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Abstract. Let E be a complex Hausdorff locally convex space such that the strong
dual E′ of E is sequentially complete, let F be a closed linear subspace of E and let U
be a uniformly open subset of E. We denote by Π : E → E/F the canonical quotient
mapping. In §1 we study the factorization of uniformly holomorphic functions through
π. In §2 we study F -quotients of uniform type and introduce the concept of envelope of
uF -holomorphy of a connected uniformly open subset U of E. The main result states
that the pull-back ε∗u(U) of the envelope of uniform holomorphy of Π(U) constructed by
Paques and Zaine [9] is the envelope of uF -holomorphy of U .

Introduction. We deal with the concept of uniform holomorphy (cf.
[6]–[8]) of a holomorphic function f : U → C in the case when U is a
nonvoid uniformly open subset of a complex Hausdorff locally convex space
E. Let F be a closed linear subspace of E, letΠ : E → E/F be the canonical
quotient mapping and let IU be the set of all continuous seminorms α on
E such that U is open in (E,α). Let Hu(U) be the set of all uniformly
holomorphic functions from U into C and let HuF (U) be the set of all g ◦Π
as g ranges over Hu(Π(U)). It is easy to show that HuF ⊂ Hu(U). In §1
we prove that if U is a balanced uniformly open subset of E and F is a
closed linear subspace of (E,α) for each α ∈ IU , then g ◦ Π is uniformly
holomorphic if and only if g is uniformly holomorphic.

The concepts of Riemann domain of uniform type and F -quotient of a
Riemann domain were introduced in [9] and [4] respectively. Given a uni-
formly open subset U of E it is easy to verify that Π(U) is a uniformly open
subset of E/F (cf. Ex. 3, §2). We have been unable to decide if an F -quotient
of a Riemann domain of uniform type is always of uniform type. However,
we give in §2 some non-trivial examples of F -quotients of a Riemann do-
main of uniform type which are of uniform type. In particular, we consider
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(εu(Π(U)), qΠ), the envelope of u-holomorphy of Π(U) constructed in [9]
and its pull-back (ε∗u(U), ϕ∗). We prove that there exists an open mapping
ψ from ε∗u(U) onto εu(Π(U)) such that (εu(Π(U)), qΠ , ψ) is an F -quotient
of uniform type of ε∗u(U) satisfying the following: given g ∈ Hu(Π(U)) there
exists a uniform extension f̃ ∈ Hu(ε∗u(U)) of f = g ◦Π which is defined by
g̃◦ψ where g̃ ∈ Hu(εu(Π(U))) is a uniform extension of g. We also find that
(ε∗u(U), ϕ∗) is maximal in the sense of Definition 11.

We remark that the concept of envelope of F -holomorphy given in [4] of
a connected open subset U of a Banach space E works also when E is an
arbitrary locally convex space. In particular, this paper extends the results of
[4] to locally convex spaces with Hu(U) = H(U) and Hu(Π(U)) = H(π(U)).
This is the case if E is a dual of a separable Fréchet space endowed with the
compact-open topology (cf. [5] and [8]).

Acknowledgements. The authors want to thank J. Ansemil and S.
Ponte for many interesting discussions. Thanks are due also to the support-
ing agencies and to UFRJ and UNICAMP for many facilities.

Notation and terminology. Throughout this paper E is a complex
Hausdorff locally convex space whose strong dual E′ is sequentially com-
plete, F is a closed linear subspace of E and Π : E → E/F is the canonical
quotient mapping. We refer to [2] for the terminology in infinite-dimensional
complex analysis.

Let cs(E) be the set of all continuous seminorms on E. For each α ∈
cs(E), we denote by (E,α) the space E endowed with the topology generated
by α, by Eα the normed space associated with (E,α), by iα : E → Eα the
canonical quotient mapping and by Bα(x, r) the open ball with center x
and radius r in (E,α). Given an open subset U of E we write iα(U) = Uα
and, as usual, H(U) is the vector space of all holomorphic functions from U
into C.

An open subset U of E is said to be uniformly open if there exists
α ∈ cs(E) such that U is open in (E,α). Let IU denote the set of all such
α ∈ cs(E). We remark that IU is a directed subset of cs(E) that generates
the topology of E.

If U is a uniformly open subset of E, a holomorphic function f : U → C is
said to be uniformly holomorphic on U if there exist α ∈ IU and fα ∈ H(Uα)
such that f = fα ◦ iα. We denote by Hu(U) the vector space of all uniformly
holomorphic functions from U into C.

The following well known result will be useful:

Proposition A. If V is an open subset of a locally convex space M ,
MS is the associated Hausdorff space of M , Q : M → MS is the canonical
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mapping and VS = Q(V ), then f ∈ H(V ) if and only if there exists fS ∈
H(VS) such that f = fS ◦Q.

The pair (X,ϕ) is a Riemann domain over E if X is a nonvoid Hausdorff
topological space and ϕ : X → E is a local homeomorphism. Instead of
(X,ϕ) we often write X. Given A ⊆ X, we write A ∼ ϕ(A) to indicate that
A is homeomorphic to ϕ(A) under ϕ/A. A chart in X is a connected open
subset V of X such that ϕ/V : V → ϕ(V ) is a homeomorphism. An atlas
on X is a collection (Vi)i∈I of charts which cover X. We recall that if U is
an open subset of E and iU : U → E is the inclusion mapping, then (U, iU )
is a Riemann domain over E.

A Riemann domain (X,ϕ) over E is said to be a Riemann domain of
uniform type (or, simply, a domain of uniform type) if there exists α ∈ cs(E)
such that for each x ∈ X, there is a neighborhood V (x) of x such that
V (x) ∼ ϕ(V (x)) and ϕ(V (x)) is open in (E,α). Let IX denote the set of
all such α ∈ cs(E). For every α ∈ IX let (X,α) be the set X endowed
with the topology generated by the neighborhoods V that satisfy the above
definition. We denote by Xα the Hausdorff space associated with (X,α),
i.e., Xα = (X,α)/R where R is the equivalence relation on X defined by:
xRy if and only if α(ϕ(x)−ϕ(y)) = 0 for all x, y ∈ X. For each α ∈ IX , let
Iα : X → Xα be the canonical quotient mapping; it is clear that if we define
ϕα : Xα → Eα by ϕα ◦ Iα := iα ◦ϕ, then ϕα is a local homeomorphism and
(Xα, ϕα) is a Riemann domain over Eα.

If (X,ϕ) is a Riemann domain over E and (Y, %) is a Riemann domain
over a Hausdorff locally convex space G, a continuous mapping f : X →
Y is said to be holomorphic if there is an atlas (Vi)i∈I on X such that
% ◦ f ◦ (ϕ/Vi)−1 : ϕ(Vi)→ G is holomorphic for each i ∈ I. We shall denote
by H(X,Y ) the class of all mappings f : X → Y which are holomorphic.
When Y = C we write H(X) instead of H(X; C).

If (X,ϕ) is a domain of uniform type, and G is a Hausdorff locally
convex space, a holomorphic mapping f : X → G is said to be uniformly
holomorphic if for each β ∈ cs(G) there exist α ∈ IX and a holomorphic
mapping fα ∈ H(Xα, Gβ) such that iβ ◦ f = fα ◦ Iα.

For other notations and basic results on uniform holomorphy we refer to
[6] and [9].

1. Factorization of uniformly holomorphic mappings. Let U be a
uniformly open subset of E. For each α ∈ cs(E) define α(x) := inf{α(x+y) :
y ∈ F} for x = Π(x)∈E/F . It is well known that α ∈ cs(E/F ) and the set
{α : α ∈ IU} generates the topology of E/F .

Proposition 1. Let U be a uniformly open subset of E. Then:

(a) Π(U) is uniformly open and α ∈ IΠ(U) for every α ∈ IU .
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(b) If g is a uniformly holomorphic function on Π(U), then f = g ◦Π
is uniformly holomorphic on U .

P r o o f o f (b). Let g ∈ Hu(Π(U)). Since {α : α ∈ IU} generates
the topology of E/F , there exist α ∈ IU and gᾱ ∈ H(Π(U)ᾱ) such that
g = gᾱ ◦ iᾱ where iᾱ : E/F → (E/F )ᾱ is the canonical quotient mapping
and Π(U)ᾱ = iᾱ(Π(U)). If i : E → (E,α) is the identity mapping, Πα :
(E,α) → (E/F, α) is the quotient mapping and kᾱ : (E/F, α) → (E/F )ᾱ
is the canonical quotient mapping, it is clear that kᾱ ◦ Πα ◦ i = iᾱ ◦ Π.
Consequently, f = g ◦Π = gᾱ ◦ iᾱ ◦Π = gᾱ ◦ kᾱ ◦Πα ◦ i and so there exists
f ′α = gᾱ ◦ kᾱ ◦Πα ∈ H(i(U)) such that f = f ′α ◦ i. By Proposition A, there
exists fα ∈ H(Uα) so that f ′α = fα ◦ kα where kα : (E,α) → Eα is the
canonical quotient mapping. So, f = f ′α ◦ i = fα ◦ kα ◦ i = fα ◦ iα and we
have f ∈ Hu(U).

The next result gives us a reciprocal for Proposition 1(b) when F is a
closed linear subspace of (E,α) for each α ∈ IU .

Proposition 2. Let U be a balanced uniformly open subset of E and let
F be a closed linear subspace of (E,α) for each α ∈ IU . If f is uniformly
holomorphic on U and f = g◦Π for some g ∈ H(Π(U)), then g is uniformly
holomorphic on Π(U).

P r o o f. We define kα, i, Πα, kᾱ and iᾱ as in the proof of Proposition 1.
By hypothesis there exist α ∈ IU and fα ∈ H(Uα) such that f = fα ◦ iα. If
f ′α ∈ H(i(U)) is defined by f ′α = fα ◦ kα it follows that f = fα ◦ iα =
fα ◦ kα ◦ i = f ′α ◦ i. By Theorem 2.3 of [1], f = g ◦ Π if and only if
df(x)/F = 0 for all x ∈ U . Consequently, 0 = df(x)(y) = df ′α(i(x))(i(y)) for
all y ∈ F , i.e., df ′α(i(x))/F = 0 or f ′α factors through Πα(i(U)). So there
exists g′ ∈ H(Πα(i(U))) such that f ′α = g′ ◦Πα. If k : E/F → (E/F, α) is
the identity mapping, then g = g′ ◦ k on Π(U). Indeed, for every x ∈ U ,

g(Π(x)) = f(x) = (f ′α ◦ i)(x) = (g′ ◦Πα ◦ i)(x) = (g′ ◦ k)(Π(x)).

Since kᾱ ◦Πα ◦ i = iᾱ ◦Π, Πα(i(U)) ⊆ (E/F, α) and g′ ∈ H(Πα(i(U)), by
Proposition A, there exists g′ᾱ ∈ H(iᾱ(Π(U))) such that g′ = g′ᾱ ◦ kᾱ on
Πα(i(U)) = k(Π(U)) and it follows that for every Π(x) ∈ Π(U),

g(Π(x)) = (g′ ◦ k)(Π(x)) = (g′ᾱ ◦ kᾱ ◦ k)(Π(x)) = g′ᾱ ◦ iᾱ(Π(x)).

So, there exist α ∈ IΠ(U) and g′ᾱ ∈ H(Π(U)ᾱ) such that g = g′ᾱ ◦ iᾱ on
Π(U), i.e., g ∈ Hu(Π(U)).

2. Uniformly holomorphic continuation. Let (X,ϕ) be a Riemann
domain over E. We say that (XF , ϕF , ψ) is an F -quotient of X if (XF , ϕF )
is a Riemann domain over E/F and ψ is a continuous open mapping from
X onto XF such that ϕF ◦ ψ = Π ◦ ϕ. The concept of F -quotient of a
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Riemann domain was introduced and studied in [4], where several examples
are presented. Here we give some examples of Riemann domains of uniform
type X over E which admit an F -quotient (XF , ϕF , ψ) such that (XF , ϕF )
is also of uniform type. In this case we will say that (XF , ϕF , ψ) is an
F -quotient of uniform type of X.

Example 3. Let U be a uniformly open subset of E, and iU : U → E
and iΠ : Π(U)→ E/F the inclusion mappings. Then Π(U) is a uniformly
open subset of E/F (cf. Proposition 1(a)) and it is clear that (Π(U), iΠ , Π)
is an F -quotient of (U, iU ) which is of uniform type.

Example 4. Let (X,ϕ) be a Riemann domain of uniform type over
E, let R be the equivalence relation defined on X by xRy if and only
if ϕ(x) − ϕ(y) ∈ F for x, y ∈ X and denote by X/R the quotient set
by this equivalence, endowed with the quotient topology associated with
the mapping ψ from X onto X/R defined by ψ(x) := x (where x de-
notes the equivalence class of x). We can define ϕF : X/R → E/F by
ϕF (x) := Π(ϕ(x)) for x ∈ X/R and it is easy to see that (X/R,ϕF ) is a
Riemann domain over E/F . By hypothesis, there is α ∈ cs(E) such that,
for each x ∈ X, there exist a neighborhood V (x) of x and an r > 0 sat-
isfying V (x) ∼ ϕ(V (x)) = Bα(ϕ(x), r). Since ϕF ◦ ψ = Π ◦ ϕ, we have
ϕF ◦ ψ(V (x)) = Π ◦ ϕ(V (x)) = Π(Bα(ϕ(x), r)) = Bᾱ(ϕF ◦ ψ(x), r). Since
ψ(V (x)) is a neighborhood of ψ(x) and ϕF is injective on ψ(V (x)), it is clear
that (X/R,ϕF ) is of uniform type and so (X/R,ϕF , ψ) is an F -quotient of
uniform type of X.

Let (X,ϕ) and (Y, %) be two Riemann domains over E. A continuous
mapping j : X → Y is said to be a morphism if %◦j = ϕ. The concept of en-
velope of uniform holomorphy of a Riemann domain of uniform type was in-
troduced and studied in [9]. We recall that if U is a connected uniformly open
subset of E and (εu(U), q) is constructed as in [9], the morphism j′ : U →
εu(U) defined by j′(u) := û, where û(f) := f(u) for f ∈Hu(U), is the enve-
lope of uniform holomorphy of U . Analogously (εu(Π(U)), qΠ) is constructed
and the morphism jΠ : Π(U) → εu(Π(U)) defined by jΠ(Π(u)) := Π̂(u),
where Π̂(u)(g) := g(Π(u)) for g ∈ Hu(Π(U)), is the envelope of uniform
holomorphy of Π(U). Following the idea used in the proof of Propositions 6
and 7 and Corollary 8 of [4], we get a new construction of (εu(Π(U)), qΠ) and
an open mapping ψ : εu(U)→ εu(Π(U)) such that ψ(εu(U)) is a connected
topological subspace of εu(Π(U)). We denote also by qΠ the restriction of
qΠ to ψ(εu(U)).

Example 5. By using the definition of the topology of εu(Π(U)), it is
easy to verify that (ψ(εu(U)), qΠ) is a Riemann domain of uniform type over
E/F . So, (ψ(εu(U)), qΠ , ψ) is an F -quotient of (εu(U), q) of uniform type.
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The pull-back of (εu(Π(U)), qΠ) is, by definition, the Riemann domain
(ε∗u(U), ϕ∗) over E where ε∗u(U) := {(H, a) ∈ εu(Π(U)) × E : qΠ(H) =
Π(a)} endowed with the topology induced on ε∗u(U) by the product topology
on εu(Π(U))× E and ϕ∗(H, a) := a for (H, a) ∈ ε∗u(U) (cf. [3] and [10]).

Example 6. Let ψ : ε∗u(U)→ εu(Π(U)) be defined by ψ(H, a) := H for
(H, a)∈ε∗u(U). We claim that the Riemann domain (ε∗u(U), ϕ∗) is of uniform
type and (εu(Π(u)), qΠ , ψ) is an F -quotient of uniform type of (ε∗u(U), ϕ∗).

Let (H, a) ∈ ε∗u(U). By hypothesis there exist α ∈ cs(E/F ), r > 0
and a basic neighborhood Nᾱ(H, r) = {Hb̄ : b ∈ Bᾱ(0, r)} of H such that
Nᾱ(H, r) ∼ Bᾱ(qΠ(H), r). We recall that Hb̄(g) :=

∑
(1/n!)H(d̂n

b̄
g) for all

g ∈ Hu(Π(U)) and qΠ(Hb̄) = qΠ(H) + b (cf. [9]). Let

V := (Nᾱ(H, r)×Bα(a, r)) ∩ ε∗u(U).

It is clear that V is a neighborhood of (H, a).
We claim ϕ∗/V is a homeomorphism between V and Bα(ϕ∗(H, a), r).

The continuity of ϕ∗/V is clear. Let (Hb̄1 , c) 6= (Hb̄2 , d) in V . If c = d, Hb̄1

must be different from Hb̄2 and consequently b1 6= b2 and Π(c) = qΠ(Hb̄1) =
qΠ(H) + b1 6= qΠ(H) + b2 = qΠ(Hb̄2) = Π(d), and we have a contradiction.
So, we must have c 6= d and it is clear that ϕ∗(Hb̄1 , c) 6= ϕ∗(Hb̄2 , d). To prove
that ϕ∗/V is onto Bα(a, r) it is enough to show that for each c ∈ Bα(a, r)
there exists b ∈ Bᾱ(0, r) satisfying qΠ(Hb̄) = Π(c). Take b = Π(c− a) and
it is done. This completes the proof that (ε∗u(U), ϕ∗) is a Riemann domain
of uniform type.

Now, we show that (εu(Π(U)), qΠ , ψ) is an F -quotient of (ε∗u(U), ϕ∗) of
uniform type. It is clear from the definitions that ψ is a continuous mapping
from ε∗u(U) onto εu(Π(U)) such that Π ◦ ϕ∗ = qΠ ◦ ψ. So, all we have to
prove is that ψ is open. It is enough to show that given any (H, a) ∈ ε∗u(U),
for every basic neighborhood Nᾱ(H, r) of H, we have

ψ([Nᾱ(H, r)×Bα(a, r)] ∩ ε∗u(U)) = Nᾱ(H, r).

Let K ∈ Nᾱ(H, r), i.e., K = Hb̄ for some b ∈ Bᾱ(0, r). Since Π(Bα(0, r)) =
Bᾱ(0, r), there exists b1 ∈ Bα(0, r) such that Π(b1) = b. It is clear that
(Hb̄, a+b1) ∈ Nᾱ(H, r)×Bα(a, r) and since qΠ(Hb̄) = Π(a)+b = Π(a+b1)
implies (Hb̄, a+ b1) ∈ ε∗u(U) we get

Nᾱ(H, r) ⊆ ψ([Nᾱ(H, r)×Bα(a, r)] ∩ ε∗u(U)).

The other inclusion is trivial.

Let (XF , ϕF , ψ) be an F -quotient of uniform type of X and take any
α ∈ IXF

. We denote by XFᾱ the space (XF )ᾱ and by ϕFᾱ the local homeo-
morphism ϕFᾱ : XFᾱ → (E/F )ᾱ. If Iᾱ : XF → XFᾱ is the canonical



Factorization of uniformly holomorphic functions 7

quotient mapping, let xᾱ := Iᾱ(x) for all x ∈ XF , i.e., xᾱ = {y ∈ XF :
α(ϕF (x)− ϕF (y)) = 0}. We recall that ϕFᾱ(xᾱ) := ϕF (x) + α−1(0) for all
x ∈ XF and (XFᾱ, ϕFᾱ) is a Riemann domain over (E/F )ᾱ.

Lemma 7. Let U be a uniformly open subset of E. Suppose that (X,ϕ) is
a Riemann domain of uniform type over E and (XF , ϕF , ψ) is an F -quotient
of uniform type of X. Then:

(a) With every α ∈ IU and β ∈ IXF
we can associate γ ∈ IU ∩ IX such

that γ ≥ α, γ ≥ β, and so γ ∈ IXF
.

(b) Given γ, β ∈ IXF
so that β ≤ γ, if g̃ = g̃β̄ ◦Iβ̄ for some g̃β̄ ∈ H(XFβ̄)

then there exists g̃γ̄ ∈ H(XF γ̄) satisfying g̃ = g̃γ̄ ◦ Iγ̄ .

P r o o f. (a) Let α ∈ IU and β ∈ IXF
. Since X is of uniform type we

can choose δ ∈ IX 6= ∅. As {λ : λ ∈ IU} generates the topology of E/F
there exists α0 ∈ IU such that β ≤ α0. But since IU generates the topology
of E there exists γ ∈ IU such that δ, α, α0 ≤ γ. It is clear that γ ≥ α, β,
γ ∈ IU ∩ IX and γ ∈ IXF

.
(b) If we define iγ̄β̄ : (E/F )γ̄ → (E/F )β̄ by iγ̄β̄ ◦ iγ̄ := iβ̄ , it is easy to

verify that iγ̄β̄ is a well defined continuous linear mapping from (E/F )γ̄ onto
(E/F )β̄ . Consequently, it is a holomorphic mapping. Analogously we define
Iγ̄β̄ : XF γ̄ → XFβ̄ by Iγ̄β̄(xγ̄) := xβ̄ for xγ̄ ∈ XF γ̄ . As γ(ϕF (x)−ϕF (y)) = 0
implies β(ϕF (x) − ϕF (y)) = 0, it is easy to see that Iγ̄β̄ is well defined. It
is also clear that Iγ̄β̄ is continuous and for every chart V of XF γ̄ we have
iγ̄β̄ = ϕFβ̄ ◦ Iγ̄β̄ ◦ (ϕF γ̄/V )−1. Consequently, Iγ̄β̄ ∈ H(XF γ̄ , XFβ̄). Now if
g̃ = g̃β̄ ◦ Iβ̄ with g̃β̄ ∈ H(XFβ̄) it is enough to define g̃γ̄ : XF γ̄ → C by
g̃γ̄ := g̃β̄ ◦ Iγ̄β̄ .

If (Y, %) is a Riemann domain of uniform type over E/F , then a morphism
j : Π(U) → Y is said to be a uniform extension of Π(U) if for each g ∈
Hu(Π(U)) there is a unique g̃ ∈ Hu(Y ) such that g̃ ◦ j = g. In this case g̃ is
said to be a uniform extension of g to Y .

Definition 8. Let (X,ϕ) be a Riemann domain of uniform type over
E. A morphism γ : U → X is said to be a uF -extension of U (uniform
F -extension of U) if there exist an F -quotient of uniform type (XF , ϕF , ψ)
of X and a morphism γΠ : Π(U)→ XF such that:

(a) ψ ◦ γ = γΠ ◦Π.
(b) γΠ is a uniform extension of Π(U).

R e m a r k 9. In the above case, given g ∈ Hu(Π(U)) there exists a
uniform extension f̃ ∈ Hu(X) of f = g◦Π which is defined by f̃ = g̃◦ψ where
g̃ ∈ Hu(XF ) is a uniform extension of g. Indeed, since g ∈ Hu(Π(U)), there
exist α ∈ IU and gᾱ ∈ H(Π(U)ᾱ) such that g = gᾱ ◦ iᾱ (where iᾱ, Π(U)ᾱ
and gᾱ are defined as in the proof of Proposition 1(b)). If g̃ ∈ Hu(XF ) is the
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uniform extension of g to XF (whose existence is proved in [9]), then there
exist β ∈ IXF

and g̃β̄ ∈ H(XFβ̄) such that g̃ = g̃β̄ ◦ Iβ̄ . By Lemma 7 there
exists γ ∈ IU ∩ IX so that γ ≥ α and γ ≥ β and there exists g̃γ̄ ∈ H(XF γ̄)
satisfying g̃ = g̃γ̄ ◦ Iγ̄ . Let f̃ := g̃ ◦ ψ. It is clear that f̃ is continuous.

We claim that there exists a holomorphic mapping ψγ̄ : Xγ → XF γ̄ such
that ψγ̄ ◦ Iγ = Iγ̄ ◦ ψ (recall that Iγ : X → Xγ is the canonical quotient
mapping). If this is true, there exists f̃γ := g̃γ̄ ◦ ψγ̄ such that f̃γ ∈ H(Xγ)
and f̃γ ◦ Iγ = g̃γ̄ ◦ ψγ̄ ◦ Iγ = g̃γ̄ ◦ Iγ̄ ◦ ψ = g̃ ◦ ψ = f̃ and consequently
f̃ ∈ Hu(X). So, it is clear that f̃ = g̃◦ψ is a uniform extension of f = g◦Π.

Now we are going to prove the claim. Let ψγ̄(Iγ(x)) := Iγ̄(ψ(x)) for
x ∈ X. It is clear from the definition that ψγ̄(Xγ) ⊆ XF γ̄ . Given x, y ∈ X
such that Iγ(x) = Iγ(y), we have γ(ϕ(x)−ϕ(y)) = 0. Let ξ = ϕ(x)−ϕ(y) ∈
γ−1(0). From Π ◦ ϕ = ϕF ◦ ψ and γ(Π(ξ)) = 0 we get

γ[ϕF (ψ(x))− ϕF (ψ(y))] = γ[Π(ϕ(x)− ϕ(y))] = γ(Π(ξ)) = 0

and so Iγ̄(ψ(x)) = Iγ̄(ψ(y)), i.e., ψγ̄(Iγ(x)) = ψγ̄(Iγ(y)). To prove the con-
tinuity of ψγ̄ we take xγ = Iγ(x) ∈ Xγ and an arbitrary open neighborhood
Vγ̄ of ψγ̄(xγ). We recall that γ ∈ IXF

. So there exist r1 > 0 and an
open neighborhood V r1γ̄ of ψγ̄(xγ) such that V r1γ̄ ∼ Bγ̄(ϕF γ̄ ◦ ψγ̄(xγ), r1)
and V r1γ̄ ⊆ Vγ̄ ; it is clear that for all s ≤ r1 there exists an open neighbor-
hood V sγ̄ of ψγ̄(xγ) such that V sγ̄ ⊆ V r1γ̄ and V sγ̄ ∼ Bγ̄(ϕF γ̄ ◦ ψγ̄(xγ), s).
Since ψ(x) ∈ XF there exist r2 > 0 and an open neighborhood Ur2γ̄ of
ψ(x) such that Ur2γ̄ ∼ Bγ̄(ϕF (ψ(x)), r2); for all s ≤ r2 there is an open
neighborhood Usγ̄ of ψ(x) so that Usγ̄ ⊆ Ur2γ̄ and Usγ̄ ∼ Bγ̄(ϕF (ψ(x)), s).
Let r = min{r1, r2}. Then Urγ̄ is the open neighborhood of ψ(x) such that
Urγ̄ ∼ Bγ̄(ϕF (ψ(x)), r)). Now,

iγ̄ [Bγ̄(ϕF (ψ(x)), r)] = Bγ̄(iγ̄ ◦ ϕF (ψ(x)), r) = Bγ̄(ϕF γ̄(Iγ̄ ◦ ψ(x)), r)
= Bγ̄(ϕF γ̄(ψγ̄(xγ)), r)

implies Iγ̄(Urγ̄ ) = V rγ̄ . On the other hand, given Bγ(ϕ(x), r) it is clear that
Π(Bγ(ϕ(x), r)) = Bγ̄(Π(ϕ(x)), r) = Bγ̄(ϕF (ψ(x)), r). Since γ ∈ IX there
are r0 ≤ r and an open neighborhood W of x in X such that ϕ(W ) ∼
Bγ(ϕ(x), r0). As Π ◦ ϕ = ϕF ◦ ψ it follows that

ψ(W ) = (ϕF /Urγ̄ )−1 ◦Π ◦ ϕ(W ) = (ϕF /Urγ̄ )−1(Bγ̄(ϕF (ψ(x)), r0))

⊆ (ϕF /Urγ̄ )−1(Bγ̄(ϕF (ψ(x)), r)) = Urγ̄ .

So Iγ(W ) is an open subset of Xγ containing Iγ(x) such that ψγ̄(Iγ(W )) =
Iγ̄(ψ(W )) ⊆ V rγ̄ ⊆ Vγ̄ and we have the continuity of ψγ̄ .

Finally, ψγ̄ is holomorphic if there exists a holomorphic mapping Πγ̄ :
Eγ → (E/F )γ̄ satisfying Πγ̄ = ϕF γ̄ ◦ ψγ̄ ◦ (ϕγ/V )−1 for every chart V of
Xγ . Define Πγ̄(iγ(x)) := iγ̄(Π(x)) ∈ (E/F )γ̄ for x ∈ X. It is clear that



Factorization of uniformly holomorphic functions 9

Πγ̄ is a well defined mapping from Eγ onto (E/F )γ̄ . The linearity of Πγ̄

follows from the linearity of iγ , iγ̄ and Π. Now, for all iγ(x) ∈ Eγ we have
γ[Πγ̄(iγ(x))] = γ[iγ̄(Π(x))] = γ(Π(x)) ≤ γ(x) = γ(iγ(x)) and consequently
Πγ̄ is continuous. (We remark that we denote by γ the norm in Eγ associated
with γ since inf{γ(x+ y) : y∈γ−1(0)} = γ(x); analogously for γ.) Since Πγ̄

is a continuous linear mapping, it is holomorphic. It is easy to verify that
Πγ̄ ◦ ϕγ = ϕF γ̄ ◦ ψγ̄ and this completes the proof.

Example 10. The morphism j′ : U → εu(U) defined by j′(u) := û
is a uF -extension of U . Indeed, in Example 5 we define (ψ(εu(U)), qΠ , ψ)
and prove that it is an F -quotient of uniform type of (εu(U), q) such that
ψ(εu(U)) ⊆ εu(Π(U)). Since jΠ : Π(U)→ εu(Π(U)) is a uniform extension
of Π(U) such that jΠ(Π(U)) ⊆ ψ(εu(U)), it is easy to show that jΠ is a uF -
extension of Π(U). From the definitions it is also clear that ψ ◦ j′ = jΠ ◦Π.

Definition 11. Let (X,ϕ) be a Riemann domain of uniform type over
E. A morphism γ : U → X is said to be an envelope of uF -holomorphy of
U if:

(a) γ is a uF -extension of U .
(b) If µ : U → Z is a uF -extension of U , then there is a morphism

ν : Z → X such that ν ◦ µ = γ.

It is clear that if γ : U → X and γ′ : U → X ′ are two envelopes of
uF -holomorphy of U then the Riemann domains X and X ′ are isomorphic.
In other words, the envelope of uF -holomorphy of U , if it exists, is unique
up to isomorphism.

Theorem 12. Let U be a connected uniformly open subset of E and
let (ε∗u(U), ϕ∗) be the pull-back of (εu(Π(U)), qΠ). Then the mapping γ :
U → ε∗u(U) defined by γ(u) := (Π̂(u), u) for u ∈ U is an envelope of uF -
holomorphy of U .

P r o o f. It is clear that ϕ∗ ◦ γ = iU where iU : U → E is the inclusion.
So, γ is a morphism if it is continuous. Given u ∈ U , take a neighborhood of
(Π̂(u), u) in ε∗u(U) of the form (V ×W )∩ ε∗u(U) where V is a neighborhood
of Π̂(u) in εu(Π(U)) and W is a neighborhood of u in E. Without loss of
generality, we can suppose W ⊂ U . Since jΠ : Π(U) → εu(Π(U)) is an
extension of Π(U) there is an open set V1 ⊂ Π(U) such that Π(u) ∈ V1

and jΠ(V1) ⊆ V . Let V2 := W ∩Π−1(V1). It is clear that for every a ∈ V2

we have γ(a) ∈ (V ×W ) ∩ ε∗u(U) and this gives the continuity of γ in u.
From Example 6, (ε∗u(U), ϕ∗) is a Riemann domain of uniform type over E
and (εu(Π(U)), qΠ , ψ) is an F -quotient of uniform type of (ε∗u(U), ϕ∗). Since
jΠ : Π(U)→ εu(Π(U)) is a uniform extension of Π(U) (cf. [9]) and clearly
ψ ◦ γ = jΠ ◦Π, it follows that (ε∗u(U), ϕ∗) is a uF -extension of U .
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Now, if (Z, %) is a Riemann domain of uniform type over E and µ : U→Z
is a uF -extension of U there are an F -quotient of uniform type (ZF , %F , ψF )
of Z and µΠ : Π(U)→ ZF such that ψF ◦ µ = µΠ ◦Π and µΠ is a uniform
extension of Π(U). From the maximality of εu(Π(U)) (cf. [9]) there is a
morphism µF : ZF→εu(Π(U)) such that µF ◦ µΠ = jΠ . We define ν : Z→
ε∗u(U) by ν(z) := ((µF ◦ψF )(z), %(z)). Since (qΠ ◦µF ◦ψF )(z) = Π ◦%(z), we
have ν(z) ∈ ε∗u(U) for every z ∈ Z. It is easy to verify that ν is a morphism
and ν ◦ µ = γ.

R e m a r k 13. We have the following generalization: Let G be a complete
Hausdorff locally convex space and f ∈ Hu(U,G) such that f = g ◦Π where
g ∈ Hu(Π(U), G). From Theorem 2.5 of [9], there exists a uniform extension
g̃ : εu(Π(U))→ G of g. If f̃ := g̃◦ψ, where ψ : ε∗u(U)→ εu(Π(U)) is defined
as in Example 6, then a small change in the argument used in Remark 9
shows that f̃ is a uniform extension of f .

Finally, we establish the relation between ε∗u(U) and εu(U).

R e m a r k 14. There exists a morphism δ : εu(U) → ε∗u(U) satisfying
δ ◦ j′ = γ (where γ is defined in Theorem 12 and j′ in Example 10).

P r o o f. From Example 10 we know that j′ is a uF -extension of U . Since,
by Theorem 12, γ : U → ε∗u(U) is an envelope of uF -holomorphy of U , the
existence of such δ follows from the maximality of ε∗u(U).

References

[1] R. Aron, L. Moraes and R. Ryan, Factorization of holomorphic mappings in
infinite dimensions, Math. Ann. 277 (1987), 617–628.

[2] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud.
57, North-Holland, Amsterdam, 1981.
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