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Integral representations of bounded starlike functions

by Frode Rønning (Trondheim)

Abstract. For α ≥ 0 let Fα denote the class of functions defined for |z| < 1 by
integrating 1/(1− xz)α if α > 0, and log(1/(1− xz)) if α = 0, against a complex measure
on |x|=1. We study families of starlike functions where zf ′(z)/f(z) ranges over a parabola
with given focus and vertex. We prove a number of properties of these functions, among
others that they are bounded and that they belong to F0. In general, it is only known
that bounded starlike functions belong to Fα for α > 0.

1. Introduction. Let U = {z : |z| < 1}, Γ = {z : |z| = 1} and let M
denote the set of complex-valued Borel measures on Γ . For α > 0 let Fα
denote the set of functions f for which there is µ ∈M such that

(1.1) f(z) =
∫
Γ

1
(1− xz)α

dµ(x)

for |z| < 1, and let F0 denote the set of functions f for which there is µ ∈M
such that

f(z) =
∫
Γ

log
1

1− xz
dµ(x) + f(0)

for |z| < 1. The classes Fα for α > 0 were introduced in [9] and F0 was
introduced in [5]. Denote by H the class of functions analytic and univalent
in U , and by S the subset of H with the normalization f(0) = f ′(0)−1 = 0.
The study of Fα was mainly motivated by the question whether H ⊂ F2,
and MacGregor showed in [9] that this is not true, but that H ⊂ Fα for
every α > 2. We could also mention the well known fact that every starlike
function in S has the representation

f(z) =
∫
Γ

z

(1− xz)2
dµ(x)
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with a probability measure µ. This was proved by Brickman, MacGregor and
Wilken in [2]. In [6] Hibschweiler and MacGregor investigated membership
in Fα for univalent functions, in particular starlike and convex functions,
with restricted growth. The following result was obtained in [6].

Theorem A. (a) Let f ∈ H and assume that f(U) is starlike with respect
to f(0) and that for some A>0 and 0 < β < 2, |f(z)| ≤ A/(1−|z|)β. Then
f ∈ Fα for every α > β.

(b) If f ∈ H and f(U) is a bounded convex domain then f ∈ F0.

It is not known whether every bounded starlike function is in F0. In
this paper we introduce some families of starlike functions which turn out
to consist only of bounded functions and we prove that all these classes are
contained in F0. Define the class SP(α, β) to be the set of functions f ∈ S
with the property that∣∣∣∣zf ′(z)f(z)

− (α+ β)
∣∣∣∣ ≤ Re

zf ′(z)
f(z)

+ α− β, z ∈ U,

0 < α < ∞ and 0 ≤ β < 1. This means that zf ′(z)/f(z) for f ∈ SP(α, β)
and z ∈ U lies in that portion of the plane which contains w = 1 and is
bounded by the parabola y2 = 4α(x−β). The classes SP(α, β) are general-
izations of classes that previously have been studied by the author. In [12]
the class Sp was introduced in connection with uniformly convex functions.
In the new notation Sp = SP

(
1
2 ,

1
2

)
. In [11] a generalization of Sp was done,

along with the introduction of the concept of order of uniform convexity . In
the new notation this generalization amounts to the classes SP

(
1−γ

2 , 1+γ
2

)
,

−1 ≤ γ < 1. Since SP(α, β) ⊂ SP(α, 0), it seems to be most interesting in
this context to study the classes where β = 0. For simplicity of notation we
define SP(α) := SP(α, 0), and hence we have

SP(α) =
{
f ∈ S :

∣∣∣∣zf ′(z)f(z)
− α

∣∣∣∣ ≤ Re
zf ′(z)
f(z)

+ α, z ∈ U, 0 < α <∞
}
.

Before we proceed, one important fact about Fα should be mentioned.

Theorem B. For α ≥ 0, f ∈ Fα if and only if f ′ ∈ Fα+1.

The proof for the case α > 0 can be found in [9], and the case α = 0 is
treated in [5].

2. The Carathéodory function associated with SP(α). Many of
the special classes of normalized starlike functions that have been studied
over the years are characterized by the range of the functional zf ′(z)/f(z).
This will be a domain Ω in the right half plane, 1 ∈ Ω, and it is of interest to
determine an analytic, univalent function (Carathéodory function) mapping
U onto Ω and 0 to 1. In the case of SP(α) the domain Ω is bounded by
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a parabola with vertex at the origin, axis along the positive real axis and
focus in α.

Theorem 2.1. Let Ωα = {w : |w − α| ≤ Rew + α}. Define Pα(z) to be
the analytic and univalent function with the properties Pα(0) = 1, P ′α(0) > 0
and Pα(U) = Ωα. Then

(2.1) Pα(z) = α

(
1 +

4
π2

(
log

1 +
√
wα(z)

1−
√
wα(z)

)2)
where

wα(z) =


z − tan2

(
π
√

1− 1/α
/

4
)

1− z tan2
(
π
√

1− 1/α
/

4
) if α ≥ 1,

z + tanh2
(
π
√

1/α− 1
/

4
)

1 + z tanh2
(
π
√

1/α− 1
/

4
) if 0 < α < 1.

P r o o f. It is a simple exercise in conformal mappings to see that the
function

(2.2) Qα(z) = α

(
1 +

4
π2

(
log

1 +
√
z

1−
√
z

)2)
is analytic and univalent in U and has the properties Qα(U) = Ωα and
Qα(0) = α. (The branch of the square root is chosen so that Im

√
z ≥ 0.)

Next we find a suitable self-mapping of U , w(z), such that Pα(z) = Qα(w(z))
and Pα(0) = 1. Solving the equation Qα(ζ) = 1 we get(

log
1 +
√
ζ

1−
√
ζ

)2

=
π2

4

(
1
α
− 1
)
,

which in the case α > 1 gives

1 +
√
ζ

1−
√
ζ

= e(iπ/2)
√

1−1/α

and further

ζα =
(

sin
(
π
√

1− 1/α
/

2
)

1 + cos
(
π
√

1− 1/α
/

2
) i)2

= −
1− cos

(
π
√

1− 1/α
/

2
)

1 + cos
(
π
√

1− 1/α
/

2
)

= − tan2

(
π

4

√
1− 1

α

)
.

In the case α < 1 we similarly get

1 +
√
ζ

1−
√
ζ

= e(π/2)
√

1/α−1
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and then

ζα =
(
e(π/2)

√
1/α−1 − 1

e(π/2)
√

1/α−1 + 1

)2

= tanh2

(
π

4

√
1
α
− 1
)
.

Taking

wα(z) =
z + ζα
1 + zζα

,

where ζα is chosen in accordance with the above, we see that Pα(z) =
Qα(wα(z)) has the required properties.

If f is analytic in U we define as usual the integral means

(2.3) Mp(r, f) =
{

1
2π

2π∫
0

|f(reiθ)|p dθ
}1/p

, 0 < p <∞,

and the Hardy classes Hp (0 < p <∞) to be the classes of analytic functions
for which Mp(r, f) remains bounded as r → 1. We have the following result.

Theorem 2.2. Let Pα(z) be as in (2.1). Then for 0 < α <∞, Pα ∈ H2.

P r o o f. Let Qα(z) be the function in (2.2) and define Ak such that

Qα(z) = α+
4α
π2

∞∑
k=1

Akz
k.

Then, from [10], we know that

Ak =
4
k

k∑
m=1

1
2m− 1

.

For k large enough (≥ 8) we can easily verify that

Ak <
4 log k
k

.

Using the integral test we can verify that the series
∑∞
k=1(log k/k)2 con-

verges, and hence so does
∑∞
k=1A

2
k. This means that Qα(z) ∈ H2. Now,

Pα(z) = Qα(wα(z)) where wα is analytic and |wα(z)| < 1 in |z| < 1. From
a result in [3, p. 29] it follows that Pα ∈ H2.

3. Properties of the functions in SP(α). We first show that the
classes SP(α) consist only of bounded functions.

Theorem 3.1. If f ∈ SP(α) then there is a constant K(α) such that

|f(z)| < |z|K(α), |z| < 1.

P r o o f. If α1 < α2 then SP(α1) ⊂ SP(α2), so it is enough to prove
the theorem for α > 1. Let kα be the function in SP(α) with the property
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zk′α(z)/kα(z) = Pα(z). Since Ωα = Pα(U) is convex and symmetric about
the x-axis we can apply a result from Ma and Minda [7] to conclude that

|f(z)| ≤ kα(r), |z| = r < 1.

It remains to show that limr→1 kα(r) < ∞, which is equivalent to showing
that

lim
r→1

r∫
0

Pα(x)− 1
x

dx

exists. Let δ = tan2
(
π
√

1− 1/α
/

4
)
. Then 0 < δ < 1 and

Pα(x) = α

(
1 +

4
π2

(
log

1 +
√

(x− δ)/(1− δx)
1−

√
(x− δ)/(1− δx)

)2)
.

The function Pα(x) is easily seen to be strictly increasing and Pα(δ) = α.
Define x0 to be the value of x where Pα(x) = 2α. We then see that for
x ≥ x0,

Pα(x)− 1 ≤ (2− 1/α)(Pα(x)− α).
Therefore,

r∫
0

Pα(x)− 1
x

dx ≤
x0∫
0

Pα(x)− 1
x

dx+
(

2− 1
α

) r∫
x0

Pα(x)− α
x

dx.

Since x0 > δ it suffices to show that the integral

I =
1∫
δ

1
x

(
log

1 +
√

(x− δ)/(1− δx)
1−

√
(x− δ)/(1− δx)

)2

dx

exists. We substitute t = (x− δ)/(1− δx) to get

I =
1∫

0

1− δ2

(1 + δt)(t+ δ)

(
log

1 +
√
t

1−
√
t

)2

dt.

Clearly I ≤ (1 − δ2)
∫ 1

0
(1/t)(log((1 +

√
t)/(1 −

√
t)))2 dt, and the latter

integral was examined in [12] and found to have the value 7ζ(3). This ends
the proof of the theorem.

Theorem 3.2. Let f ∈ SP(α), 0 < α <∞. Then f ′ ∈ H2.

P r o o f. It is enough to prove that zf ′ ∈ H2, and from Theorem 3.1 it
follows that

|zf ′(z)|2 < K(α)2
∣∣∣∣zf ′(z)f(z)

∣∣∣∣2.
Now, zf ′(z)/f(z) ≺ Pα(z) and then it follows from Theorem 2.2 and Little-
wood’s subordination theorem [3, p. 10] that zf ′(z)/f(z) ∈ H2. The proof
is complete.
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In particular, we have f ′ ∈ H1, and from [3, p. 40] we know that f ′ has
the representation

f ′(z) =
1

2πi

∫
|ζ|=1

f ′(ζ)
ζ − z

dζ.

Choosing the measure µ by dµ(x) = (f ′(eiθ)/(2π))dθ where x = e−iθ and
f ′(eiθ) = limr→1 f

′(reiθ) we see that f ′ has a Cauchy–Stieltjes representa-
tion (1.1) with α = 1, and from Theorem B we get

Corollary 3.3. Every function in SP(α) belongs to F0.

R e m a r k. It is natural to compare the classes SP(α) to the classes
of strongly starlike functions, SS(α), studied e.g. in [1]. A function f ∈
SS(α) if and only if |arg(zf ′(z)/f(z))| < πα/2, so in this case we have
an angular domain instead of a parabola. According to results in [1] the
functions in SS(α) share many properties of the functions in SP(α), e.g.
that they are bounded and that f ′ ∈ H1. However, we do not get f ′∈H2 as
in SP(α), only f ′ ∈ Hp for each p < 1/α. These classes of functions provide
examples of bounded starlike functions belonging to F0, whereas in general
we only know that bounded starlike functions belong to Fα for every α > 0
(Theorem A).

When f ′ ∈ H1 it is well known [3, p. 42] that f is absolutely continous
on |z| = 1 and furthermore that w = f(eiθ) is a parametrization of the
boundary of f(U). Now, the length of the boundary curve will be given by∫ 2π

0
|f ′(eiθ)| dθ and hence we get

Corollary 3.4. Every function in SP(α) maps |z| = 1 onto a rectifiable
Jordan curve.

If f(z) = z +
∑∞
k=2 akz

k is a function in SP(α) then there is a µ ∈
M such that f(z) =

∫
Γ

log(1/(1 − xz)) dµ(x), which means that an =
(1/n)

∫
Γ
xn dµ(x) and therefore we have

Corollary 3.5. The order of growth of the coefficients in SP(α) is
O(1/n).

R e m a r k. Ma and Minda [8] proved that the order of growth of the
coefficients for functions in SP

(
1
2 ,

1
2

)
is O(1/n). Note that by Corollary 3.5

this order of growth holds in all the classes SP(α, β).

4. Some special cases. We now go back to the more general classes
SP(α, β). Because of the inclusion SP(α, β) ⊂ SP(α, 0), 0<β < 1, the re-
sults about boundedness and membership in F0 will also hold for SP(α, β).
As mentioned before, the classes SP

(
1−γ

2 , 1+γ
2

)
, −1 ≤ γ < 1, and in partic-

ular SP
(

1
2 ,

1
2

)
, play a central role in connection with the so-called uniformly
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convex functions (UCV). A function f ∈ S is called uniformly convex if it
maps every circular arc inside of U with center also inside of U to a convex
arc, and according to a result in [12],

f ∈ UCV⇔ zf ′ ∈ SP
(

1
2 ,

1
2

)
.

The Carathéodory function associated with SP
(

1−γ
2 , 1+γ

2

)
is

Pγ(z) = 1 +
2(1− γ)
π2

(
log

1 +
√
z

1−
√
z

)2

and the bound on |f(z)| is (see [11])

(4.1) Kγ = exp
(

14(1− γ)
π2

ζ(3)
)
.

For these classes we can obtain some results more explicit than the general
ones.

Theorem 4.1. Let f ∈ SP
(

1−γ
2 , 1+γ

2

)
and let Kγ be as in (4.1), −1 ≤

γ < 1. Then f(z) maps |z| = 1 onto a rectifiable curve of length at most
2πKγIγ where

Iγ =
∞∫
0

√
(1 + γ)2 + 2(3− 4γ + γ2)v2 + (1− γ)2v4eπv/2

1 + eπv
dv.

P r o o f. The length of f(|z|=1) equals
∫ 2π

0
|f ′(eiθ)| dθ. Now zf ′(z)/f(z)

≺ Pγ(z) and Pγ ∈ H1 so we have
2π∫
0

|f ′(eiθ)| dθ ≤ Kγ

2π∫
0

|Pγ(eiθ)| dθ.

Computing we get

Pγ(eiθ) =
1 + γ

2
+

1− γ
2π2

(
log

1 + cos(θ/2)
1− cos(θ/2)

)2

+
i(1− γ)

π
log

1 + cos(θ/2)
1− cos(θ/2)

.

Introducing

v =
1
π

log
1 + cos(θ/2)
1− cos(θ/2)

we get
2π∫
0

|Pγ(eiθ)| dθ = 2
π∫

0

|Pγ(eiθ)| dθ = 2π
∞∫
0

2|Pγ |eπv/2

1 + eπv
dv

with

(4.2) 2|Pγ | =
√

(1 + γ)2 + 2(3− 4γ + γ2)v2 + (1− γ)2v4.

R e m a r k. The class SP
(

1
2 ,

1
2

)
is contained in SS

(
1
2

)
, and this inclusion

is sharp [12]. Denote the upper bounds on the length of f(|z| = 1) in these
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two classes by L1 and L2. Then from (4.1) and Theorem 4.1 we have

L1 ≤ 2πe(14/π
2)ζ(3)

∞∫
0

√
1 + 6v2 + v4eπv/2

1 + eπv
dv ≈ 43.66.

Using results from [1] we get (here γ denotes Euler’s constant)

L2 ≤ 2π · 1
4
e−Γ

′(1/4)/Γ (1/4)−γ 1
cos(π/4)

≈ 85.48.

For the classes SP
(

1−γ
2 , 1+γ

2

)
we can also give an explicit upper bound on

the integral means M2(r, f) for the derivative.

Theorem 4.2. Let f ∈ SP
(

1−γ
2 , 1+γ

2

)
. Then

M2(r, f ′) ≤ Kγ

√
3− 4γ + 2γ2,

where Kγ is as in (4.1).

P r o o f. As in the proof of Theorem 4.1 we have
2π∫
0

|f ′(eiθ)|2 dθ ≤ K2
γ

2π∫
0

|Pγ(eiθ)|2 dθ

and further, also as in the previous proof, we get
2π∫
0

|Pγ(eiθ)|2 dθ = π
∞∫
0

4|Pγ |2eπv/2

1 + eπv
dv.

A formula in [4, p. 60] states that
∞∫
0

v2neπv/2

1 + eπv
dv =

1
2
|E2n|, n = 0, 1, . . . ,

where En is the nth Euler number. Introducing 4|Pγ |2 from (4.2) and the
Euler numbers E0 = 1, E2 = −1 and E4 = 5 we get

2π∫
0

|Pγ(eiθ)|2dθ =
π

2
((1+γ)2 +2(3−4γ+γ2)+5(1−γ)2) = π(6−8γ+4γ2).

Using the definition of M2(r, f ′) in (2.3), the result follows.
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