ANNALES POLONICI MATHEMATICI LX.3 (1995)

Between the Paley–Wiener theorem and the Bochner tube theorem

by ZOFIA SZMYDT and BOGDAN ZIEMIAN (Warszawa)

Abstract. We present the classical Paley–Wiener–Schwartz theorem [1] on the Laplace transform of a compactly supported distribution in a new framework which arises naturally in the study of the Mellin transformation. In particular, sufficient conditions for a function to be the Mellin (Laplace) transform of a compactly supported distribution are given in the form resembling the Bochner tube theorem [2].

1. Notation. We employ the usual notation of set theory. \mathbb{R} denotes the set of real numbers, \mathbb{R}_+ the set of positive real numbers, and $\mathbb{R}_+^n = (\mathbb{R}_+)^n$. For $x \in (x_1, \ldots, x_n) \in \mathbb{R}^n$ we set $\langle x \rangle = 1 + |x_1| + \ldots + |x_n|$. We write x < y $(x \le y)$ for $x, y \in \mathbb{R}^n$ to denote $x_j < y_j$ $(x_j \le y_j \text{ resp.})$ for $j = 1, \ldots, n$, and we set $I = (0, t] = \{x \in \mathbb{R}^n : 0 < x \le t\}$, where $t \in \mathbb{R}_+^n$. By **1** we denote $(1, \ldots, 1)$. \mathbb{N} is the set of positive integers and \mathbb{N}_0 the set of non-negative integers. We write $|\alpha| = \alpha_1 + \ldots + \alpha_n$ for $\alpha \in \mathbb{N}_0^n$. For $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{N}_0^n$ we write $x^{\alpha} = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$.

We employ the usual notation of distribution theory. $D'(\Omega)$ denotes the space of distributions on an open set $\Omega \subset \mathbb{R}^n$, and $D'_A(\Omega)$ the space of distributions on Ω with support in $A \subset \Omega$. The value of a distribution u on a test function φ is denoted by $u[\varphi]$.

2. Auxiliary theorems

THEOREM 1. Let $u \in D'_K(\mathbb{R}^n)$ where K is a connected compact set in \mathbb{R}^n such that any two points $x, y \in K$ can be joined by a rectifiable curve in K of length $\leq \widetilde{C}|x-y|, \widetilde{C} < \infty$. Then there exists a constant $C < \infty$ and $k \in \mathbb{N}_0$ such that

¹⁹⁹¹ Mathematics Subject Classification: Primary 46F12.

Key words and phrases: Mellin distributions, Bochner tube theorem.

^[299]

Z. Szmydt and B. Ziemian

$$|u[\psi]| \le C \sum_{\substack{|\alpha| \le k \\ \alpha \in \mathbb{N}_0^n}} \sup_{x \in K} \left| \left(\frac{\partial}{\partial x} \right)^{\alpha} \psi(x) \right| \quad \text{for } \psi \in C^k(\mathbb{R}^n).$$

The proof of this theorem, based on the Whitney extension theorem, is given in [1].

Now following [3] we recall the spaces of Mellin distributions. Denote by $\mu: \mathbb{R}^n \to \mathbb{R}^n_+$ the diffeomorphism

$$\mu(y) = e^{-y} := (e^{-y_1}, \dots, e^{-y_n}).$$

We define the space of *Mellin distributions on* \mathbb{R}^n_+ for every $\alpha \in \mathbb{R}^n$ as the dual of the space

$$\mathfrak{M}_{\alpha} = \mathfrak{M}_{\alpha}(\mathbb{R}^{n}_{+}) = \{ \sigma \in C^{\infty}(\mathbb{R}^{n}_{+}) : (x^{\alpha+1}\sigma) \circ \mu \in S(\mathbb{R}^{n}) \},\$$

with the natural topology in \mathfrak{M}_{α} induced from $S(\mathbb{R}^n)$.

Note that $u \in \mathfrak{M}'_{\alpha}(\mathbb{R}^n_+)$ if and only if $e^{\alpha y}(u \circ \mu) \in S'(\mathbb{R}^n)$. The M_{α} Mellin transform of $u \in \mathfrak{M}'_{\alpha}$ is defined by means of the inverse Fourier transform F^{-1} :

(1)
$$M_{\alpha}u = (2\pi)^{n/2}F^{-1}(e^{\alpha y}(u \circ \mu))$$

Here we assume $F\sigma(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix\xi} \sigma(x) dx$ for $\xi \in \mathbb{R}^n$ and $\sigma \in S(\mathbb{R}^n)$.

For $a \in \mathbb{R}^n$ we introduce the space

$$M_a = M_a(I) = \{ \varphi \in C^{\infty}(I) : \sup_{x \in I} |x^{a+\alpha+1} (\partial/\partial x)^{\alpha} \varphi(x)| < \infty, \ \alpha \in \mathbb{N}_0^n \}$$

equipped with the topology defined by the sequence of seminorms

$$\varrho_{a\alpha}(\varphi) = \sup_{x \in I} |x^{a+\alpha+1} (\partial/\partial x)^{\alpha} \varphi(x)|, \quad \alpha \in \mathbb{N}_0^n.$$

Note that the space M_a is complete (see [3]) but the set $C^{\infty}_{(0)}(I)$ (of restrictions to I of functions in C^{∞}_0) is not dense in $M_a(I)$.

Let $\omega \in (\mathbb{R} \cup \{\infty\})^n$. We define the function space $M_{(\omega)}(I)$ as the inductive limit

$$M_{(\omega)}(I) = \lim_{a < \omega} M_a(I).$$

Now the set $C_{(0)}^{\infty}(I)$ is dense in $M_{(\omega)}(I)$ and the dual space $M'_{(\omega)} = M'_{(\omega)}(I)$ is a subspace of $D'_{I}(\mathbb{R}^{n}_{+})$. Therefore the elements of $M'_{(\omega)}$ are called *Mellin distributions on I*. Note that for $a < b < \omega$ and $\omega \in (\mathbb{R} \cup \{\infty\})^{n}$,

$$M_{(a)}(I) \subset M_a(I) \subset M_b(I) \subset M_{(\omega)}(I),$$
$$M_{(\omega)}(I) = \lim_{a < \omega} M_{(a)}(I),$$
$$M'_{(\omega)}(I) = \bigcap_{a < \omega} M'_a(I) = \bigcap_{a < \omega} M'_{(a)}(I).$$

300

The totality of Mellin distributions is denoted by

$$M'(I) = \bigcup_{\omega \in (\mathbb{R} \cup \{\infty\})^n} M'_{(\omega)}(I) = \bigcup_{\omega \in \mathbb{R}^n} M'_{(\omega)}(I).$$

M'(I) coincides with the space of restrictions to \mathbb{R}^n_+ of distributions on \mathbb{R}^n with support in \overline{I} .

Let $u \in M'_{(\omega)}(I)$ for some $\omega \in (\mathbb{R} \cup \{\infty\})^n$. We define the *Mellin trans*form of u by

(2)
$$Mu(z) = u[x^{-z-1}]$$
 for Re $z < \omega$

This definition differs from the classical one by the change of variable $z \mapsto -z$.

The following theorem gives a relation between the Mellin transformations M and M_{α} defined by (2) and (1) respectively.

THEOREM 2. Let $u \in M'_{(\omega)}(I)$. Then Mu is holomorphic for $\operatorname{Re} z < \omega$ and $u \in \mathfrak{M}'_{\alpha}(\mathbb{R}^n_+)$ for every $\alpha < \omega$. The tempered distribution $M_{\alpha}u$ is a function:

(3)
$$(M_{\alpha}u)(\beta) = Mu(\alpha + i\beta) = (u \circ \mu)[e^{(\alpha + i\beta)y}] \text{ for } \beta \in \mathbb{R}^n.$$

Moreover, $M_{\alpha}: M'_{(\omega)} \to S'$ is continuous for $\alpha < \omega$.

THEOREM 3 (Paley–Wiener type theorem). In order that a function $f(z) = f(z_1, \ldots, z_n)$ be the Mellin transform of a unique Mellin distribution $u \in M'_{(\omega)}((0,t])$ it is necessary and sufficient that f be holomorphic in $\{z \in \mathbb{C}^n : \operatorname{Re} z < \omega\}$ and that for every $b < \omega$ and every $\varrho \in \mathbb{R}_+$ there exist $s = s(b) \in \mathbb{N}_0$ and $C = C(b, \varrho) < \infty$ such that

(4)
$$|f(\alpha + i\beta)| \le C \langle \beta \rangle^s (e^{\varrho} t)^{-\alpha} \quad \text{for } \alpha \le b.$$

3. The main theorem. Let $t^- = (t_1^-, ..., t_n^-), t^+ = (t_1^+, ..., t_n^+), 0 < t^- < t^+$, write $I = (0, t^+]$ and consider the polyinterval

$$[t^{-}, t^{+}] = \{x \in \mathbb{R}^{n} : t^{-} \le x \le t^{+}\}.$$

THEOREM 4. Let f be a function holomorphic on $\{z \in \mathbb{C}^n : \operatorname{Re} z < 0\} \cup \{z \in \mathbb{C}^n : \operatorname{Re} z > 0\}$ and such that for every $b \in \mathbb{R}^n$ with b < 0 and $\varrho \in \mathbb{R}_+$,

(5)
$$|f(\alpha + i\beta)| \le C\langle\beta\rangle^s (e^{\varrho}t^+)^{-\alpha} \qquad for \ \alpha < b$$

(6)
$$|f(\alpha + i\beta)| \le C\langle\beta\rangle^s (e^{-\varrho}t^-)^{-\alpha} \quad \text{for } \alpha > -b$$

with some $s = s(b) \in \mathbb{N}_0$ and $C = C(b, \varrho) < \infty$. Moreover, assume that the following limits exist in $S'(\mathbb{R}^n)$ and are equal:

(7)
$$\lim_{\alpha \to 0_{-}} f(\alpha + i \cdot) = \lim_{\alpha \to 0_{+}} f(\alpha + i \cdot).$$

Then there exists a unique $u \in D'_{[t^-,t^+]}$ such that Mu = f. Furthermore, f is an entire function on \mathbb{C}^n and for every $b \in \mathbb{R}^n$ and $\varrho \in \mathbb{R}_+$ there exist $C = C(b, \varrho) < \infty$ and $s = s(b) \in \mathbb{N}_0$ such that for any $\sigma \in \{-,+\}^n$,

(8)
$$|f(\alpha + i\beta)| \leq C \langle \beta \rangle^s (e^{\sigma_1 \varrho} t_1^{\sigma_1})^{-\alpha_1} \dots (e^{\sigma_n \varrho} t_n^{\sigma_n})^{-\alpha_n}$$

for $\sigma_j \alpha_j \leq \sigma_j b_j, \ j = 1, \dots, n.$

Proof. By assumption (5), which is the sufficient condition in Theorem 3, there exists a unique distribution $u \in M'_{(0)}((0,t^+])$ such that Mu = f. Thus $\operatorname{supp} u \subset (0,t^+]$ and $u \in \mathfrak{M}'_{\alpha}((0,t^+])$ for $\alpha < 0$. Denote by w the tempered distribution defined by (7). Hence

$$\lim_{\alpha \to 0_{-}} \int_{\mathbb{R}^{n}} f(\alpha + i\beta) \psi(\beta) \, d\beta = w[\psi] \quad \text{ for } \psi \in S(\mathbb{R}^{n})$$

and by (3) and (1) we get

$$\begin{split} w[\psi] &= \lim_{\alpha \to 0_{-}} \int_{\mathbb{R}^{n}} (Mu)(\alpha + i\beta)\psi(\beta) \, d\beta \\ &= (2\pi)^{n/2} \lim_{\alpha \to 0_{-}} \int_{\mathbb{R}^{n}} F^{-1}(e^{\alpha y}(u \circ \mu))(\beta)\psi(\beta) \, d\beta \\ &= (2\pi)^{n/2} \lim_{\alpha \to 0_{-}} F^{-1}(e^{\alpha y}(u \circ \mu))[\psi] \\ &= (2\pi)^{n/2} \lim_{\alpha \to 0_{-}} (e^{\alpha y}(u \circ \mu))[F^{-1}\psi] \\ &= (2\pi)^{n/2} \lim_{\alpha \to 0_{-}} (u \circ \mu)[e^{\alpha y}F^{-1}\psi]. \end{split}$$

For $\psi = F\varphi$ with $\varphi \in D(\mathbb{R}^n)$ the last formula yields

(9)
$$Fw[\varphi] = (2\pi)^{n/2} (u \circ \mu)[\varphi] \quad \text{for } \varphi \in D(\mathbb{R}^n).$$

Now observe that by assumption (6),

$$|f(-\alpha - i\beta)| < C\langle\beta\rangle^s \left(e^{\varrho} \frac{1}{t^-}\right)^{-\alpha} \quad \text{for } \alpha < b,$$

where $1/x := (1/x_1, \ldots, 1/x_n)$ for $x \in \mathbb{R}^n_+$. As before, by Theorem 3, there exists a unique distribution $\tilde{u} \in M'_{(0)}((0, 1/t^-])$ such that

$$f(-\alpha - i\beta) = M\widetilde{u}(\alpha + i\beta).$$

Note that $\widetilde{u} \in \mathfrak{M}'_{\alpha}((0, 1/t^{-}])$ for $\alpha < 0$ and $f(-\alpha - i\beta) = M_{\alpha}\widetilde{u}(\beta) = (2\pi)^{n/2}F^{-1}(e^{\alpha y}(\widetilde{u} \circ \mu)).$

Since by (7), $w = \lim_{\alpha \to 0_+} f(\alpha + i \cdot)$ we have $\lim_{\alpha \to 0_-} f(-\alpha - i \cdot) = w^{\vee}$ where $^{\vee}$ denotes the reflection $\beta \to -\beta$. Take $\varphi \in D(\mathbb{R}^n)$ and let $\psi = F\varphi$. Then $\psi \in S(\mathbb{R}^n)$ and

$$w^{\vee}[\psi] = \lim_{\alpha \to 0_{-}} \int_{\mathbb{R}^{n}} f(-\alpha - i\beta)\psi(\beta) d\beta$$
$$= (2\pi)^{n/2} \lim_{\alpha \to 0_{-}} \int_{\mathbb{R}^{n}} F^{-1}(e^{\alpha y}(\widetilde{u} \circ \mu))\psi(\beta) d\beta = (2\pi)^{n/2}(\widetilde{u} \circ \mu)[\varphi].$$

Hence

$$Fw^{\vee}[\varphi] = (2\pi)^{n/2} (\widetilde{u} \circ \mu)[\varphi] \quad \text{for } \varphi \in D(\mathbb{R}^n).$$

This together with (9) yields $(u \circ \mu)^{\vee} = \widetilde{u} \circ \mu$. Let λ be the mapping $\mathbb{R}^n_+ \ni x \mapsto 1/x$. Since $(u \circ \mu)^{\vee} = (u \circ \lambda) \circ \mu$ we get $u \circ \lambda = \widetilde{u}$. Hence $u \circ \lambda \in M'_{(0)}((0, 1/t^-])$ and by definition of λ we have $\sup p u \subset \{x : x \ge t^-\}$, which together with $u \in M'_{(0)}((0, t^+])$ gives the desired assertion $u \in D'_{[t^-, t^+]}$. By Theorem 1, $u \in M'_a$ for every $a \in \mathbb{R}^n$ (i.e. $u \in M'_{(\infty)}$) and hence by Theorem 3 (the necessary condition this time) f = Mu is entire on \mathbb{C}^n and the estimate (5) holds for $\alpha \le b$ for every $b \in \mathbb{R}^n$. Since $u \circ \lambda \in D'_{[1/t^+, 1/t^-]}$ and $M(u \circ \lambda)(z) = Mu(-z)$ we get as before, for all $b \in \mathbb{R}^n$ and $\varrho \in \mathbb{R}_+$,

$$|Mu(\alpha + i\beta)| \le C\langle\beta\rangle^s (e^{-\varrho}t^-)^{-\alpha} \quad \text{ for } \alpha \ge b$$

with s = s(b) and $C = C(b, \varrho)$. Thus we have proved (8) for $\sigma = (+, \ldots, +)$ and $\sigma = (-, \ldots, -)$. To get the proof for $\sigma^j = (\sigma_1^j, \ldots, \sigma_n^j)$ with $\sigma_i^j = +$ if $i \neq j$, and $\sigma_j^j = -1$ $(j = 1, \ldots, n)$, take the mapping

$$\lambda_j : \mathbb{R}^n_+ \ni x \mapsto (x_1, \dots, x_{j-1}, 1/x_j, x_{j+1}, \dots, x_n).$$

Then

$$M(u \circ \lambda_j)(z) = Mu(z_1, \dots, z_{j-1}, -z_j, z_{j+1}, \dots, z_n)$$

= $f(z_1, \dots, z_{j-1}, -z_j, z_{j+1}, \dots, z_n),$
supp $(u \circ \lambda_j) \subset \{x : t_i^- \le x_i \le t_i^+ \text{ for } i \ne j, \ 1/t_i^+ \le x_j \le 1/t_i^-\}.$

Fix arbitrarily $b \in \mathbb{R}^n$, $\varrho \in \mathbb{R}_+$ and j with $1 \leq j \leq n$. Take $\tilde{b} = (b_1, \ldots, b_{j-1}, -b_j, b_{j+1}, \ldots, b_n)$. By Theorem 3,

$$|M(u \circ \lambda_j)(\alpha + i\beta)| \le C \langle \beta \rangle^s (e^{\varrho} t_1^+)^{-\alpha_1} \dots \left(e^{\varrho} \frac{1}{t_j^-}\right)^{-\alpha_j} \dots (e^{\varrho} t_n^+)^{-\alpha_n}$$

for $\alpha \leq \tilde{b}$ and hence

$$|f(\alpha + i\beta)| \le C\langle\beta\rangle^s (e^{\varrho}t_1^+)^{-\alpha_1} \dots (e^{-\varrho}t_j^-)^{-\alpha_j} \dots (e^{\varrho}t_n^+)^{-\alpha_n}$$

for $\alpha_i \leq b_i$ if $i \neq j, -\alpha_j \leq b_j = -b_j$, i.e. (8) holds for σ^j (j = 1, ..., n). The remaining cases of σ are left to the reader.

 Remark 1. Note that in contrast to the classical Paley–Wiener theorem the sufficiency part of Theorem 4 does not require that the function f be entire. Instead we assume holomorphy in two wedges with a common edge and identity of the corresponding boundary values. By the necessity result this gives holomorphy in \mathbb{C}^n as well as estimates in the "missing" wedges, which can be regarded as a variant of the Bochner tube theorem.

Remark 2. By applying the techniques of the theory of Fourier hyperfunctions and analytic functionals one can prove a variant of Theorem 4 with $\langle \beta \rangle^s$ in the estimates (5), (6) and (8) replaced by $e^{\theta |\beta|}$ for some $\theta > 0$. Then the identity (7) should be understood as the equivalence of pertinent boundary values in the sense of Fourier hyperfunctions.

References

- [1] L. Hörmander, *The Analysis of Linear Partial Differential Operators I*, Springer, 1985.
- [2] W. Rudin, Lectures on the Edge of the Wedge Theorem, Amer. Math. Soc., Providence, 1971.
- [3] Z. S z m y d t and B. Z i e m i a n, The Mellin Transformation and Fuchsian Type Partial Differential Equations, Math. Appl. 56, Kluwer, 1992.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-950 WARSZAWA, POLAND

Reçu par la Rédaction le 2.3.1994