number (f, g)0 by (f, g)0 = dimC C[[x, y]]/(f, g). Suppose
that f = f(x, y) is an irreducible power series and let n = (f, x)0 =
ord f(0, y) <∞. Then there exists a power series y(t)∈C[[t]] with ord y(t) >
0 such that f(tn, y(t)) = 0. We have (f, g)0 = ord g(tn, y(t)) for any g =
g(x, y) ∈ C[[x, y]]. The mapping g 7→ (f, g)0 induces a valuation vf of the
ring C[[x, y]]/(f). Let Γ (f) be the semigroup of vf , i.e. Γ (f) = {(f, g)0 ∈
N : g 6≡ 0 mod f}.

Let us recall the well known structure theorem for the semigroup Γ (f)
([6], [10], [2] and Section 3 of this paper).

Theorem 1.0. There is a sequence of positive integers b0, b1, . . . , bh such
that

(i) b0 = (f, x)0,
(ii) bk = min(Γ (f) \ (Nb0 + . . .+ Nbk−1)) for k = 1, . . . , h,
(iii) Γ (f) = Nb0 + . . .+ Nbh, i.e. Γ (f) is generated by b0, b1, . . . , bh.

Moreover , if we put Bk = gcd(b0, . . . , bk) for k = 0, 1, . . . , h and nk =
Bk−1/Bk for k = 1, . . . , h then

(iv) Bh = 1, nk > 1 and nkbk < bk+1 for k = 1, . . . , h (we put bh+1

=∞).

Obviously b0, b1, . . . , bh are uniquely determined by Γ (f) and n = (f, x)0.
If the conditions (i)–(iii) are satisfied, we write Γ (f) = 〈b0, . . . , bh〉. If n = 1
then the sequence b0, . . . , bh reduces to b0 = 1 and we have Γ (f) = N.

Let O be an integral domain and let d be a positive integer such that
d is a unit in O. Let g ∈ O[y] be a monic polynomial such that d divides
deg g. According to Abhyankar and Moh [2, Sect. 1] the approximate dth
root of g, denoted by d

√
g, is defined to be the unique monic polynomial

satisfying deg(g − ( d
√
g)d) < deg g − deg d

√
g. Obviously deg d

√
g = deg g/d.

Let 1 ≤ k ≤ h.

Theorem 1.1. Let g = g(x, y) ∈ C[[x]][y] be a monic polynomial with
degy g = n/Bk. Suppose that (f, g)0 > nkbk. Then (f, nk

√
g)0 = bk.

The proof of 1.1 is given in Section 4 of this paper. Let 1 < k ≤ h+ 1.

Theorem 1.2. Let φ = φ(x, y) ∈ C[[x, y]] be such that (φ, x)0 = n/Bk−1.
Then (f, φ)0 ≤ bk (bh+1 =∞). If , additionally , (f, φ)0 > nk−1bk−1 then φ
is irreducible and Γ (φ) = 〈b0/Bk−1, . . . , bk−1/Bk−1〉.

The proof of 1.2 is given in Section 5 of this paper. Note that for k = h+1
Theorem 1.2 reduces to Abhyankar’s irreducibility criterion [1, Ch. V].

Lemma 1.3. Let g ∈ O[y] be a monic polynomial of degree m > 0 and
let d, e > 0 be integers such that de divides m. Suppose de is a unit in O.
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Then e
√

d
√
g = ed

√
g.

P r o o f. Let h = e
√

d
√
g, so deg h = m/(de). We have

d
√
g =

(
e

√
d
√
g
)e

+R, degR <
m

d
− m

de

and
g = ( d

√
g)d + S, degS < m− m

d
≤ m− m

de
.

Then g = (he +R)d + S = hed + T where

T =
d∑
i=1

(
d

i

)
(he)d−iRi + S.

Since

deg
((

d

i

)
(he)d−iRi

)
< (ed− ei)m

de
+ i

(
m

d
− m

de

)
≤ m− m

de

we get deg T < m−m/(de). This shows that h = ed
√
g.

R e m a r k. The existence and uniqueness of d
√
g can be checked directly.

If g(y) = ym + a1y
m−1 + . . .+ am and h(y) = ym/d + b1y

m/d−1 + . . .+ bm/d
then deg(g(y)− (h(y))d) < m−m/d if and only if

(∗) aµ = dbµ +
∑∗

αi1,...,iµ−1b
i1
1 . . . b

iµ−1
µ−1 , µ = 1, . . . ,m/d,

where

αi1,...,iµ−1 =
(

d

i1 + . . .+ iµ−1

)
(i1 + . . .+ iµ−1)!

i1! . . . iµ−1!

and
∑∗ denotes summation over all i1, . . . , iµ−1 such that i1 + 2i2 + . . . +

(µ− 1)iµ−1 = µ.
The system of m/d equations (∗) with unknowns b1, . . . , bm/d has a

unique solution given by

(∗∗) bµ =
1
d
aµ +

∑∗
βi1,...,iµ−1a

i1
1 . . . a

iµ−1
µ−1 , µ = 1, . . . ,m/d,

where βi1,...,iµ−1 ∈ Z[1/d] depend only on m and d.
Other proofs of the existence and uniqueness of approximate roots are

given in [2, Sect. 6].

Now, we can prove the Abhyankar–Moh theorem.

Theorem 1.4 ([2]). Let f = f(x, y) ∈ C[[x]][y] be an irreducible dis-
tinguished polynomial of degree n > 1 with Γ (f) = 〈b0, b1, . . . , bh〉 and
b0 = (f, x)0 = n. Let 1 ≤ k ≤ h+ 1. Then:

(1) (f, Bk−1
√
f )0 = bk,
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(2) Bk−1
√
f is an irreducible distinguished polynomial of degree n/Bk−1

such that

Γ (
Bk−1
√
f) = 〈b0/Bk−1, . . . , bk−1/Bk−1〉.

P r o o f. First we check (1) using 1.1 and induction on k. If k = h + 1
then Bk−1 = Bh = 1, bk = bh+1 = ∞ and (1) is obvious. Let k ≤ h
and suppose (f, Bk

√
f)0 = bk+1. The polynomial Bk

√
f is of degree n/Bk and

(f, Bk
√
f)0 = bk+1 > nkbk by 1.0(iv) so we can apply 1.1 to g = Bk

√
f to

get (f, nk
√
g)0 = bk. By 1.3 we have nk

√
g =

nk

√
Bk
√
f = Bk−1

√
f . Consequently,

(f, Bk−1
√
f)0 = bk and (1) is proved.

In order to prove (2) put φ = Bk−1
√
f and assume k > 1, the case k = 1

being obvious. Thus φ is a distinguished polynomial of degree n/Bk−1,
hence (φ, x)0 = n/Bk−1. On the other hand, (f, φ)0 = bk > nk−1bk−1

by (1). According to Theorem 1.2, φ = Bk−1
√
f is irreducible and Γ (φ) =

〈b0/Bk−1, . . . , bk−1/Bk−1〉.

2. The Abhyankar–Moh inequality. We give here a geometrical ver-
sion of the Abhyankar–Moh inequality which is the basic tool for proving
the Embedding Theorem [3]. Let C ⊂ P2 be an irreducible projective plane
curve of degree n > 1 and let O ∈ C be its singular point. We assume that C
is analytically irreducible at O, i.e. the analytic germ (C,O) is irreducible,
and let L be the unique tangent to C at O. Let Γ (C,O) be the semigroup
of the branch of C passing through O and let Γ (C,O) = 〈b0, b1, . . . , bh〉
with b0 = (C.L)O.

Theorem 2.1 ([3]). Suppose that C∩L = {O}, i.e. b0 =n. Then Bh−1bh
< n2.

P r o o f. Choose the line at infinity not passing through O and let x, y be
an affine system of coordinates centered at O such that L has equation x = 0.
Let f(x, y) ∈ C[x, y] be the irreducible equation of C in the coordinates x, y.
It is easy to see that f is a distinguished, irreducible polynomial in C[[x, y]]
and Γ (f) = 〈b0, b1, . . . , bh〉.

We have deg f = n and consequently deg Bh−1
√
f = n/Bh−1, thus 1.4(1)

and Bézout’s theorem imply

bh = (f,
Bh−1
√
f)0 ≤ n

n

Bh−1
,

that is, Bh−1bh ≤ n2. In fact, Bh−1bh < n2 because the equality Bh−1bh =
n2 implies bh = n n

Bh−1
, contrary to bh 6≡ 0 mod Bh−1.

The inequality 2.1 has an application to polar curves [4].
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Theorem 2.2 (with the assumptions as above). Let (D,O) be an irre-
ducible component of the local polar of C with respect to L. Then (C.D)O <
(C.L)O(D.L)O.

P r o o f. In the coordinates x, y introduced in the proof of 2.1 the local
polar is given by ∂f/∂y = 0 and its irreducible component is given by g = 0
where g is an irreducible (in C[[x, y]]) divisor of ∂f/∂y. By the Merle formula
for polar invariants [6], [4], [5] and Theorem 2.1 we get

(C.D)O
(D.L)O

=
(f, g)0
(g, x)0

=
Bk−1

b0
bk ≤

Bh−1

b0
bh < n = (f, x)0 = (C.L)O

and the theorem follows.

3. The characteristic and the semigroup of an analytic curve
and the Noether formula. In this section we recall some well-known
notions of the theory of analytic curves. Our main references are [10] and
[6]. Let f = f(x, y) be an irreducible power series y-regular of order n =
ord f(0, y). There exists a power series y(t) ∈ C[[t]] with ord y(t) > 0 such
that f(tn, y(t)) = 0. Moreover, every solution of the equation f(tn, y) = 0
is of the form y(εt) for some ε such that εn = 1. Let y(t) =

∑
ajt

j . We
put S(f) = {j ∈ N : aj 6= 0}. Note that S(f) depends only on f and
gcdS(f) = 1. The characteristic b0, b1, . . . , bh of f is the unique sequence of
positive integers satisfying

(i′) b0 = n,
(ii′) bk+1 = min{j ∈ S(f) : gcd(b0, . . . , bk, j) < gcd(b0, . . . , bk)},
(iii′) gcd(b0, . . . , bh) = 1.

We put Bk = gcd(b0, . . . , bk) for k = 0, 1, . . . , h and

bk = bk +
1

Bk−1

k−1∑
i=1

(Bi−1 −Bi)bi for k = 1, . . . , h.

We assume that the sum of an empty family is equal to zero. Thus we
have b1 = b1. We put b0 = b0. One checks easily that gcd(b0, . . . , bk) = Bk
for k = 0, . . . , h and

bk = bk −
k−1∑
i=1

(
Bi−1

Bi
− 1
)
bi for k = 0, 1, . . . , h.

Therefore the sequence b0, . . . , bk determines B0, . . . , Bk and b0, . . . , bk for
any k = 0, . . . , h.

R e m a r k ([10]). Let u(n) be the group of nth roots of unity in C. The
sequence B0 = n, B1, . . . , Bh = 1 of divisors of n determines the filtration of
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groups: u(n) = u(B0) ⊃ u(B1) ⊃ . . . ⊃ u(Bh−1) ⊃ u(Bh) = {1}. We have
ord(y(t)− y(εt)) = bk for ε ∈ u(Bk−1) \ u(Bk).

Let nk = Bk−1/Bk for k = 1, . . . , h. We have bk+1−nkbk = bk+1−bk > 0
for k = 1, . . . , h− 1. For any k with 0 ≤ k ≤ h we set Sk = {j ∈ S(f) : j <
bk+1}. We put bh+1 = bh+1 = ∞, so Sh = S(f). Let yk(t) =

∑
j∈Sk ajt

j .
For the sake of completeness we give here the proofs of two known facts
(Lemma 3.1 and Proposition 3.2) which are basic for us.

Lemma 3.1. There exists a monic polynomial fk = fk(x, y) ∈ C[[x]][y]
such that degy fk = n/Bk and (f, fk)0 = bk+1 for k = 0, 1, . . . , h.

P r o o f. We can write yk(t) = Yk(tBk) with Yk(s) ∈ C[[s]]. There exists
a polynomial fk(x, y) ∈ C[[x]][y] such that

fk(sn/Bk , y) =
∏

µ∈u(n/Bk)

(y − Yk(µs)).

Indeed, the product on the right side does not change when we replace s
by θs with θ ∈ u(n/Bk). We can easily see that fk(x, y) is monic of degree
n/Bk. Note that fh is the distinguished polynomial associated with f , so
(f, fh)0 =∞ = bh+1. Let k < h. We have

(f, fk)0 = ord fk(tn, y(t)) = ord
∏

(y(t)− Yk(µtBk))

=
∑

ord(y(t)− Yk(µtBk)) = bk+1 +
k∑
i=1

(
Bi−1

Bk
− Bi
Bk

)
bi = bk+1

since ord(y(t)−Yk(tBk)) = ord(y(t)−yk(t)) = bk+1 and ord(y(t)−Yk(µtBk))
= ord(Yk(tBk) − Yk(µtBk)) = Bk ord(Yk(s) − Yk(µs)) = Bkbi/Bk for µ ∈
u(Bi−1/Bk) \ u(Bi/Bk).

Proposition 3.2. If ψ(x, y) ∈ C[[x]][y], ψ(x, y) 6= 0 and degy ψ(x, y) <
n/Bk then (f, ψ)0 ∈ Nb0 + . . .+ Nbk for k = 0, 1, . . . , h.

P r o o f. By induction on k, the case k = 0 being obvious. Let k > 0 and
suppose Proposition 3.2 holds true for polynomials of degree < n/Bk−1. Fix
ψ ∈ C[[x]][y] with degy ψ < n/Bk and consider the fk−1-adic expansion of
ψ:

(1) ψ = ψ0f
s
k−1 + ψ1f

s−1
k−1 + . . .+ ψs,

ψ0 6= 0, degy ψi < degy fk−1 = n/Bk−1.

Note that s ≤ degψ/deg fk−1 < nk. Let I be the set of all i ∈ {0, . . . , s}
such that ψi 6= 0. Therefore, by the induction hypothesis we get (f, ψi)0 ∈
Nb0 + . . .+ Nbk−1, and

(2) (f, ψi)0 ≡ 0 mod Bk−1 for i ∈ I.
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Moreover,

(3) (f, ψifs−ik−1)0 6= (f, ψjf
s−j
k−1)0 for i 6= j ∈ I.

Indeed, suppose that (3) is not true, so there exist i, j ∈ I such that i < j
and (f, ψifs−ik−1)0 = (f, ψjf

s−j
k−1)0. Therefore (f, ψi)0 + (s − i)(f, fk−1)0 =

(f, ψj)0 + (s− j)(f, fk−1)0 and (j− i)bk = (f, ψj)0− (f, ψi)0 ≡ 0 mod Bk−1

by (2). The last relation implies (j− i)bk/Bk ≡ 0 mod nk and consequently
j−i ≡ 0 mod nk because bk/Bk and nk are coprime. We get a contradiction
because 0 < j − i ≤ s < nk. Now, by (1) and (3) we get

(f, ψ)0 = minsi=0(f, ψifs−ik−1)0 = (f, ψifs−ik−1)0

= (f, ψi)0 + (s− i)bk ∈ Nb0 + . . .+ Nbk.

P r o o f o f T h e o r e m 1.0. By Lemma 3.1, b0, . . . , bh∈Γ (f), thus Nb0+
. . .+ Nbh ⊂ Γ (f). On the other hand, by the Weierstrass Division Theorem
any element of Γ (f) can be written in the form (f, ψ)0 with ψ ∈ C[[x]][y],
degy ψ<n = n/Bh. Proposition 3.2 gives Nb0+. . .+Nbh = Γ (f). Properties
(i) and (iv) follow from the construction of the sequence b0, . . . , bh. Property
(ii) follows from (iii) established above and from (iv).

Now, let g = g(x, y) be an irreducible power series y-regular of order
p = ord g(0, y) < ∞. Suppose that f and g are coprime. Let z(t) ∈ C[[t]]
with ord z(t) > 0 be such that g(tp, z(t)) = 0. We put

of (g) = max{ord(y(εx1/n)− z(νx1/p)) : εn = 1, νp = 1}.

It is easy to check that

of (g) = max{ord(y(x1/n)− z(νx1/p)) : νp = 1}
= max{ord(y(εx1/n)− z(x1/p)) : εn = 1}.

In particular, of (g) = og(f).
The classical computation leads to the following formula due to Max

Noether:

Proposition 3.3 ([6], [5]). Suppose that f and g are irreducible, y-
regular power series with f of characteristic (b0, b1, . . . , bh), and let k be the
smallest strictly positive integer such that of (g) ≤ bk/b0 (bh+1/b0 = ∞).
Then

(f, g)0
(g, x)0

=
k−1∑
i=1

(Bi−1 −Bi)
bi
b0

+Bk−1of (g).

R e m a r k ([9]). The Noether formula is really symmetric. Let (c0, c1, . . .
. . . , cm) be the characteristic of g. Then k ≤ m + 1, ci/c0 = bi/b0 for
i = 1, . . . , k − 1 and of (g) ≤ ck/c0 (cm+1/c0 = ∞). If Ci = gcd(c0, . . . , ci)
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then the formula can be rewritten in the form

(f, g)0
(f, x)0

=
k−1∑
i=1

(Ci−1 − Ci)
ci
c0

+ Ck−1og(f).

Using 3.3 we check easily

Lemma 3.4. Let l > 0 be an integer. Then

of (g) ≤ bl
b0

iff
(f, g)0
(g, x)0

≤ Bl−1
bl

b0
.

Moreover , of (g) = bl/b0 is equivalent to (f, g)0/(g, x)0 = Bl−1bl/b0.

Finally, let us note

Corollary 3.5 (to Theorem 1.4). If f = f(x, y) ∈ C[[x]][y] is an irre-
ducible distinguished polynomial , then of (Bk−1

√
f) = bk/b0 for k = 1, . . . , h.

P r o o f. We have (Bk−1
√
f, x)0 = degy

Bk−1
√
f = n/Bk−1 and (f, Bk−1

√
f)0

= bk by 1.4(1). Hence

(f, Bk−1
√
f)0

(Bk−1
√
f, x)0

= Bk−1
bk

b0
.

The power series Bk−1
√
f is irreducible by 1.4(2), thus by 3.4 we get of (Bk−1

√
f)

= bk/b0.

4. Proof of Theorem 1.1. Let g ∈ O[y] be a monic polynomial with
coefficients in the integral domain O of characteristic zero and let d be a
positive divisor of deg g. Given any monic polynomial h ∈ O[y] of degree
deg g/d we have the h-adic expansion of g, namely

g = hd + a1h
d−1 + . . .+ ad, ai ∈ O[y], deg ai < deg h.

The polynomials ai are uniquely determined by g, h. The Tschirnhausen
operator τg(h) = h + 1

da1 maps h to τg(h) which is again monic of degree
deg g/d. One checks easily [2, Sect. 1 and Sect. 6, Remark 6.4] that:

1) a1 = 0 if and only if h = d
√
g,

2) if g = [τg(h)]d + a1[τg(h)]d−1 + . . . + ad is the τg(h)-expansion of g
then deg a1 < deg a1 or a1 = 0.

Therefore we get

Lemma 4.1 ([2]). d
√
g = τg(τg . . . (τg(h)) . . .) with τg repeated deg g/d

times.

To prove 1.1 it suffices to check the following:

(∗) if h(x, y) ∈ C[[x]][y] is a monic polynomial of degree n/Bk−1 such
that (f, h)0 = bk, then (f, τg(h))0 = bk.
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Indeed, to get the relation (f, nk
√
g)0 = bk we take h = fk−1 (cf. Lemma

3.1) and apply the Tschirnhausen operator τg to h deg g/nk = n/Bk−1

times.
To prove (∗) fix a monic polynomial h(x, y) ∈ C[[x]][y] such that deg h =

n/Bk−1 and (f, h)0 = bk and consider the h-adic expansion of g:

(4) g = hnk + a1h
nk−1 + . . .+ ank , degy ai < degy h = n/Bk−1.

Let I be the set of all i ∈ {1, . . . , nk} such that ai 6= 0. Therefore (f, ai)0 <
∞ for i ∈ I and by Proposition 3.2 we have (f, ai)0 ∈ Nb0 + . . .+ Nbk−1 and
hence (f, ai)0 ≡ 0 mod Bk−1 for i ∈ I.

We have

(5) (f, aihnk−i)0 6= (f, ajhnk−j)0 for i 6= j ∈ I.
Indeed, (f, aihnk−i)0 = (f, ajhnk−j)0 with i < j implies, as in the proof
of (2), the congruence (j− i)bk/Bk ≡ 0 mod nk, which leads to a contradic-
tion for 0 < j − i < nk.

From (4) and (5) we have

(6) (f, g − hnk)0 = minnki=1(f, aihnk−i)0.

By assumption (f, g)0 > nkbk = (f, hnk)0, so (f, g − hnk)0 = nkbk and
(6) implies nkbk ≤ (f, aihnk−i)0 = (f, ai)0 + (nk − i)bk for i = 1, . . . , nk.
Therefore we get

(7) (f, ai)0 ≥ ibk for i = 1, . . . , nk.

Moreover, we have

(8) if (f, ai)0 = ibk, 1 ≤ i ≤ nk, then i = nk.

Indeed, from (f, ai)0 = ibk it follows that ibk ≡ 0 mod Bk−1 and ibk/Bk ≡
0 mod nk, so i ≡ 0 mod nk because bk/Bk and nk are coprime. Hence we
get i = nk.

By (8) we get (because nk > 1)

(9) (f, a1)0 > bk.

Therefore (f, τg(h))0 = (f, h+ (1/nk)a1)0 = (f, h)0 = bk.

5. Proof of Theorem 1.2. The proof is based on the following:

Lemma 5.1. Let g = g(x, y) be an irreducible power series, p = (g, x)0 <
∞ and let 1 < k ≤ h + 1. If (f, g)0/(g, x)0 > Bk−2bk−1/b0, then (g, x)0
≡ 0 mod (b0/Bk−1). If , additionally , (g, x)0 = b0/Bk−1, then Γ (g)
= 〈b1/Bk−1, . . . , bk−1/Bk−1〉.

P r o o f. Let (c0, c1, . . . , cm) with c0 = p be the characteristic of g. By
Lemma 3.4 we have of (g) > bk−1/b0, so there exist Puiseux expansions
determined by f(x, y) = 0 and g(x, y) = 0 respectively which coincide
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up to “monomials” of degree bk−1/n. Therefore k − 1 ≤ m and b1/n =
c1/p, . . . , bk−1/n = ck−1/p. There exist integers a0, . . . , ak−1 such that Bk−1

= a0b0 + a1b1 + . . .+ ak−1bk−1, and consequently

pBk−1 = (a0p)n+ a1(nc1) + . . .+ ak−1(nck−1) ≡ 0 mod n

and p ≡ 0 mod (n/Bk−1), which proves the first part of 5.1.
Suppose now that p = n/Bk−1. We have ci = pbi/n = bi/Bk−1 for

i = 1, . . . , k − 1, hence Γ (g) = 〈b1/Bk−1, . . . , bk−1/Bk−1〉.

Now, we can pass to the proof of 1.2.
Let φ = φ(x, y) ∈ C[[x, y]] be y-regular, (φ, x)0 = n/Bk−1. We shall

check that (f, φ)0 ≤ bk. If k = h + 1 this is obvious (bh+1 = ∞), so we
assume k ≤ h. Write

φ = g1 · . . . · gs, gj ∈ C[[x, y]] irreducible.

We have

(10)
(f, gj)0
(gj , x)0

≤ Bk−1bk
n

for all j = 1, . . . , s.

Indeed, if (f, gj)0/(gj , x)0 > Bk−1bk/n for some j then, by Lemma 5.1,
(gj , x)0 ≡ 0 mod (n/Bk) and consequently (gj , x)0 ≥ n/Bk. This is impos-
sible, because (gj , x)0 ≤ (φ, x)0 = n/Bk−1.

Now, from (10) we get

(f, φ)0 =
∑
j

(f, gj)0 ≤
∑
j

Bk−1bk
n

(gj , x)0 =
Bk−1bk
n

(φ, x)0 = bk.

Having proved the first part of 1.2, assume that (f, φ)0 > nk−1bk−1. We
claim that there exists a j ∈ {1, . . . , s} such that

(11)
(f, gj)0
(gj , x)0

>
Bk−2bk−1

n
.

Suppose, contrary to our claim, that (f, gj)0/(gj , x)0 ≤ Bk−2bk−1/n for all
j = 1, . . . , s. Thus we would have

(f, φ)0 =
∑
j

(f, gj)0 ≤
Bk−2bk−1

n

∑
j

(gj , x)0

=
Bk−2bk−1

n
(φ, x)0 = nk−1bk−1,

which contradicts our assumption.
From (11) it follows, by Lemma 5.1, that (gj , x)0 = qn/Bk−1 for some

integer q ≥ 1. On the other hand, (gj , x)0 ≤ (φ, x)0 = n/Bk−1. Therefore
q = 1 and (gj , x)0 = (φ, x)0. Recall that gj divides φ, gj is irreducible and
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ord gj(0, y) = ordφ(0, y), thus gj is associated to φ, which proves irreducibil-
ity of φ.

6. Irreducibility criterion. The aim of this section is to prove a version
of 1.2 (Proposition 6.1) without using the Max Noether formula. Theorem
1.4(1) and the second part of 6.1 imply irreducibility of approximate roots.
Let 1 ≤ k ≤ h.

Proposition 6.1. Let φ = φ(x, y) ∈ C[[x]][y] be a monic polynomial with
degy φ = n/Bk−1. Then (f, φ)0 ≤ bk. If (f, φ)0 = bk then φ is irreducible
in C[[x]][y].

P r o o f. Let fk−1 = fk−1(x, y) ∈ C[[x]][y] be as in Lemma 3.1. Then
degy(φ − fk−1) < n/Bk−1 and by Proposition 3.2 we get (f, φ − fk−1)0 ∈
Nb0 + . . . + Nbk−1. Therefore (f, fk−1)0 = bk 6= (f, φ − fk−1)0 by Theo-
rem 1.0(ii) and we get (f, φ)0 = min((f, fk−1)0, (f, φ− fk−1)0) ≤ (f, fk−1)0
= bk.

Let (f, φ)0 = bk and suppose that φ is not irreducible. Then φ = φ1φ2 in
C[[x]][y] with monic polynomials φ1, φ2 of positive degrees. Consequently,
degy φ1, degy φ2 < degy φ = n/Bk−1 and by Proposition 3.2 we get (f, φ1)0,
(f, φ2)0 ∈ Nb0+. . .+Nbk−1 and bk = (f, φ)0 = (f, φ1)0+(f, φ2)0 ∈ Nb0+. . .+
Nbk−1. But this contradicts 1.0(ii). Therefore φ is irreducible in C[[x]][y].

N o t e. We thank the referee for his pointing out the article by
H.-C. Chang and L.-Ch. Wang, An intersection theoretical proof of the em-
bedding line theorem, J. Algebra 161 (1993), 467–479. The authors prove
there a weak version of the main property of approximate roots and the
Abhyankar–Moh inequality. Their considerations are based on Zariski’s anal-
ysis of the semigroup of intersection numbers and on Bézout’s theorem.
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