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Qualitative investigation of
nonlinear differential equations
describing infiltration of water

by XiINGBAO WU (Wuhan)

Abstract. A nonlinear differential equation of the form (q(x)k(u)v') = F(x,u,u)
arising in models of infiltration of water is considered, together with the corresponding
differential equation with a positive parameter X, (¢(z)k(u)u’) = AF(x,u,u’). The the-
orems about existence, uniqueness, boundedness of solution and its dependence on the
parameter are established.

1. Introduction. To describe the mathematical model of unsteady infil-
tration in water percolation and seepage, the Boussinesq equation is used [4].
The simplest case is that of a horizontal base without accretion, when the
flow is the same in all vertical parallel planes. In this case, the correspond-
ing mathematical model assumes the most common form of the Boussinesq
equation:

(1) (hha)y = mhy /K.

The corresponding equation, when the impervious base has a constant slope,
is as follows:

(2) (hhe)s = Thy +mhy /K.

This equation can be reduced to (1) by a transformation of the independent
variables

¥ =x—IKt/m, t =t
In the case of accretion, the flow on a horizontal base obeys

(3) (hhe)e = mhy /K + /K
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and on an inclined base of constant slope,
(4) (hhy)g = Ihy + mhy /K + ¢/ K.

Similar to (2), (3) and (4) can also be reduced to (1) by a suitable trans-
formation. In an axisymmetric unsteady flow, as in the single well problem,
h = h(r,t). Boussinesq’s equation then becomes

(5) (rhhy)y = mrh /K.

Under different cases, their particular similarity solutions are reduced
to solving the following second order nonlinear differential equations with
unknown function f = f(a) [1, 2, 4]:

(6) a(ff) + ff +af [2=0;

(7) a(ff) + ff =na®f — (1 +2n)af;

(8) (L) + A+ dv)aff + 2022 =V /(v - 2)
and

9) a(ff') + ff' =n(a®f —2af).

Therefore, in [7-9], the authors investigated the following second order
nonlinear differential equations:

(10) (k(u)u) = f(x)u', x>0
(11) (g(®)k(uw)u) = fO)h(u)u’, >0
and

(12) (q)k(u)u) = F(t,u)u’, t>0.

In this paper, we shall consider the more general second order nonlinear
differential equations arising in models of water infiltration:

(13) (q(x)k(u)u) = F(z,u,u’), x>0,
and
(14) (q(2)k(u)u) = A\F(z,u,u’), = >0.

Obviously, (10), (11) and (12) are special cases of (13). We obtain qual-
itative results on (13) and (14), such as existence, uniqueness, boundedness
and dependence on parameters. Our theorems imply all results in [7-9].

2. Definition of solution and equivalence. Let ¢, k and F' satisfy
the following assumptions (a > 0, Ry = (0,00), R_ = (—00,0) and R =
(—00,00)):

@
(Hi)  qeC'Ry); q(a)>0, zeRy; [ (1/q(x))da < oo;
0
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ke CO(R);  E(uw)u>0, uecR—{0};

a 0
() [ (kw)fu)du<oo, [ (k(u)/u)du < o,

0 —«

[ ) juydu=o0, [ (k(w)/u)du = oo;
(HS) Fe CO<K+ X RZ); fl(x)hl(u) < F<m7u7 u/)/u/ < fg((l?)hg(u),
where f; € C°(R,), fi(z) > 0, fi(z) is decreasing, either hy(u) = ha(u) =1,
or h; € CO(R), hi(u)u >0 for u € R — {0}, i = 1,2.

Remark 1. It follows from (Hs) that £(0) = 0. Similarly, if it is not the
case that hi(u) = ha(u) = 1, then h;(0) =0, i = 1,2, and so F(z,0,u') =0
for z € Ry and v’ € R.

In what follows, we shall investigate the differential equation (13) on R
with «(0) = 0 under the assumptions above.

DEFINITION. By a solution of (13) we mean a function u € C°(R,) N
CY(R,) such that u(0) = 0,

lim_q(2)k(u(z))u () =0,

x—0+
q(x)k(u(z))u'(z) € C*(Ry) and (13) is satisfied in R .
Remark 2. From (Hs), it follows that F(x,u,0) = 0 for z € Ry and
u € R.
Remark 3. Obviously, u(0) = 0 for € Ry is a solution of (13).
LEMMA 1. Let u(x) be a nontrivial solution of (13). Then either u’(x) >
0in Ry orv(x) <0inRy.

Proof. First, v/ (x) is not equivalent to 0, since otherwise, u(x) = 0.

Next, let us prove that u'(x) cannot have more than one root. If not,
assume 0 < x; < zo are such that v/(z;) = v/(z2) = 0 and «/(x) # 0 in
(x1,22); without loss of generality, let v/(z) > 0 in (z1,22). Then u(z) is
increasing in (z1,22), and for x > ¢ > 0,

Hence (by letting e — 0),

(15) q(x)k(u(z)u'(z) =
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In the following, we consider three cases: u(x) > 0, u(z) < 0 and u(z1) <
0 < u(zz). If u(x) > 0 in (z1,x2), then by (Hs),

zo Zo u(xz)
[ F(s,u(s),u'(s))ds > [ fu(s)ha(u(s))u'(s)ds > fi(z2) [ ha(s)ds.

u(x1)
By the mean value theorem [5],

u(x2)
f hi(s) ds = hi(§)(u(z2) — u(z1)),

u(z1)

where ¢ € (u(z1), u(zs)). Hence,
TF(S, u(s), u'(s)) ds > 0.
But, from (15), 1
[ s u(s),0(9) ds = a()b(ute) @),
Noting that u’(;l) — 0 and o/ (2s) = 0, we have
TF(S, u(s), u'(s)) ds = 0.

This is a contradiction.
The case of u(x) < 0 in (z1,x2) can be treated quite analogously.

If u(z1) < 0 < u(xz), then there exists a unique T € (x1,x2) such that
u(T) = 0. In this case, v/(x) > 0 and u(x) > 0 in (7, x2); hence, from the
above proof,

Z2
f F(s,u(s),u'(s))ds > 0;
z

but, from (15) and noting that u(z) = u/(z2) = 0, we have
[ F(s,uls),u/(s)) ds = q@)k(u(z))u' (2)[225 = 0,

again a contradiction.

Finally, let us prove that there cannot exist a root of u’(z). If not, assume
xo > 0 is such that u'(xg) = 0 and v/(z) # 0 in (0,20). Without loss of
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generality, let v/(z) > 0 in (0,2p). Then u(x) > 0 in this interval and

Zo

fF(SU() ds>ff1 Yha (u(s))u'(s) ds
0

u(zo)

> filzo) [ ha(s)ds > 0.
0

On the other hand,

Zo

J F(s.u(s),/(s)) ds = q(wo)k(u(xo))u' (z0) = 0,

0

a contradiction. So u/(z) # 0. Since u € C'(R,) the proof is complete.

Remark 4. It follows from Lemma 1 that u € Ay or u € A_ for any
nontrivial solution u of (13), where

A; ={u e C'(R,) : u(0) = 0, w is strictly increasing on R },
A_ ={uec C°(Ry) : u(0) =0, u is strictly decreasing on R }.

Set

= f k(s)ds, we A, ec{+,—}.
0

Obviously, W, is strictly increasing on A4 and W_ is strictly decreasing
on A_.

THEOREM 1. If u is a solution of (13), u # 0, then u is a solution of the
functional-integrodifferential equation

(16) u(m):WE_1< I q(ls) fF(t,u(t),u’(t))dtds)
0 0

in the corresponding set A.. Conversely, if u € A., € € {4+, —} is a solution
of (16) then u is a solution of (13) and u # 0. Here W1 denotes the inverse
function of W-e.

Proof. Let u # 0 be a solution of (13). Then v € Ay UA_ by Remark 4
and (15) holds. If u € A, then

We(u(z)) = [ (1 [ F(t,u(t), o' (1) dt ds
0 0

for x € Ry and u is a solution of (16) in A..

Q
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Conversely, noting that W, is monotonic and continuously differentiable,

we have
xr 1 S !
" F(t, ))dtd
“ u(z) (Of q(s) Of e S)

e 6[F ) dt

or
g(@)k(u(@)d (@) = [ F(t,u(t), o (1)) dt.
Hence q(z)k(u(z))u'(x) € CY(Ry) and (13) holds. Consequently, u is a
solution of (13).
Remark 5. It follows from Theorem 1 that solving (13) is equivalent

to solving (16) in A..

3. Existence. We further suppose:
a 0

[ (k(w)/Hi(w))du < 00, [ (k(w)/Ti(u)) du < oo,
(Hy) " -

[ e(u)/Hi(w)) = 00, [ (k(u)/Ti(u))du = oo,
where a > 0, H;( fo i(s)ds for u € Ay and T;(u f hi(s)ds for
uve A_, i=1,2.

Set
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for x € Ry, i = 1,2. Obviously, from (Hy),
lim P;(u) = oo, lim V;(u) = o0
u—00 u——00

and P;(u) is increasing and V;(u) decreasing, i = 1, 2.

LEMMA 2. Under assumptions (Hy)—(Hy), if u € A. is a solution of (16),
e € {+,—}, then
(17) pe(z) <u(z) <p.(z), z€RY,
and for 0 < x1 < w2,

Hy (g4 (21)) (k1 (z2) — k1(21))
u(ze) —u

)
)2 b 9 (1) < w < B ()]
Ty(@_(21))(12(x1) — Ia(r2)
max{—k(u) : o (z2) Su<P_ (1)}
Proof. Let u € Ay be a solution of (16). Then

u(z)

@) [ 1a(5)ds < alalb(ue)n' o)

u € .A+7
(18)

u(zy) — u(ze) >

ue A_.

x u(x)
= [ F(s (5))ds < f2(0) [ ha(s) ds.
0 0

Hence,
(19) f@)/q(x) < Pi(u(x)),  f2(0)/q(x) = Py(u(x)),
and integrating (19) from 0 to x we obtain

ki(z) < Pri(u(z)),  ka(z) = Pa(u(z)).

Consequently, ¢ (z) < u(z) <@, (z) for z € Ry.
Let 0 < 1 < 9. Then

Wi (u(r2)) — Wi (u(z1))

-]

)

1
hi(s)dsd
o 1(s) dsdx

~
O%H

S~—
O%ﬁ

P ()

f hi(s)dsdz > Hi (o4 (21)) (k1 (z2) — ki(21))
0

F h()
- mj; q(z)
and since W, (u(z2)) — Wi(u(zy)) = k(§)(u(z2) — u(xy)), where £ €

(w(z1),u(x2)) C (04 (21), P, (22)), we see that (18) is true for u € A
The case of u € A_ can be treated quite analogously.

8
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Set Ko = {u € Ac : pe(z) < u(z) < p.(x) for & € Ry, u satisfies (18)}
and define T. : K. — C°(R,) by

(Teu)(x) = ( f 1) j F(t,u(t dtds> uelk., ee{+, -}
0

LEMMA 3. T, : K. — K. for each e € {+,—}.

Proof. We prove T : K; — K4 (the proof of T_ : K_ — K_ is very
similar and will be omitted). Let u € K. Setting

F(t,u(t), u'(t)) dt ds — W (o4 (z)),

F(t,u(t),u'(t) dtds — W (2 (x))

- (1 [ Pt u(t), w/(8) dt — k(g ()@, ()
0
= S| Fa @) - i@ m e a)]
0
> [ [ RO Od - fi@) (e )]
0
1 u(z) o+ (x)
Zﬁ fl()fhl )ds — fi(z f hi(s ]
) 0
@ P s
- al@) w+{;)hl( et
B(@) = —— [ F(t,ult), (1) dt — k(@ (2))7 ()
q(z)
¢+(37)
< - fQ(O) f hQ(S)dS<O

for x € R4. Since «(0) = 5(0) = 0, we have a(z) > 0 and S(z) < 0 for
x € Ry, and consequently,

(20) o1 (2) < (Thu)(z) <Py(r), = eRy.
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Let 0 < z1 < . Then
Wi (Thu)(22)) — Wi ((Thu)(21))

= fz— fF(s,u(s),u'(s))dsdx
T 0

Vv
8
‘H
C—s
=
©
>
=
=
»
=
g\
S
QL
&

u(z1)

T2 u(x) T2
> f h@) f hi(s)dsdx > f 2(%) dxf hi(s)ds

T 0 T

P+ (1)

(k1(w2) = ka(w1)) [ ha(s)ds = Hi(py (1)) (kr(w2) — ka(21))
0

A\

and

Wi (Tru)(w2)) = Wi (Thu)(21)) = k(E)[(Thu)(22) — (Thu)(21)]
< [(Thu)(2) — (Tyu)(zy)] max{k(u) : o4 (21) Su <Py (22)}

(here € € (T u)(z1), (Tyu)(z2)) (9 (21), B (2)), thus
(21)  (Teu)(ws) — (Tyu)(z1)

> Hi(p(21)) (ki (@2) — ki (@) [max{k(u) : o4 (21) <u <P (22)}] 7"

From (20) and (21) it follows that T u € K, therefore, T : K1 — K.

THEOREM 2. Let assumptions (Hy)—(Hy) be satisfied. Then a solution
u € A of (13) exists for each € € {+,—}.

Proof. By Lemma 2, u € A, is a solution of (13) if and only if w is
a fixed point of the operator T.. We shall prove that under assumptions
(Hy)—(Hy4) a fixed point of T exists. The existence of a fixed point of 7_
can be proved similarly.

Let X be the Fréchet space of C°-functions on R, with the topology of
uniform convergence on compact subintervals of R;. Then K, is a bounded
closed convex subset of X and Ty : K1 — K4 (see Lemma 3) is a continuous
operator. It follows from the inequalities (0 < z1 < x3)

0 < Wa((Thw)(a2)) ~ Wa(Tyu)an)) = [ s [ Fls,u(s),(s)) dsda
0

T2 T2

1 G / [ 1
=) q(:c)Of fa(sha(u())u'(s) ds dr < fo(0) oy (¢2) [ o5 da

1 xr1
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and from the Arzela—Ascoli theorem [3] that 7% (K. ) is a relatively compact
subset of X. According to the Tikhonov—Schauder fixed point theorem [6]
there exists a fixed point uy of T%.

4. Boundedness

THEOREM 3. Let assumptions (Hy)—(Hy) be satisfied. Then any nontriv-
ial solution of (13) on Ry is bounded if and only if [;°(1/q(s))ds < oc.

Proof. We prove this for ¢ = 4 (the case ¢ = — is similar).

Sufficiency. If fooo(l/q(x)) dx < oo then any solution of (13) is bounded
by Lemma 2.

Necessity. Let [;°(1/q(z))dz = oo and u € A4 be a solution of (13).
Then u # 0 and

in Ry and we have [ fi(t)hi(u(t))w/(t)dt > 0 in Ry, it follows that
limy, 0o Wi (u(z)) = 0o. So hmx_)oo u(z) = 0o

5. Uniqueness

THEOREM 4. Let assumptions (Hy1)—(Hy) be satisfied and suppose that
for 0 <z < x9 and uz(x) > ui(x),

2

f [F(s,u2(s),us(s)) — F(s,u1(s),uj(s))]ds >0, u; €Ay,

(Hs)

f [F(s,u2(s),us(s)) — F(s,u1(s),uy(s))]ds <0, u; € A_.

1

Then there exist solutions u,v. € A. of (13) for each ¢ € {+, —} such that
ue(z) < wve(x) for x € Ry. Moreover,

(22) ue(e) < ulz) < ve(e), xR,
for any solution u € A, of (13) and
(23) u(@) #v(x), >0,

for any two different solutions u, v of (13).
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Proof. Let u € Ay be a solution of (13). Define sequences {u,} C A4
and {v,} C A4 by the recurrence formulas

(24) Up = P+, Upt1 = T+ (un>7 Vo = ¢+7 Un+1 = T+ (vn)

for n € N. Then ug(z) < u(z) < vo(z) in Ry by Lemma 2 and ug(z) <
u1(7) < (), uo(x) < vi(z) < vo(x) in Ry by Lemma 3. Since ay,az € Ay,
pi(r) <ai(r) < az(r) <@, (x) for x € Ry implies

(Tya2)(z) — (Ton)()
:W+1( [ = L[ Rt as(t), abt ))dtds)
0

q(s

—W;1<Of1)OfF(t,a1(t),a’l(t))dtds>

_ % [ (1 [ [F(t az(), ab(t)) — F(t, a1(t), ot (£))] dt ds > 0,
0 0

where § € (o4 (21), 9, (22)) and Ty : £ — K4 by Lemma 3, we have

up(z) <up(z) <...<up(z) <...<u(z)<...

for x € R, and n € N. Therefore, the two limits lim,, .« u,(7) = uy (z) and
lim,, o0 U (z) = vy () exist for all z > 0. We have uy (z) < u(x) < vy(x)
on R, and using the Lebesgue dominated convergence theorem [6] we see
that uy,vy € K4 are solutions of (16), and thus also solutions of (13) by
Theorem 1. Let u,v € A, be different solutions of (13). First, suppose that
there exists a xp > 0 such that u(x) < v(z) for z € (0,z¢) and u(zg) = v(xo).
Then

0=Wi(v(wg)) — Wi (u(xo))

= f [F(t,v(t),v'(t)) — F(t,u(t),u'(t))] dt ds.
0

o
=
-+
=
)
Q
-+
=
D
~
=
&
=
e
lon
<
—~
s
N

foL [ 1Fv(t),0' () = F(t,u(t),u ()] dt ds > 0,
0 0

a contradiction.

Now, assume that there exist 0 < x1 < w2 such that u(zi) = v(z1),
u(ze) = v(ze) and u(x) # v(zx) for x € (x1,x2); without loss of generality,
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let u(z) < v(z) for x € (x1,x2). Then v/ (1) < v'(x1), v/ (x2) > v'(z2) and
0 = q(z2)k(u(e2)) (V' (2) — v/ (22)) — q(z1)k(u(21)) (V' (1) — ' (21))

2

= [ [F(s,0(5),0(s)) = Fls,uls),u'(s))] ds,

T
contrary to (Hs). So, the proof is complete.

THEOREM 5. Let assumptions (Hy)—(Ha) be satisfied. Moreover, assume
that

(H¢) (i) there exist eg,e > 0 such that

‘f [F(wi(s), s, 1/wi(s))wy(s) = F(wa(s), s, 1/wh(s))wy(s)] ds
0

< Lfw: (u) — wa(u)| min{|Hy (u)], [H2(u)|}
for (z,u;) € [0,¢] x [—€0,€0] (1 = 1,2), where w; is the inverse
function of u;, u; € A, and L > 0 is a constant;

(ii) the modulus of continuity v(X) = sup{|q(z1) — q(z2)| : 1,22
€ [0,¢], |z1 —x2| < X} of ¢ on [0,¢] satisfies limy_,04 supy(x)/x
< oQ;

and

(H7)  there exist two positive constants Ko and ¢ such that

[F(wa(t), 8, 1/wy(t))wy(t) — F(wi(t),t, 1/wi(t))wy (t)]
< Kolwa(t) —wq(t)]  for 0 < |t| < eq.

Then equation (13) admits a unique solutions in Ac, € = {+,—}.

Proof. Assume uy,us € A, are solutions of (13) and assume uy # us.
First, we prove ui(z) = us(z) on an interval [0,a|, a > 0. Setting A4; =
lim, o0 ui(x), i = 1,2, we see that 0 < A; < oo and the w; : [0, 4;) — R
are continuous strictly increasing functions,

w; (u)

wi(u) = k(u)q(wi(u))[ [ F(s,ui(s),ug(s))ds]_l, we (0,4;), i=1,2.
0
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and thus for u € [0, min(A4;, A3)] we have

wy(u) — wa(u)
w2(5) 1

= [ k®latwi(s) = alwa(s)]| [ Fltua(t),up(6) dt|  ds
0

o

. [ Pt ua(t f F(t,uy (t), ) (t)) dt
+ f E(s)q(w1(s)) -~ wg( ) ds
0 [ F(tun(t), u) (1)) dt f (t, ua(t), ub(t)) dt
0

w1 (s) wa (s)

A @)uy@)dt [ fu()h (uz(t)us(t) di

Let € > 0 be as in assumption (Hg) and set a = min{uq(g),ua2(e)}, X(u) =
max{|wi(s) —wa(s)| : 0 < s < u} for u € [0,al. Suppose X (u) > 0 for
€ (0,a]. Then (cf. (Hg))

(w1 (u)) = q(w(u))] < Y(X(u)), wel0,a]

In this way,

|wi () = wa(u)]
[ _k(s)y(X(s)) r k(s)
=S Fwenme * ) "7
< (X (w)Pr(w)/ f1(e)
+ LX (u) Py (u) max{q(z) : 0 <z < e}/f2(e), 0<u<a.

(wi () Ll (5) = wa(s)]
wi(s)) fi (w2 (5) His)

q
(

Hence
X(u) < (By(X(w) + CX(@)P(w), € [0,d],
where B = 1/f1(¢), C = B?Lmax{q(x) : 0 < z < ¢}, and therefore

(25) V(X (W) Pr(u)/ X (u) > (1 - CPi(u))/B,  ue(0,ad.
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Now, on the left-hand side of (25) (cf. (Hg)),
(X (w) P (u)/ X (u) = 0;
but, on the right-hand side of (25),
lim (1— CPi(u))/B=1/B > 0.

u—0-+

This is a contradiction.
Next, assume [0, ¢] is the maximal interval where uq(z) = ua(x). Define

Y (x) = max{|ua(s) —ui(s)| : ¢ < s < x},
a(z) = min{uy (z),uz(x)},  P(x) = max{ui(x),us(z)}

for # > ¢. Then Y(c) = 0, a(c) = B(c), 0 < B(z) — a(x) < Y(x) and
Y(xz) > 0 for x > ¢. We have

— Wi (ur(2))

x u2(s) B(s)

< q(l) Ko [ Jws(t) —wi(0)di+ [ Fwi(0), 6,1/ (0)w (1) de ) ds
c u1(c) a(s)

Set ¢ = min{eg, 371 (co+u1(c))—c}, m = min{u)(z) : c <z < a " (B(c+
e))}, M = max{F(wy(t),t,1/w](t))wi(t) : a(c) <t < Blc+e)} and r =
max{u)(z): c <z < c+e}. For z € [¢,c+ ¢] we have

|wi(uz(z)) = = = [wi (uz(x)) — wi(u (2))| = wi(§)luz(x) — ui(2)|

= (1/uy(n))|uz(z) — wa (2)| <Y (x)/m,
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where = (a(z), B(x)), n=w1(§) € (w1 (a(2)), w1 (8(x))) Cle, a™ (B(c +2))].

Consequently,
lwy (1) — wa(u)| < Y(we(w))/m, u € [ui(c),us(c+ e)).
Therefore

W (us () = Wi (ur ()] < [ q(s){ r(Ko/m) [ Y(t)dt+MY(s)}ds
|
gcf @[Kor(s —¢)/m+ MY (s)ds

< (Kore/m + M)Y () f Lals

for x € [c,c 4+ €]. Since |Wi(uz(x)) — Wi(ui(z))| = k(&)|uz(z) — ui(z)|,
where € € (a(x), B(x)) C [a(c), B(c+ €)], we have

|ug(z) — ua(2)| < [(Kore/m + M)Y (2)/p]

QSH
Q
=
\/‘

where p = min{k(u) : a(c) <u < B(c+¢)}. Hence,

V(2) < [(Kore/m + M)Y (z)/p] fq(ls)ds, v lecte]

Then

r1
Kore/m+ M)/p ——ds, c<z<c+e,
< [(Kore/ )/ 1] ;fq )
(

which is impossible. This proves u; (z) = ug(z) for z € Ry.
The uniqueness of solution of (13) in \A_ can be treated analogously.

THEOREM 6. Suppose that assumptions (H1)—-(Hg) are satisfied. Then
(13) admits a unique solution in A., € = {+, —}.

Proof. It is sufficient to prove that under assumptions (Hy)—(Hg), ue =
Ve, € € {+, —}, where u,, v, are defined in Theorem 3. If not, for example,
u4 # vy, without loss of generality, let uy (x) < vy (z) in Ry by Theorem 4.
Since assumptions (H;)—(Hy4) and (Hg) imply (see the first part of the proof
of Theorem 5) that uy(z) = vy(x) on an interval [0,0] (b > 0), we have a
contradiction.

6. Dependence of solution on a parameter. Consider the differential
equation (14) depending on a positive parameter A.
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THEOREM 7. Suppose that assumptions (Hy)—(Hs) are satisfied. Then for
each € € {+,—} there exist solutions us(z, ), ve(z, \) of (14) such that

(26) ue(z,\) <ulz,\) <wve(z,\), xRy,
for any solution u(x,\) € Ac of (14) and

up(x, A1) <ug(z,A2),  vi(z, 1) <vp(x,Na),
u_(z, A1) >u_(x,N2), v_(x,\1)>v_(x,A2)
forallz € Ry and 0 < A1 < Ag.

(27)

Proof. The first part of the statement follows from Theorem 3. Set
@i (2,0) = Pr (M (2), @ (x,A) = Py (Mka(2),
p-(z,2) =V (Wa(2),  D_(2,A) = V3 ' (Aa())
for x € R4, A > 0. Since (14) can be rewritten in the form

(q(x)k(uw)u'/N) = F(z,u,u’), X>0,
we have (see Lemma 2)
(294)  u(w2) —u(z1) = AH1 (¢4 (2, A)) (k1 (22) — k1(21))

% fmax{k(u) : 9+ (21, A) < u < By (22, )} !

for any solution u € A4 of (14) and 0 < x; < 2, and

(29-)  u(z1) —ulz2) = A2 (P_(z1,A)) (l2(21) — l2(22))
x [max{—k(u) : o_(v2,A) <u<P_(z1, )}

for any solution u € A_ of (14) and 0 < z1 < 2. B
Set Kne = {u € Ac : po(x, ) < ulz) < @.(x,)), v € Ry, u satisfies
(29.)} and define T . : Ky — CO(@JF) by

(Txcu)(z) ( f f Lu(t), v (b)) dt ds),
(cf.

where € € {4+, —}, A > 0. Then
U0 = e, ) = (),
) =), T (@) = (Thol))(@)
for € R4, A > 0 and € € {+,—}. Then the limits
lim ug\ng( ) = uc(x, ), hm U( )(m) =v:(x, \)

n—o0

(28)

Lemma 3) T : Ky — Kx. Next, set

exist forr € Ry, A >0 and € € {+,—}.
Let 0 < A1 < A2 and € = + (for ¢ = —, the proof is similar). Then
iz, A1) < o2, A2), Dy(x, A1) < @y (z,A2) and for each ag,ap € Ay
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with a;(x) < ae(x) in R4 we have

(T, +2)(2) = (T, +01)(2)

1 x 1 S ,
=W (AQ Of o) J F(t,ag(t),aQ(t))dtds>

L F(t,al(t),a’l(t))dtds>

_W;1<A1 q(s) ¢

S

1
(€

A1
'(€)

q(l 5 [ PPt 00(1).05(1)) = M (1,01 (1) 4 1)) de s
1

o~
O%H
O\M

> —— | [F(taa(t), a5(t) = F(t, aa(t), (1)) dt ds > 0

OHM

q(s)

S

N

and therefore uf\?)+(x) < ug\z)Jr(w) and Ug\?)_f_(l‘) < Uf\z)+(x) for x € Ry,

n € N. Hence
U+(.%',)\1) SU+($,)\2), ’U+(IL',A1) §U+($,)\2), $€@+-
If r(zg, A1) = r(xo, \2) for an zy > 0, where r is either u; or v, then

(ri(x) =r(x,N;), 1 =1,2)

ri(zo) = Wi <)\1 ji Ft,r(t), 7, (1)) dt ds>
0

F(t,ra(t), r5(t)) dt ds) = ro(x9),

—~~ =

which is a contradiction. So w4
for x € Ry.

x, A1) < u(z,A2) and vy (z, A1) < vy(x, A2)

THEOREM 8. Let [°(1/q(s))ds < oo and assumptions (Hy)—(Hg) be
satisfied. Then for a € R — {0}, there exists a unique Ao > 0 such that (14)
has a (necessarily unique) solution u(x, \g) with lim,_, u(z, \g) = a.

Proof. By Theorem 6, (14) has a unique solution u4(z,\) € Ay and
a unique solution u_(x,\) € A_ for each A > 0 and the two finite limits
lim, oo uy(z,A) (> 0) and lim, o u_(z,\) (< 0) exist by Theorem 4.
Define

g (V) = lim uy(z,)), g (A) = lim u_(z,))

for A > 0. Then g4 : (0,00) — (0,00) and g_ : (0,00) — (—00,0). In
view of Theorem 7, g is increasing on (0,00) and g_ is decreasing on
(0,00). If for example, g4 (A1) = g+ (A2) for some 0 < A; < Ag, then setting
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ri(x) = uy(z, \;) for x € Ry we have 71(x) < ro(z) in Ry, hence

_ |
g+<A1>—W+1<A1 [ —
0

Tl
-1
<wi'(x f o
This is a contradiction. Consequently, g, is strictly increasing and g_ is
strictly decreasing.

To prove our theorem, it is enough to show that g, and g_ map (0, c0)
onto (0,00) and (—o00,0), respectively. We prove, for example, that g
maps (0,00) onto itself. First, from ¢ (z,A) < uy(z,A) < @, (2, ) we
see that limy o+ g+(A) = 0 and limy_,o g4+(A) = oco. Next, assume, on
the contrary, that limy_yx,_ g+(\) < limy_,, g+(\) for Ay > 0. Setting
v1(z) = limy_x,_ uq (2, A) and va(x) = limy_ 5, u4 (2, A) for z > 0, we get
v1 # ve. Using the Lebesgue dominated convergence theorem as A — Ag_
and A — A\g4 in the equality (r)(z) = uy(x,\) for (z,\) € Ry x (0,00))

_1 xT 1 S ,
ra(z) = W1 ()\0 6[ o) Of F(t,rA(t),rA(t))dtds>,

F(t,ri(t),r1(t)) dt ds)

Ft, ra(t), ry(0)) dt ds) = g4 ().

we see that
xr 1 S
vi (@ :W_1<)\ —— | F(t,v(t),vi(t dtds), x>0,1=1,2.
(z) n oofq(s)of( (), vi(t))

Therefore v; and vy are solutions of (14) for A = )\, and consequently
v1 = vy. This is a contradiction.
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