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On concentrated probabilities

by Wojciech Bartoszek (Pretoria)

Abstract. Let G be a locally compact Polish group with an invariant metric. We
provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and
a sequence gn ∈ G such that µ∗n(gnA) ≡ 1 for all n. It is noticed that such measures µ
form a meager subset of all probabilities on G in the weak measure topology. If for some k
the convolution power µ∗k has nontrivial absolutely continuous component then a similar
characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff
topological group G.

1. Introduction. Let G be a locally compact Hausdorff group. For a
probability (Radon) measure µ on G the question under what conditions
on µ,

(∗) lim
n→∞

sup
g∈G

µ∗n(gA) = 0 (A compact)

holds was raised by K. H. Hofmann and A. Mukherjea in 1981 (see [HM]). If
G is Abelian the situation is clear since 1984 when Y. Derriennic and M. Lin
(see [DL1]) proved the following:

If G is a commutative, locally compact, noncompact topological group,
then (∗) holds if and only if there is no compact subgroup H ⊆ G such that
for some g ∈ G we have µ(gH) = 1.

In 1991 similar conditions were found for all countable groups (see [B2],
[B3]). For “continuous” noncommutative groups such conditions are not
provided yet. In [DL2] only sufficient conditions for (∗) are shown.

The aim of this paper is to extend some results of [B2], [B3], [DL1] and
[DL2] to a class of groups wider than Abelian or discrete groups. A sugges-
tion it is possible appears for instance in [B1] where it is pointed out that
whenever left and right uniform structures on a noncompact group G are
equivalent, then (∗) holds for any adapted and strictly aperiodic probability
measure µ on G (for definitions, see below). Clearly left and right uniform
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structures are equivalent for any Abelian or discrete group G. In Sections 3
and 4 we will consider metrizable locally compact groups. For that class we
fully describe the set of measures satisfying (∗) as well as determine its Baire
category.

In the last Section 5 we discuss the convergence (∗) with the additional
assumption that µ is spread out. In this case it is sufficient to consider
unimodular groups. We establish necessary and sufficient conditions for this
convergence in terms of properties of the support of µ.

2. Preliminaries. In this part of the paper we recall definitions, in-
troduce notations, and quote necessary results concerning asymptotic be-
haviour of iterates of convolution operators. Most of them can be found in
[DL2], but for the convenience of the reader they are collected here.

G always denotes a topological Hausdorff group which is at least locally
compact and σ-compact. By e we denote its neutral element. The Abelian
case is easy and known, thus our study is of interest for noncommutative
groups. We may always assume that the group G is noncompact (obvi-
ously on a compact group each probability measure is concentrated). If G
is metrizable, the metric is denoted by d. We fix a right Haar measure λ
on the σ-algebra B of all Borel subsets of G. All measures considered in
this paper are Borel and regular (Radon). The (AL) Banach lattice of all
bounded real signed measures on (G,B) is denoted by M(G). The convex
subset of all probability measures on G is denoted by P (G). If ν1, ν2 ∈M(G)
then ν1 ∗ ν2 stands for their convolution. The support S(µ) of a measure
µ ∈ P (G) is the smallest closed set F such that µ(F ) = 1. It is well known
that if ν1, ν2 ∈ P (G) then ν1 ∗ ν2 ∈ P (G) and S(ν1 ∗ ν2) = S(ν1)S(ν2). We
denote by µ̌ the symmetric reflection of a measure µ (i.e. µ̌(A) = µ(A−1)
for all A ∈ B). Clearly S(µ̌) = S(µ)−1.

There are two topologies on P (G) important for us. The first one is the
so-called weak measure topology , and is introduced by its base sets:

(1) U(µ, f1, . . . , fk, ε1, . . . , εk)

=
{
ν ∈ P (G) :

∣∣∣ ∫
G

fj dν −
∫
G

fj dµ
∣∣∣ < εj , j = 1, . . . , k

}
,

where f1, . . . , fk are bounded continuous functions and ε1, . . . , εk are posi-
tive numbers. It is well known that P (G) is a Polish space for this topology
if and only if G is a Polish group. The second topology is the so-called
vague topology and its base sets are described by (1) but with the restric-
tion that the functions f1, . . . , fk are compactly supported. Similarly we
introduce these two topologies in the closed, convex set M≤1(G) = {ν : ν ≥
0 and ν(G) ≤ 1}. Let us recall that M≤1(G) with the vague topology is a
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compact Hausdorff space and (P (G), ∗) with the weak measure topology is
a topological semigroup (see [H], Theorem 1.2.2). More details concerning
these topologies can be found in [H] and [P].

The average operator Pµ associated with a given measure µ ∈ M(G) is
defined as the convolution operator Pµf(g) =

∫
G
f(gt) dµ(t). If µ ∈ P (G)

then this operator is a positive linear contraction on the Banach lattice
C0(G) of all continuous functions vanishing at infinity with the supremum
norm ‖ · ‖∞ as well as on all (Lp(λ), ‖ · ‖p) spaces. The latter easily follows
from the fact that the mapping Lp(λ) 3 f(·) → f(·t) = ft(·) ∈ Lp(λ) is
an invertible linear isometry for any fixed t ∈ G (by right invariance of λ).
We also notice that for p = 2 the adjoint operator to Pµ is exactly Pµ̌. By
standard computations, the nth iterate of Pµ is the average operator Pµ∗n

corresponding to the nth fold convolution of µ. The family of all convolu-
tion operators {Pµ : µ ∈ P (G)} ⊂ L(Lp(λ)) is denoted byMp(G). It is well
known thatM2(G), with the strong operator and weak operator topologies
inherited from L(L2(λ)), is homeomorphic to P (G) with the weak measure
topology (or the vague topology). The set M≤1

2 (G) = {Pµ : µ ∈ M≤1(G)}
equipped with the weak operator topology (inherited from L(L2(λ))) and
M≤1(G) with the vague topology are homeomorphic. The proofs of these
two facts can be found in [H] (Lemma 6.1.23, p. 422).

For a while let us assume that the topology of G is metrizable by some
metric d. While a left (or right) invariant metric does always exist it is
not necessarily so for an invariant metric. We say that a metric d on G is
invariant if for any g, g1, g2 ∈ G we have

d(g1, g2) = d(gg1, gg2) = d(g1g, g2g).

It is well known (see [HR], p. 109) that if (G, d) is a metric group then
there exists an invariant metric if and only if for any xn ∈ G such that
limn→∞ d(xn, e) = 0 we have limn→∞ supg∈G d(gxng−1, e) = 0 (the left and
right uniform structures are equivalent).

A set B ⊆ G is called ε-dense in A ⊆ G if for every g ∈ A there exists
y ∈ B such that d(g, y) ≤ ε . For a fixed set A ⊆ G the smallest m such that
there exists a finite set {y1, . . . , ym} ⊆ A which is ε-dense in A is denoted by
N(A, ε) . If no such m exists we write N(A, ε) =∞. The largest l such that
there exists a finite set {y1, . . . , yl} ⊆ A with d(yj , yi) ≥ ε, j 6= i, is denoted
by L(A, ε). ClearlyN(A, ε) ≤ L(A, ε). ObviouslyN(A, ε) = N(ϕ(A), ε) and
L(A, ε) = L(ϕ(A), ε) for every invertible isometry ϕ on (G, d). By K(g0, r)
where r ≥ 0 we denote the open ball {g ∈ G : d(g0, g) < r}, and K(g0, r)
stands for the closed ball {g ∈ G : d(g0, g) ≤ r}.

The distance from a point g ∈ G to a nonempty set A ⊆ G is denoted
by d(g,A) while dist(A,B) stands for the Hausdorff distance. If A ⊆ G then
K(A, r) denotes the generalized closed ball {g ∈ G : d(g,A) ≤ r}.
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We notice that if the metric d is invariant then for all A1, A2 ⊆ G and
ε > 0 we have

(2) A1K(A2, ε) ⊆ K(A1A2, ε) and K(A2, ε)A1 ⊆ K(A2A1, ε).

Definition 1. The concentration function of a probability measure µ
on G is the set function kµ defined as

kµ(A) = sup
g∈G

µ(gA) where A ∈ B.

Definition 2. A probability measure µ on G such that

(3) lim
n→∞

kµ∗n(A) = 0 for all compact A ⊆ G

is called scattered . If µ and µ̌ are both scattered we say that µ is symmet-
rically scattered (we briefly write s.scattered).

It is proved in [DL2] that µ is scattered if and only if limn→∞ ‖Pnµ f‖2 = 0
for all f ∈ L2(λ).

Definition 3. A probability measure µ on G is called concentrated if

(4) there exist a compact set A ⊂ G and a sequence gn ∈ G such that
µ∗n(gnA) ≡ 1.

If µ and µ̌ are concentrated then µ is called symmetrically concentrated
(briefly, s.concentrated).

For Abelian or countable groups any nonscattered measure is s.concentra-
ted (see [DL1] and [B2]). Moreover, the compact set A in (4) can be taken
to be a compact subgroup of G and gn ∈ S(µ∗n). We recall (see [C]) that if
a measure µ is not scattered then for every 0 < ε < 1 there exist a compact
set A ⊂ G and a sequence gn ∈ G such that µ∗n(gnA) ≥ 1− ε for all n. In
particular, for a nonscattered probability measure µ the sequence {µ∗n}n∈N
is shift compact.

Definition 4. A probability measure µ on a group G is called

• adapted if the closed subgroup G(µ) generated by the support S(µ)
is G,
• irreducible if the closed semigroup S(µ) generated S(µ) is G,
• strictly aperiodic if the closed normal subgroup H(µ) a coset of which

contains S(µ) is G,
• spread out if µ∗n is not orthogonal to λ for some n.

It was proved in [DL2] that any adapted, strictly aperiodic, spread out
probability measure on G is scattered (actually s.scattered). However, as
shown in [B2], there are s.scattered probabilities which are not strictly ape-
riodic. In this paper we follow some ideas from [B2], so we adopt the follow-
ing:



Concentrated probabilities 29

Definition 5. For a probability measure µ on G the smallest closed
subgroup H ⊆ G such that for any g ∈ S(µ),

(5) gH = Hg and S(µ) ⊆ gH,

is denoted by h(µ).

The subgroups H(µ) and h(µ) may be different if µ is not adapted.
However, for adapted µ they coincide and are described in [DL2] (Proposi-
tion 1.1) as the closed subgroup generated by

⋃∞
n=1(S(µ∗n ∗ µ̌∗n) ∪ S(µ̌∗n ∗

µ∗n)).

3. Residuality of s.scattered measures. In this section we assume
that G is a locally compact second countable topological group (therefore a
Polish metric space). We study the set Pscat(G) of all scattered probabilities
on G. We show that a typical scattered (s.scattered) probability measure
is not spread out. This means that the class of s.scattered probabilities
described by Derriennic and Lin (in [DL2], Theorem 3.5), however large
(variation norm dense in P (G)), is rather small from the category point of
view (meager in the weak measure topology).

We begin with the remark that Pscat(G) is a Gδ subset of P (G) for the
weak measure topology. First notice that we have the following representa-
tion:

(6) Pscat(G) =
∞⋂
j=1

∞⋂
m=1

∞⋂
N=1

⋃
n≥N

{µ ∈ P (G) : ‖Pnµ fj‖2 < 1/m}

where {fj}∞j=1 is a ‖ · ‖2 dense subset of L2(λ). By the relations mentioned
above between the topologies on P (G) and M2(G), the set Pscat(G) is a
weak Gδ subset of P (G). Since the mapping P (G) 3 µ → µ̌ ∈ P (G) is
a homeomorphism in the weak measure topology, the set Ps.scat(G) of all
s.scattered probabilities on G is again a Gδ set as the intersection of two
weak Gδ sets.

Now, let µ0 ∈ P (G) be absolutely continuous with respect to λ, and
S(µ0) = G. Clearly such a µ0 exists and by [DL2] it is s.scattered as are
all convex combinations (1 − ε)ν + εµ0 where 0 < ε ≤ 1 and ν ∈ P (G).
So for any locally compact second countable group G the set Ps.scat(G) is
a norm variation dense and weak Gδ subset of P (G). In particular, it is
residual. The following result shows that spread out s.scattered measures
for “continuous” groups G are meager in P (G), and also in Ps.scat(G).

Proposition 1. Let G be a nondiscrete locally compact second countable
topological group. Then the set of all s.scattered non-spread out probability
measures µ on G contains a weak dense Gδ subset of P (G).
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P r o o f. Let G0 be a countable dense subgroup of G. For any natural
m there exists an open set Um such that λ(Um) < 1/m and G0 ⊂ Um. We
may assume that the sequence Um is decreasing. The convolution operation
∗ is continuous for the weak measure topology, so for any fixed m,n ∈ N
the set Dm,n = {µ ∈ P (G) : µ∗n(Um) > 1/2} is open in the weak measure
topology. Since P (G0) ⊆ Dm,n it follows that

⋂∞
m=1

⋂∞
n=1Dm,n = D is a

weak dense Gδ subset of P (G). By the Baire theorem, D ∩ Ps.scat(G) is
again a weak dense Gδ subset of P (G). To finish the proof we notice that
there is no spread out probability measure in D.

4. Concentrated measures on groups with invariant metrics.
The results of the previous section prompt the study of s.scattered measures
which are not spread out. Even though we do not know how things go in
the general case, we settle the problem of s.scattered probabilities for groups
having invariant metrics. This generalizes some results of [B2] and of [DL1].
We begin this section with the following lemma, which actually comes from
[B2] and is valid for all locally compact σ-compact Hausdorff groups G.

Lemma 1. For any probability measure µ on G either there exists a proba-
bility measure % on G such that Pµ̌∗n∗µ∗n → P% in the weak operator topology
(w.o.t.) in M2(G) or Pnµ → 0 in the strong operator topology in L(L2(λ)).
Moreover , the measure % satisfies µ̌ ∗ % ∗ µ = %.

P r o o f. Assume that ‖Pnµ f‖2 9 0 for some f ∈ L2(λ). Then µ is non-
scattered. The results of Csiszár [C] imply that for any positive ε there exists
a compact set A ⊆ G and a sequence gn ∈ G such that µ∗n(gnA) ≥ 1 − ε.
So for all n we get

µ̌∗n ∗ µ∗n(A−1A) ≥ µ̌∗n|A−1g−1
n
∗ µ∗n|gnA(A−1A) ≥ (1− ε)2.

By Prokhorov’s theorem the sequence µ̌∗n ∗µ∗n is relatively compact for the
weak measure topology (see e.g. Theorem 6.7 in [P]). This implies that any
limit measure % of the sequence µ̌∗n ∗ µ∗n in the vague topology belongs to
P (G).

Now let Q1 and Q2 be arbitrary w.o.t. limit operators of the sequence
Pµ̌∗n∗µ∗n on L2(λ). We show that they are equal. In fact, for all f ∈ L2(λ)
we have

〈Q1f, f〉 = lim
n→∞

‖Pnµ f‖22 = 〈Q2f, f〉,

where 〈·, ·〉 stands for the scalar product in L2(λ). So by a standard func-
tional analysis argument Q1 = Q2. This implies the existence of the w.o.t.
limit limn→∞ Pµ̌∗n∗µ∗n = Q. Since the convolution operators form a w.o.t.
closed subset of L(L2(λ)), for some probability measure % on G we have
Q = P%. Clearly Pµ̌ ◦ P% ◦ Pµ = P% so the equality µ̌ ∗ % ∗ µ = % follows.
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R e m a r k 1. Since the weak and strong operator topologies coincide on
M2(G), the convergence Pµ̌∗n∗µ∗n → P% in Lemma 1 is actually in the strong
operator topology.

Now we are in a position to formulate the main result of the paper.

Theorem 1. Let G be a locally compact second countable topological
group with an invariant metric d. Then the following conditions are equiva-
lent :

(i) µ is concentrated ,
(ii) µ is nonscattered ,
(iii) there exists f ∈ L2(λ) such that limn→∞ ‖Pnµ f‖2 > 0,
(iv) there exists % ∈ P (G) such that µ̌ ∗ % ∗ µ = %,
(v) limn→∞ L(S(µ∗n), ε) = lε <∞ for all ε > 0,
(vi) the subgroup h(µ) is compact.

P r o o f. (i)⇒(ii) is obvious, (ii)⇒(iii) follows from [DL2], and (iii)⇒(iv)
is a consequence of Lemma 1.

(iv)⇒(v). For a fixed ε>0 let α = supg∈G %(K(g, ε/3)). We may assume
that K(g, ε/3) is compact. By Lemma 3.1 of [P] the set {g ∈ G : α =
%(K(g, ε/3))} is nonempty and compact. So, for any natural n we get

α = %(K(g0, ε/3)) =
∫
G

∫
G

%(yK(g0, ε/3)z−1) dµ∗n(y) dµ∗n(z).

This implies that %(K(yg0z
−1, ε/3)) = α for µ∗n ⊗ µ∗n-almost all (y, z).

Now, consider a family {y1 . . . , yl}⊆S(µ∗n) such that d(yi, yj) ≥ ε if i 6= j.
For some z0 ∈ S(µ∗n) we may find ỹ1, . . . , ỹl ∈ S(µ∗n) such that d(yj , ỹj) ≤
ε/10, %(K(ỹjg0z

−1
0 , ε/3))=α, and the K(ỹjg0z

−1
0 , ε/3) are pairwise disjoint.

Clearly,

1 ≥
l∑

j=1

%(K(ỹjg0z
−1
0 , ε/3)) = lα,

so that l ≤ 1/α. Finally, for any ε > 0 we get

lε = lim
n→∞

L(S(µ∗n), ε) ≤ 1
supg∈G %(K(g, ε/3))

.

(v)⇒(vi). Notice that for any ε > 0 the sequence of natural numbers
L(S(µ∗n), ε) is nondecreasing. If lε<∞ then there exists Nε such that for all
n ≥ Nε it is constant and equal to lε. The mapping G 3 g → g−1 ∈ G is an
isometry, so L(S(µ∗n), ε) = L(S(µ̌∗n), ε). Applying the triangle inequality
we easily get

N(S(µ̌∗n ∗ µ∗n), 2ε) ≤ l2ε and N(S(µ∗n ∗ µ̌∗n), 2ε) ≤ l2ε .
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Hence N(Rn, 2ε) ≤ 2l2ε , where Rn = S(µ̌∗n ∗µ∗n)∪S(µ∗n ∗ µ̌∗n). We notice
that Rn is a nondecreasing sequence of compact subsets of G. Obviously
each Rn is symmetric (R−1

n = Rn) and e ∈ Rn. We set R∞ =
⋃∞
n=1Rn

and R = R∞. The previous estimates imply that N(R∞, 2ε) ≤ 2l2ε for any
ε > 0. So R∞ is relatively compact and thus R is compact. In order to show
that R is a subgroup of G it is sufficient to check that it is a semigroup, i.e.
R∞R∞ ⊆ R∞. For this we will examine the products g1g2 in the 4 cases:
(α) g1, g2 ∈ S(µ̌∗m ∗ µ∗m), (β) g1 ∈ S(µ̌∗m ∗ µ∗m) and g2 ∈ S(µ∗m ∗ µ̌∗m),
(γ) g1 ∈ S(µ∗m ∗ µ̌∗m) and g2 ∈ S(µ̌∗m ∗µ∗m), (δ) g1, g2 ∈ S(µ∗m ∗ µ̌∗m) for
m ≥ Nε.

Since L(S(µ∗n), ε) = lε for n ≥ Nε and the mappings G 3 x →
gx ∈ G and G 3 x → xg ∈ G are isometries, for any g ∈ S(µ∗k) the
sets S(µ∗n)g and gS(µ∗n) are ε-dense in S(µ∗(n+k)). This also implies that
for all g ∈ S(µ̌∗k) = (S(µ∗k))−1 we have dist(S(µ∗n), S(µ∗(n+k))g) ≤ ε
and dist(S(µ∗n), gS(µ∗(n+k))) ≤ ε for n ≥ Nε and k ≥ 1. In particular,
dist(S(µ∗n), S(µ̌∗k)S(µ∗(n+k))) ≤ ε, dist(S(µ∗n), S(µ∗(n+k))S(µ̌∗k)) ≤ ε,
dist(S(µ̌∗n), S(µ̌∗(n+k))S(µ∗k)) ≤ ε, dist(S(µ̌∗n), S(µ∗k)S(µ̌∗(n+k))) ≤ ε.

Now, consider (α) and take natural numbers n, k such that k, n−k ≥ m.
Then

g1g2 ∈ S(µ̌∗n ∗ µ∗n)S(µ̌∗k ∗ µ∗k) ⊆ S(µ̌∗n)K(S(µ∗(n−k)), ε)S(µ∗k)

⊆ S(µ̌∗n)K(S(µ∗(n−k) ∗ µ∗k), ε) ⊆ K(S(µ̌∗n ∗ µ∗n), ε).

In particular, d(g1g2, R) ≤ 2ε for any ε > 0. Since R is closed, g1g2 ∈ R.
In the case (β) take n, k ≥ m. Then

g1g2 ∈ S(µ̌∗n ∗ µ∗n)S(µ∗k ∗ µ̌∗k) = S(µ̌∗n)S(µ∗(n+k))S(µ̌∗k)

⊆ K(S(µ∗k), 2ε)S(µ̌∗k) ⊆ K(S(µ∗k ∗ µ̌∗k), 2ε) for any ε > 0,

hence again g1g2 ∈ R. Since the cases (δ) and (γ) are symmetric respectively
to (α) or (β), we thus proved that R is a compact subgroup of G.

Obviously, S(µ̌ ∗ µ) ⊆ R, so S(µ) ⊆ gR for any g ∈ S(µ). To show that
R is a normal subgroup of G(µ) consider {g ∈ G : gRg−1 = R}. Clearly this
is a subgroup of G. For any g ∈ S(µ), ε > 0 and n large enough we have

gS(µ̌∗n ∗ µ∗n)g−1 ⊆ K(S(µ̌∗(n−1)), ε)K(S(µ∗(n−1)), ε)

⊆ K(S(µ̌∗(n−1) ∗ µ∗(n−1)), 2ε) ⊆ K(R, 2ε)

and
gS(µ∗n ∗ µ̌∗n)g−1 ⊆ R.

This implies that gR∞g−1 ⊆ K(R, 4ε) for any ε > 0. By the continuity of
group operations we get gRg−1 ⊆ R for all g ∈ S(µ). Since R is compact and
R 3 x → gxg−1 ∈ R is an isometry, by the classical topological argument
we get gRg−1 = R if g ∈ S(µ). This yields gRg−1 = R for all g ∈ G(µ) and
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so R is a normal subgroup of G(µ). Hence h(µ) ⊆ R. Since S(µ̌∗n ∗ µ∗n) ∪
S(µ∗n ∗ µ̌∗n) ⊆ h(µ) for any n, we have R ⊆ h(µ), and finally h(µ) = R is a
compact subgroup of G.

(vi)⇒(i). Consider the compact set A = h(µ). For any g ∈ S(µ) we have

S(µ∗n) ⊆ gh(µ) . . . gh(µ) = gnh(µ),

so µ∗n(gnA) ≡ 1 for all n. It follows that µ is concentrated.

Problem. For which locally compact σ-compact Hausdorff topological
groups does the characterization obtained in Theorem 1 hold?

5. S.concentrated and spread out measures. For the rest of our
paper we drop the assumption that the group G has an invariant metric
or even that it is metrizable. But we still assume it is locally compact,
σ-compact and Hausdorff.

For a fixed probability µ on a unimodular group G we define the linear
operator

(7) Tµf(x) =
∫
G

∫
G

f(yxz−1) dµ(y) dµ(z).

Clearly, Tµ is a linear positive contraction on Lp(λ), 1 ≤ p ≤ ∞, and C0(G).
Moreover, on L1(λ) it is stochastic (i.e. for any nonnegative f ∈ L1(λ)
we have Tµf ≥ 0 and ‖Tµf‖1 = ‖f‖1). Notice that for any 1 ≤ p < ∞ the
adjoint operator to Tµ is Tµ̌. On L1(λ), Tµ is the restriction of the stochastic
linear operator ν → µ̌ ∗ ν ∗ µ acting on the (AL) Banach lattice M(G).

Proposition 2. Let G be a locally compact σ-compact Hausdorff topo-
logical group. If there exists an adapted spread out measure µ ∈ P (G) such
that both µ and µ̌ are nonscattered then G is unimodular.

P r o o f. Assume that µ is not scattered. Then by Lemma 1 there exists
% ∈ P (G) which satisfies µ̌ ∗ % ∗ µ = %. Since L1(λ) is a two-sided ideal in
the convolution Banach algebra M(G), any such % belongs to L1(λ). In fact,
first we notice that for a spread out measure µ ∈ P (G) we have ‖µ∗nac ‖ =
‖µ̌∗nac ‖ ↗ 1, where νac stands for the absolutely continuous component of
ν. This implies that ‖%ac‖ ≥ ‖µ̌∗n ∗ % ∗ µ∗nac ‖ = ‖µ∗nac ‖ ↗ 1. In particular,
‖%ac‖ = 1, so % = %ac ∈ L1(λ). For λ-almost all x ∈ G we have

d%

dλ
(x) =
∫
G

∫
G

∆(y)
d%

dλ
(yxz−1) dµ(y) dµ(z),

where ∆ stands for the modular function on G. From the estimation

(8) sup
r∈R+

(µ ◦∆−1)∗n(r∆(F )) ≥ sup
g∈G

µ∗n(gF )
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we conclude that the probability measure µ◦∆−1 on the multiplicative group
R+ is nonscattered. By [DL1] it must be a Dirac delta δa. Let us modify (7)
and define the positive linear contractions on Lp(λ) by

(7∆) Tµ,pf(x) =
∫
G

∫
G

(∆(y))1/pf(yxz−1) dµ(y) dµ(z).

For unimodular G the operators Tµ,p and Tµ are the same. But if G is not
unimodular and µ is adapted then ∆(S(µ)) = a 6= 1.

So, Tµ,pf(x) = a1/p
∫
G

∫
G
f(yxz−1) dµ(y) dµ(z) for any 1 ≤ p < ∞ and

f ∈ Lp(λ). Let F ⊆ G be compact such that
∫
F

(d%/dλ) dλ = %(F ) ≥ 1− ε
and 0 ≤ f ≤ d%/dλ be a function from L2(λ) such that ‖d%/dλ − f‖1 ≤ ε
for some 0 < ε < 1/2. Then∫

F

Tnµ,1f dλ =
∫
F

Tnµ,1

(
f − d%

dλ

)
dλ+
∫
F

Tnµ,1

(
d%

dλ

)
dλ

≥ 1− ε−
∥∥∥∥f − d%

dλ

∥∥∥∥
1

≥ 1− 2ε.

On the other hand, the Cesàro means satisfy

1
N

N−1∑
n=0

∫
F

Tnµ,1f dλ

=
1
N

N−1∑
n=0

an/2
∫
F

∫
G

∫
G

an/2f(yxz−1) dµ∗n(y) dµ∗n(z) dλ(x)

=
1
N

N−1∑
n=0

an/2
∫
F

Tnµ,2f dλ ≤
1
N

N−1∑
n=0

an/2‖f‖2‖1F ‖2

=
‖f‖2‖1F ‖2

N
· 1− aN/2

1− a1/2
→ 0 as N →∞

if 0 < a < 1. For a > 1 we can consider a nonscattered spread out measure
µ̌ for which ∆(S(µ̌)) = 1/a < 1. So, ∆(S(µ)) ≡ 1. If µ is adapted then ∆
is 1 on the whole group, and G is unimodular.

R e m a r k 2. It is not hard to notice that if µ is not adapted then in
the above proposition we only obtain the unimodularity of the subgroup
(G(µ), λ|G(µ)).

Corollary 1. Let µ be a spread out probability measure on a locally
compact σ-compact Hausdorff topological group. If G(µ) is not unimodular
then either µ or µ̌ is scattered.
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The next result is a version of Theorem 1 for spread out measures. In-
stead of groups with invariant metrics we obtain the corresponding equiva-
lences for the whole class of unimodular groups.

Theorem 2. Let G be a unimodular locally compact σ-compact Haus-
dorff topological group. For any spread out probability measure µ on G the
following are equivalent :

(I) µ is concentrated ,
(II) µ is nonscattered ,

(III) there exists f ∈ L2(λ) such that limn→∞ ‖Pnµ f‖2 > 0,
(IV) there exists % ∈ P (G) such that µ̌ ∗ % ∗ µ = % and d%/dλ = Θ ∈

L1(λ) ∩ L∞(λ) ⊆ L2(λ),
(VI) the subgroup h(µ) is compact and has nonempty interior.

P r o o f. (I)⇒(II)⇒(III) and (VI)⇒(I) can be proved in the same way as
in the proof of Theorem 1.

(III)⇒(IV). By Lemma 1 and Proposition 2 there exists % ∈ P (G) which
satisfies µ̌ ∗ % ∗ µ = % and is absolutely continuous with respect to λ. By
the von Neumann mean ergodic theorem (see e.g. [CFS], Theorem 4, p. 34),
for any f ∈ L2(λ) the Cesàro means (1/N)

∑N−1
n=0 T

n
µ f converge in the L2

norm to some Tµ-invariant function f∗ ∈ L2(λ). We notice that Tµ is a
positive linear contraction on L∞(λ) as well, so ‖f∗‖∞ ≤ ‖f‖∞. Now choose
f ∈ L1(λ)∩L∞(λ) ⊆ L2(λ) such that 0 ≤ f ≤ d%/dλ and ‖f−d%/dλ‖ < 1/2.
Since d%/dλ is Tµ-invariant,

∫
F
Tnµ f dλ > 1/2 for some compact set F and

all n. We therefore conclude that the limit function Θ = f∗ ∈ L2(λ) is
Tµ-invariant, positive and nontrivial.

(IV)⇒(VI). We notice that

Θ(·) =
∫
G

∫
G

Θ(y · z−1) dµ∗n(y) dµ∗n(z) =
∫
G

∫
G

yΘz−1 dµ∗n(y) dµ∗n(z)

for all n. By uniform convexity of L2(λ) (only strict convexity is exploited)
and the fact that L2(λ) 3 f → yfz−1 ∈ L2(λ) is a linear isometry for any
fixed y, z ∈ G, we get

(9) yΘz−1 = Θ, yΘ = Θz, y−1Θ = Θz−1 for y, z ∈ S(µ∗n).

Since we also have

Θ(·) = T ∗nΘ(·) =
∫
G

∫
G

yΘz−1(·) dµ̌∗n(y) dµ̌∗n(z),

it follows that

(9∗) yΘz−1 = Θ, yΘ = Θz, y−1Θ = Θz−1 for y, z ∈ S(µ̌∗n).
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Combining (9) and (9∗) we can easily obtain Θy−1z = Θ = Θyz−1 for all y, z
in S(µ∗n) or S(µ̌∗n). Now the inclusion

(10)
∞⋃
n=1

S(µ̌∗n ∗ µ∗n) ∪ S(µ∗n ∗ µ̌∗n) ⊆ GΘ := {t ∈ G : Θt = Θ}

is obvious. Clearly GΘ is a closed subgroup of G. Moreover, since Θ ∈ L2(λ),
it is compact. The inclusion (10) yields that GΘ has nonempty interior, so
has strictly positive and finite Haar measure. For any g ∈ S(µ) we have
S(µ) ⊆ gGΘ. Let g ∈ S(µ) and t ∈ GΘ be arbitrary. Then by (9),

Θ(·gtg−1) = Θg−1(·gt) = g−1Θt(·g) = g−1Θ(·g) = Θg−1(·g) = Θ(·),

so gtg−1 ∈ GΘ. This means that gGΘg−1 ⊆ GΘ for all g ∈ S(µ). By uni-
modularity λ(gGΘg−1) = λ(GΘ), so gGΘg−1 is dense in GΘ. Since GΘ is
compact, gGΘg−1 = GΘ for all g ∈ S(µ). The last equality easily extends to
all g ∈ G(µ). Finally, gGΘ = GΘg and S(µ) ⊆ gGΘ for all g ∈ S(µ). This
implies that h(µ) ⊆ GΘ, so h(µ) is compact. By the spread out assumption
it has nonempty interior as well.

Corollary 2. Let G be a noncompact topological group with the prop-
erties of Theorem 2. If µ ∈ P (G) is spread out then it is scattered if and
only if it is s.scattered and only if h(µ) is noncompact.

The above result corresponds to Theorem 3.5 of [DL2], where it is shown
that a spread out adapted measure µ ∈ P (G) is scattered if G/h(µ) 6=
Z. For this we show that for an adapted, spread out and nonscattered µ
the condition G/h(µ) 6= Z implies unimodularity of G. In fact, if µ (or µ̌)
is nonscattered then by (8) the measure µ ◦ ∆−1 is nonscattered on R+.
Applying Theorem 4 of [DL1] we conclude that it is the Dirac delta δa for
some a ∈ R+. Therefore ∆(S(µ)) ≡ a, which gives

h(µ) = G
( ∞⋃
n=1

(S(µ̌∗n ∗ µ∗n) ∪ S(µ∗n ∗ µ̌∗n))
)
⊆ G∆.

By Theorem 2.9 of [DL2], card(G/G∆) ≤ card(G/h(µ)) < ∞. This im-
plies that ∆(G) is a finite subgroup of R+, so it must be trivial, i.e. G is
unimodular, and we apply our Theorem 2.

Now let us present another related result.

Corollary 3. Let G be a locally compact σ-compact Hausdorff topo-
logical group. If there exists an adapted , spread out , nonscattered measure
µ ∈ P (G) such that G/h(µ) 6= Z then G must be compact.

P r o o f. By the above considerations, G is unimodular. So, Theorem 2
shows that h(µ) is compact, which easily gives the compactness of G.
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We end the paper with a characterization of concentrated measures on
connected groups:

Corollary 4. Let G be a locally compact , σ-compact , noncompact ,
connected Hausdorff topological group. For any adapted spread out measure
µ ∈ P (G) we have

(a) µ is s.scattered if and only if h(µ) is not compact ,
(b) µ is s.concentrated if and only if h(µ) is compact.

P r o o f. For unimodular groups, (a) and (b) can easily be inferred from
Theorem 2. By Theorem 2.9 of [DL2] and previous arguments, if there ex-
ists an adapted, spread out, nonscattered measure µ ∈ P (G) then either
G is compact or G/h(µ) = Z. Let us discuss the latter alternative. Since
for a nonscattered spread out measure µ (or µ̌) we have h(µ) ⊆ G∆, for
nonunimodular connected groups G we would have

ℵ0 = card(G/h(µ)) ≥ card(G/G∆) = card(R+).

Therefore, if G/h(µ) = Z, then µ is s.scattered and h(µ) is not compact.
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Révisé le 14.10.1993


