ANNALES POLONICI MATHEMATICI LXI.1 (1995)

Necessary and sufficient conditions for generalized convexity

by JANUSZ KRZYSZKOWSKI (Kraków)

Abstract. We give some necessary and sufficient conditions for an n-1 times differentiable function to be a generalized convex function with respect to an unrestricted *n*-parameter family.

1. Introduction. A family F of continuous real-valued functions φ defined on an open interval (a, b) is said to be an *n*-parameter family on (a, b) (see [1] and [5]) if for any distinct points x_1, \ldots, x_n in (a, b) and any numbers y_1, \ldots, y_n there exists exactly one $\varphi \in F$ satisfying

$$\varphi(x_i) = y_i, \quad i = 1, \dots, n.$$

Throughout the paper we assume $n \geq 2$.

Let F be an *n*-parameter family on (a, b). Following [5] we say that a function ψ continuous on (a, b) is strictly F-convex (F-convex, strictly F-concave, F-concave) on (a, b) if for any points $a < x_1 < \ldots < x_n < b$ the unique $\varphi \in F$ determined by

(1)
$$\varphi(x_i) = \psi(x_i), \quad i = 1, \dots, n,$$

satisfies the inequalities

$$(-1)^{n+i}\varphi(x) < (\leq, >, \geq) \ (-1)^{n+i}\psi(x), \quad x \in (x_i, x_{i+1}),$$

for i = 0, 1, ..., n, where $x_0 := a$ and $x_{n+1} := b$.

The above inequalities can be rewritten as

(2)
$$\operatorname{sgn}(\psi(x) - \varphi(x)) = \operatorname{sgn}\left(\prod_{i=1}^{n} (x - x_i)\right), \quad x \in (a, b),$$

1991 Mathematics Subject Classification: Primary 26A51.

[77]

Key words and phrases: generalized convexity, unrestricted n-parameter family.

for strict convexity and

$$\operatorname{sgn}(\psi(x) - \varphi(x)) = -\operatorname{sgn}\Big(\prod_{i=1}^{n} (x - x_i)\Big), \quad x \in (a, b)$$

for strict concavity.

A family F of C^{n-1} functions on (a, b) is called an *unrestricted n-para*meter family (or briefly an H_n -family) on (a, b) (see [3]) if for any distinct $x_1, \ldots, x_k \in (a, b)$, any positive integers $\lambda_1, \ldots, \lambda_k$ such that $\lambda_1 + \ldots + \lambda_k = n$, and any numbers $y_i^{\mu_i}$, where $i = 1, \ldots, k$, $\mu_i = 0, \ldots, \lambda_i - 1$, there exists exactly one $\varphi \in F$ satisfying

(3)
$$\varphi^{\mu_i}(x_i) = y_i^{\mu_i}, \quad i = 1, \dots, k, \ \mu_i = 0, \dots, \lambda_i - 1,$$

where

$$\varphi^0(x) := \varphi(x), \quad \varphi^l(x) : \frac{d^l \varphi(x)}{dx^l} \quad \text{for } l = 1, 2, \dots$$

This notation will be used throughout the paper.

It is evident that any H_n -family on (a, b) is an *n*-parameter family on (a, b). Therefore we may consider the generalized convexity with respect to H_n -families. To begin with we introduce the following definitions:

Let F be an H_n -family on (a, b) and let ψ be n-1 times differentiable on (a, b). Let i_1, \ldots, i_k be positive integers such that $i_1 + \ldots + i_k = n$. The function ψ will be said to satisfy the condition $W_n(i_1, \ldots, i_k; F)$ (resp. $\widetilde{W}_n(i_1, \ldots, i_k; F)$) on (a, b) if for any $a < x_1 < \ldots < x_k < b$,

$$\operatorname{sgn}(\psi(x) - \varphi(x)) = \operatorname{sgn}\left(\prod_{l=1}^{k} (x - x_{i})^{i_{l}}\right), \quad x \in (a, b) \text{ (resp. } x \in (x_{1}, x_{k})),$$

where $\varphi \in F$ is determined by

(4)
$$\varphi^{j_l}(x_l) = \psi^{j_l}(x_l), \quad l = 1, \dots, k, \ j_l = 0, \dots, i_l - 1.$$

The function ψ will be said to satisfy the condition $K_n(i_1, \ldots, i_k; F)$ (resp. $\widetilde{K}_n(i_1, \ldots, i_k; F)$) on (a, b) if for any $a < x_1 < \ldots < x_k < b$,

$$\operatorname{sgn}(\psi(x) - \varphi(x)) = -\operatorname{sgn}\left(\prod_{l=1}^{k} (x - x_i)^{i_l}\right), \quad x \in (a, b) \text{ (resp. } x \in (x_1, x_k)),$$

where $\varphi \in F$ is determined by (4).

We will use the symbol $\varphi(x_1^{i_1}, \ldots, x_k^{i_k}; \psi; \cdot)$ to denote the function $\varphi \in F$ satisfying (4).

It is well known (see [3]) that ψ is strictly *F*-convex on (a, b) iff for any $a < x_1 < \ldots < x_n < b$ the function φ determined by (1) satisfies (2) on (x_1, x_n) . This means that ψ satisfies the condition $W_n(1^{(n)}; F)$ on (a, b) iff ψ satisfies the condition $\widetilde{W}_n(1^{(n)}; F)$ on (a, b). Here $1^{(n)}$ stands for $1, \ldots, 1$.

It is of interest to know whether the conditions $W_n(i_1, \ldots, i_k; F)$ are equivalent to strict *F*-convexity.

The case n = 2 was considered by D. Brydak [2]. He has proved that if F is an H_2 -family on (a, b) and ψ is differentiable on (a, b), then ψ is strictly F-convex on (a, b) iff ψ satisfies $W_2(2; F)$ on (a, b).

The case n = 3 was considered by the author in [4]. The theorem in [4] reads as follows: Let F be an H_3 -family on (a, b) and let ψ be twice differentiable on (a, b). Then the conditions

• ψ is strictly *F*-convex on (a, b);

• ψ satisfies $W_3(1,2;F)$ on (a,b);

• ψ satisfies $W_3(3; F)$ on (a, b);

• ψ satisfies $W_3(2, 1; F)$ on (a, b);

are equivalent.

We will prove the following two theorems: Let F be an H_n -family on (a, b) and let ψ be n - 1 times differentiable on (a, b).

1. If ψ is strictly *F*-convex on (a, b), then for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$, ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b).

2. If ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b) for some $i_1, \ldots, i_k \in \{1, 2, 3\}$ such that $i_1 + \ldots + i_k = n$, then ψ is strictly *F*-convex on (a, b).

2. Lemmas

LEMMA 1. Let f and g be defined and k times differentiable in a neighbourhood of a point x_0 and let

$$f^{i}(x_{0}) = g^{i}(x_{0}), \quad i = 0, 1, \dots, k - 1.$$

(i) If there exists a sequence $\{x_n\}$ such that $x_n \to x_0^+$ and $f(x_n) \ge g(x_n)$ for n = 1, 2, ..., then $f^k(x_0) \ge g^k(x_0)$.

(ii) If there exists a sequence $\{x_n\}$ such that $x_n \to x_0^-$ and $f(x_n) \ge g(x_n)$ for n = 1, 2, ..., then $(-1)^k f^k(x_0) \ge (-1)^k g^k(x_0)$.

(iii) If there exists a sequence $\{x_n\}$ such that $x_n \to x_0^+$ (or $x_n \to x_0^-$) and $f(x_n) \ge g(x_n) \ge 0$ for $n = 1, 2, ..., and f^i(x_0) = 0$ for i = 0, 1, ..., k, then $g^k(x_0) = 0$.

We omit an easy proof.

The two lemmas below are easy consequences of the definitions of $W_n(i_1,\ldots,i_k;F)$ and $K_n(i_1,\ldots,i_k;F)$.

LEMMA 2. Let i_1, \ldots, i_k be positive integers such that $i_1 + \ldots + i_k = n$. Then the following conditions are equivalent:

• If G_1 is an H_n -family on (a, b), ψ_1 is n-1 times differentiable on (a, b)and ψ_1 is strictly G_1 -convex on (a, b), then ψ_1 satisfies $W_n(i_1, \ldots, i_k; G_1)$ on (a, b). • If G_2 is an H_n -family on (a, b), ψ_2 is n-1 times differentiable on (a, b)and ψ_2 is strictly G_2 -concave on (a, b), then ψ_2 satisfies $K_n(i_1, \ldots, i_k; G_2)$ on (a, b).

LEMMA 3. Under the assumptions of Lemma 2 the following conditions are equivalent:

• If G_1 is an H_n -family on (a, b), ψ_1 is n-1 times differentiable on (a, b)and ψ_1 satisfies $W_n(i_1, \ldots, i_k; G_1)$ on (a, b), then ψ_1 is strictly G_1 -convex on (a, b).

• If G_2 is an H_n -family on (a, b), ψ_2 is n-1 times differentiable on (a, b)and ψ_2 satisfies $K_n(i_1, \ldots, i_k; G_2)$ on (a, b), then ψ_2 is strictly G_2 -concave on (a, b).

The proofs of the next lemmas are not so simple.

LEMMA 4. Let F be an H_n -family on (a, b) and let ψ be n-1 times differentiable on (a, b). If ψ satisfies $\widetilde{W}_n(n-1, 1; F)$ and $\widetilde{W}_n(1, n-1; F)$ on (a, b), then ψ satisfies $W_n(n; F)$ on (a, b).

Proof. We have to show that for any $x_0 \in (a, b)$,

$$\operatorname{sgn}(\psi(x) - \varphi_1(x)) = \operatorname{sgn}((x - x_0)^n), \quad x \in (a, b)$$

where $\varphi_1(x) := \varphi(x_0^n; \psi; x), x \in (a, b)$. We prove this equality on (x_0, b) ; the proof for (a, x_0) is analogous.

It suffices to show that

$$\psi(x) > \varphi_1(x), \quad x \in (x_0, b).$$

Assume that this inequality does not hold. Then two cases are possible:

1. $\psi(x) \ge \varphi_1(x)$ for $x \in (x_0, b)$ and $\psi(c) = \varphi_1(c)$ for a $c \in (x_0, b)$; 2. $\psi(c) < \varphi_1(c)$ for a $c \in (x_0, b)$.

1. It is easily seen that $\varphi(x_0^{n-1}, c^1; \psi; x) = \varphi_1(x)$ for $x \in (a, b)$. Since ψ satisfies $\widetilde{W}_n(n-1, 1; F)$ on (a, b), this gives $\psi(x) < \varphi_1(x)$ for $x \in (x_0, c)$, which contradicts 1.

2. Set

$$\varphi_2(x) := \varphi(x_0^{n-1}, c^1; \psi; x), \quad x \in (a, b).$$

Since ψ satisfies $\widetilde{W}_n(n-1,1;F)$ on (a,b), we have

(5)
$$\psi(x) < \varphi_2(x), \quad x \in (x_0, c).$$

It follows from the definitions of φ_1 , φ_2 and from $\psi(c) < \varphi_1(c)$ that

(6)
$$\varphi_1^i(x_0) = \varphi_2^i(x_0), \quad i = 0, 1, \dots, n-2,$$

(7)
$$\varphi_1(c) > \varphi_2(c).$$

We conclude from (6) and (7) that $\varphi_1(x) \neq \varphi_2(x)$ for $x \neq x_0$, because $\varphi_1, \varphi_2 \in F$ and F is an H_n -family on (a, b), whence $\varphi_1(x) > \varphi_2(x)$ for

 $x \in (x_0, b)$, and finally, $\psi(x) < \varphi_2(x) < \varphi_1(x)$ for $x \in (x_0, c)$, by (5). We can rewrite the last inequalities as follows:

$$0 < \varphi_1(x) - \varphi_2(x) < \varphi_1(x) - \psi(x), \quad x \in (x_0, c).$$

Applying Lemma 1 for $f := \varphi_1 - \psi$, $g := \varphi_1 - \varphi_2$ and k := n - 1 we get $g^{n-1}(x_0) = 0$, and consequently, $\varphi_1^{n-1}(x_0) = \varphi_2^{n-1}(x_0)$. Combining this with (6) we obtain

$$\varphi_1^i(x_0) = \varphi_2^i(x_0), \quad i = 0, 1, \dots, n-1.$$

Since F is an H_n -family on (a, b), $\varphi_1(x) = \varphi_2(x)$ for $x \in (a, b)$, contrary to (7). This proves the lemma.

LEMMA 5. Let F and φ be as in Lemma 4. If for every $k \in \{2, \ldots, n\}$ and for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$, φ satisfies $\widetilde{W}_n(i_1, \ldots, i_k; F)$ on (a, b), then for every $k \in \{1, \ldots, n\}$ and for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$, φ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b).

Proof. It follows from Lemma 4 that φ satisfies $W_n(n; F)$ on (a, b). Since φ satisfies $\widetilde{W}_n(1^{(n)}; F)$ on (a, b), it also satisfies $W_n(1^{(n)}; F)$ on (a, b). This means that we need only consider $k \in \{2, \ldots, n-1\}$.

Fix $k \in \{2, \ldots, n-1\}$ and positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$. We now prove that φ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b), i.e., for any $a < x_1 < \ldots < x_k < b$,

(8)
$$\operatorname{sgn}(\psi(x) - \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x)) = \operatorname{sgn}\left(\prod_{j=1}^k (x - x_j)^{i_j}\right)$$

for $x \in (a,b)$. Since ψ satisfies $\widetilde{W}_n(i_1,\ldots,i_k;F)$ on (a,b), (8) holds on (x_1,x_k) . We now show (8) holds on (x_k,b) ; the proof for (a,x_1) is analogous. It suffices to prove that

(9)
$$\psi(x) > \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x), \quad x \in (x_k, b).$$

Set $\varphi_1(x) := \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x), x \in (a, b).$

Assume that (9) does not hold and consider, as in the proof of Lemma 4, two cases:

1.
$$\psi(x) \ge \varphi_1(x)$$
 for $x \in (x_k, b)$ and $\psi(c) = \varphi_1(c)$ for a $c \in (x_k, b)$;
2. $\psi(c) < \varphi_1(c)$ for a $c \in (x_k, b)$.

1. Let
$$i_k = 1$$
 and $\varphi_2(x) := \varphi(x_1^{i_1}, \dots, x_{k-1}^{i_{k-1}}, c^1; \psi; x)$ for $x \in (a, b)$. Hence
(10) $\psi(x) < \varphi_2(x), \quad x \in (x_{k-1}, c),$

because ψ satisfies $W_n(i_1, \ldots, i_{k-1}, 1; F)$ on (a, b). By the definitions of φ_1, φ_2 and from the equality $\psi(c) = \varphi_1(c)$ we get

J. Krzyszkowski

$$\varphi_1^{j_l}(x_l) = \varphi_2^{j_l}(x_l), \quad l = 1, \dots, k-1, \ j_l = 0, \dots, i_l - 1, \varphi_1(c) = \varphi_2(c).$$

Therefore $\varphi_1(x) = \varphi_2(x)$ for $x \in (a, b)$. Combining this with (10) we obtain $\psi(x) < \varphi_1(x)$ for $x \in (x_k, c)$, contrary to 1. If $i_k > 1$, then considering the function $\varphi(x_1^{i_1}, \ldots, x_{k-1}^{i_{k-1}}, x_k^{i_k-1}, c^1; \psi; x)$ we get the same contradiction as for $i_k = 1$.

2. Let $i_k = 1$. Then there is a $p \in \{1, \dots, k-1\}$ such that $i_p > 1$. Set $\varphi_3(x) := \varphi(x_1^{i_1}, \dots, x_{p-1}^{i_{p-1}}, x_p^{i_p-1}, x_{p+1}^{i_{p+1}}, \dots, x_k^{i_k}, c^1; \psi; x), \quad x \in (a, b).$

Since ψ satisfies $\widetilde{W}_n(i_1, \ldots, i_k; F)$ and $\widetilde{W}_n(i_1, \ldots, i_{p-1}, i_p - 1, i_{p+1}, \ldots, i_k, 1; F)$ on (a, b), it follows that

(11)
$$\psi(x) < \varphi_1(x), \quad x \in (x_{k-1}, x_k),$$

(12)
$$\psi(x) < \varphi_3(x), \quad x \in (x_k, c).$$

From the definitions of φ_1 and φ_3 and from the inequality $\psi(c) < \varphi_1(c)$, it may be concluded that

(13)
$$\begin{aligned} \varphi_1^{j_l}(x_l) &= \varphi_3^{j_l}(x_l), \quad l \in \{1, \dots, k\} \setminus \{p\}, \ j_l = 0, \dots, i_l - 1, \\ \varphi_1^{j_p}(x_p) &= \varphi_3^{j_p}(x_p), \quad j_p = 0, \dots, i_p - 2, \end{aligned}$$

(14) $\varphi_1(c) > \varphi_3(c).$

We deduce from (13) and (14) that $\varphi_1(x) \neq \varphi_3(x)$ for $x \in (a, b) \setminus \{x_1, \ldots, x_k\}$; hence and from (14) we have $\varphi_1(x) > \varphi_3(x)$ for $x \in (x_k, b)$. Combining this with (12) we obtain

(15)
$$\psi(x) < \varphi_3(x) < \varphi_1(x), \quad x \in (x_k, c).$$

It follows from (11), (15) and from the equality $\psi(x_k) = \varphi_1(x_k)$ that $\psi^1(x_k) = \varphi_1^1(x_k)$. We can rewrite (15) as

$$0 < \varphi_1(x) - \varphi_3(x) < \varphi_1(x) - \psi(x), \quad x \in (x_k, c).$$

Applying Lemma 1 for $f := \varphi_1 - \psi$, $g := \varphi_1 - \varphi_3$, k := 1 and for $x_0 := x_k$ we get $g^1(x_k) = 0$. Hence $\varphi_1^1(x_k) = \varphi_3^1(x_k)$. From this and from (13), we conclude that $\varphi_1(x) = \varphi_3(x)$ for $x \in (a, b)$, which is impossible by (14).

Let $i_k > 1$. Put

$$\varphi_4(x) := \varphi(x_1^{i_1}, \dots, x_{k-1}^{i_{k-1}}, x_k^{i_k-1}, c^1; \psi; x), \quad x \in (a, b).$$

Analysis similar to that in the case where $i_k = 1$ shows that

$$\psi(x) < \varphi_4(x) < \varphi_1(x), \quad x \in (x_k, c)$$

and $\varphi_1^{i_k-1}(x_k) = \varphi_4^{i_k-1}(x_k)$, by Lemma 1. Hence, we have $\varphi_1(x) = \varphi_2(x)$ for $x \in (a, b)$, which gives the same contradiction as for $i_k = 1$. This ends the proof.

LEMMA 6. Let F and ψ be as in Lemma 4. Assume that for every $j \in \{1, \ldots, n-1\}$ and for any points $a < x_1 < \ldots < x_k < b \ (k := n-j+1),$ (16) $\operatorname{sgn}(\psi(x) - \varphi(x_1^j, x_2^1, \ldots, x_k^1; \psi; x))$

$$= \operatorname{sgn}((x - x_1)^j (x - x_2) \dots (x - x_k))$$

for $x \in (a, x_k)$. Then for every $i \in \{1, \ldots, n-1\}$, ψ satisfies $W_n(i, 1^{(n-i)}; F)$ on (a, b).

The proof is similar to the proof of Lemma 5 for $i_k = 1$, so we omit it.

LEMMA 7. Let F and ψ be as in Lemma 4. If ψ is strictly F-convex on (a,b), then for every $i \in \{1,\ldots,n\}$, ψ satisfies $W_n(i,1^{(n-i)};F)$ on (a,b).

Proof. The proof is by induction on n. It follows from Lemma 4 (cf. [2]) that the lemma holds for n = 2. Assume that it holds for n - 1 $(n \ge 3)$. Let F be an H_n -family on (a, b), let ψ be n - 1 times differentiable on (a, b), and suppose that ψ is strictly F-convex on (a, b).

First we prove that ψ satisfies $W_n(i, 1^{(n-i)}; F)$ on (a, b) for $i = 1, \ldots, n-1$. To do this, it suffices to show that the assumptions of Lemma 6 hold. If j = 1, then k = n and for every $a < x_1 < \ldots < x_n < b$, (16) holds on (a, b), because ψ is strictly *F*-convex on (a, b). Fix $j \in \{2, \ldots, n-1\}$ and $a < x_1 < \ldots < x_k < b$ (k = n - j + 1). We will prove (16) on (a, x_k) . Set

$$G_1 := \{ \varphi|_{(a,x_k)} : \varphi \in F, \ \varphi(x_k) = \psi(x_k) \}, \quad \psi_1 := \psi|_{(a,x_k)}.$$

It is easy to check that G_1 is an H_{n-1} -family on (a, x_k) and ψ_1 is strictly G_1 -concave on (a, x_k) . Hence, from the inductive assumption and from Lemma 2, we conclude that ψ_1 satisfies $K_{n-1}(j, 1^{(n-j-1)}; G_1)$ on (a, x_k) . This implies

(17)
$$\operatorname{sgn}(\psi_1(x) - \overline{\varphi}(x))$$

= $-\operatorname{sgn}((x - x_1)^j (x - x_2) \dots (x - x_{k-1})), \quad x \in (a, x_k).$

where $\overline{\varphi} \in G_1$ is determined by the conditions

$$\overline{\varphi}^{l}(x_{1}) = \psi_{1}^{l}(x_{1}), \quad l = 0, \dots, j - 1,$$

$$\overline{\varphi}(x_{p}) = \psi_{1}(x_{p}), \quad p = 2, \dots, k - 1.$$

It follows from the definitions of G_1, ψ_1 , and $\overline{\varphi}$ that

$$\overline{\varphi}(x) = \varphi(x_1^j, x_2^1, \dots, x_k^1; \psi; x), \quad x \in (a, x_k)$$

$$\psi_1(x) = \psi(x), \quad x \in (a, x_k)$$

Therefore, we can rewrite (17) as

$$sgn(\psi(x) - \varphi(x_1^j, x_2^1, \dots, x_k^1; \psi; x)) = -sgn((x - x_1)^j (x - x_2) \dots (x - x_{k-1})), \quad x \in (a,$$

Combining this with $x - x_k < 0$ for $x \in (a, x_k)$ we get (16) on (a, x_k) .

 x_k).

The proof will be completed as soon as we can show that ψ satisfies $W_n(n;F)$ on (a,b). To do this, it is sufficient, by Lemma 4 (we have already proved that ψ satisfies $W_n(n-1,1;F)$ on (a,b)), to prove that ψ satisfies $\widetilde{W}_n(1,n-1;F)$ on (a,b). Let $a < x_1 < x_2 < b$. We have to show that

(18)
$$\operatorname{sgn}(\psi(x) - \varphi(x_1^1, x_2^{n-1}; \psi; x))$$

= $\operatorname{sgn}((x - x_1)(x - x_2)^{n-1}), \quad x \in (x_1, x_2).$

Define

 $G_2 := \{\varphi|_{(x_1,b)} : \varphi \in F, \ \varphi(x_1) = \psi(x_1)\}, \quad \psi_2 := \psi|_{(x_1,b)}.$

Obviously, G_2 is an H_{n-1} -family on (x_1, b) and ψ_2 is strictly G_2 -convex on (x_1, b) . Hence, from the inductive assumption we deduce that ψ_2 satisfies $W_{n-1}(n-1;G_2)$ on (x_1, b) . An analysis similar to that used in the first part of the proof shows that

$$\operatorname{sgn}(\psi(x) - \varphi(x_1^1, x_2^{n-1}; \psi; x)) = \operatorname{sgn}((x - x_2)^{n-1}), \quad x \in (x_1, b).$$

Combining this with $x - x_1 > 0$ for $x \in (x_1, b)$ we get (18), which completes the proof of the lemma.

3. Main results. In this section we give necessary and sufficient conditions for strict convexity with the use of the conditions $W_n(i_1, \ldots, i_k; F)$. First we prove that if ψ is strictly *F*-convex, then ψ satisfies every condition $W_n(i_1, \ldots, i_k; F)$.

THEOREM 1. Let F be an H_n -family on (a, b) and let ψ be n-1 times differentiable on (a, b). If ψ is strictly F-convex on (a, b), then for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$, ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b).

Proof. The proof is by induction on n. It follows from Lemma 4 (cf. [2]) that the statement holds for n = 2. Assume it holds for $2, \ldots, n-1$ $(n \ge 3)$.

Let F and ψ be as in the statement of the theorem. By Lemma 5, it suffices to show that for every $k \in \{2, \ldots, n\}$ and for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$, ψ satisfies $\widetilde{W}_n(i_1, \ldots, i_k; F)$ on (a, b). Since $k \ge 2$, $i_1 \le n-1$. If $i_1 = n-1$, then k = 2 and $i_2 = 1$. By Lemma 7, ψ satisfies $W_n(n-1,1;F)$ on (a,b). Therefore we need only consider the case $i_1 \le n-2$.

Fix $k \in \{2, \ldots, n\}$, positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$ and $i_1 \leq n-2$, and points $a < x_1 < \ldots < x_k < b$. If we prove that

(19)
$$\operatorname{sgn}(\psi(x) - \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x)) = \operatorname{sgn}\left(\prod_{j=1}^{\kappa} (x - x_j)^{i_j}\right), \quad x \in (x_1, x_k),$$

the assertion follows. Put

$$G_1 := \{\varphi|_{(x_1,b)} : \varphi \in F, \ \varphi^j(x_1) = \psi^j(x_1), \ j = 0, \dots, i_1 - 1\}$$

$$\psi_1 := \psi|_{(x_1,b)}.$$

It is easily seen that G_1 is an H_{n-i_1} -family on (x_1, b) . By Lemma 7, ψ satisfies $W_n(i_1, 1^{(n-i_1)}; F)$ on (a, b). Consequently, ψ_1 is strictly G_1 -convex on (x_1, b) . Hence and from the inductive assumption we see that ψ_1 satisfies $W_{n-i_1}(i_2, \ldots, i_k; G_1)$ on (x_1, b) . This implies that

(20)
$$\operatorname{sgn}(\psi_1(x) - \varphi(x)) = \operatorname{sgn}\left(\prod_{j=2}^k (x - x_j)^{i_j}\right), \quad x \in (x_1, b).$$

where $\varphi \in G_1$ is determined by the conditions

$$\varphi^{j_l}(x_l) = \psi^{j_l}(x_l), \quad l = 2, \dots, k, \ j_l = 0, \dots, i_l - 1.$$

It follows from the definitions of G_1 , φ and ψ_1 that

$$\begin{aligned} \varphi(x) &= \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x), \quad x \in (x_1, b), \\ \psi_1(x) &= \psi(x), \quad x \in (x_1, b). \end{aligned}$$

Therefore, we can rewrite (20) as

$$\operatorname{sgn}(\psi(x) - \varphi(x_1^{i_1}, \dots, x_k^{i_k}; \psi; x)) = \operatorname{sgn}\left(\prod_{j=2}^k (x - x_j)^{i_j}\right), \quad x \in (x_1, b).$$

Since $(x - x_1)^{i_1} > 0$ for $x \in (x_1, b)$, we get (19), which completes the proof.

Now we will be concerned with sufficient conditions for strict convexity.

THEOREM 2. Let F and ψ be as in Theorem 1. If ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b) for some $i_1, \ldots, i_k \in \{1, 2, 3\}$ such that $i_1 + \ldots + i_k = n$, then ψ is strictly F-convex on (a, b).

To prove this theorem we need the following

LEMMA 8. Let G be an H_r -family on (c,d) $(r \ge 4)$ and let ψ be r-1times differentiable on (c,d). If ψ satisfies $W_r(i_1,\ldots,i_k;G)$ on (c,d), where $i_1,\ldots,i_k \in \{1,2,3\}, i_1+\ldots+i_k = r, i_k \ne 1$ and Theorem 2 holds for $n = n_1 := i_2 + \ldots + i_k$, then ψ satisfies $W_r(i_1,\ldots,i_{k-1},i_k-1,1;G)$ on (c,d).

Proof. Fix $c < x_1 < \ldots < x_k < x_{k+1} < d$ and set

$$\varphi_1(x) := \varphi(x_1^{i_1}, \dots, x_{k-1}^{i_{k-1}}, x_k^{i_k-1}, x_{k+1}^1; \psi; x), \quad x \in (c, d)$$

If we prove that

(21)
$$\operatorname{sgn}(\psi(x) - \varphi_1(x)) = \operatorname{sgn}\left((x - x_k)^{i_k - 1}(x - x_{k+1})\prod_{l=1}^{k-1}(x - x_l)^{i_l}\right)$$

for $x \in (c, d)$, the assertion follows. Put

$$F := \{\varphi|_{(x_1,d)} : \varphi \in G, \ \varphi^j(x_1) = \psi^j(x_1), \ j = 0, \dots, i_1 - 1\},\$$

$$\psi_1 := \psi|_{(x_1,d)}.$$

Obviously, F is an H_{n_1} -family on (x_1, d) . The function ψ_1 satisfies $W_{n_1}(i_2, \ldots, i_k; F)$ on (x_1, d) , because ψ satisfies $W_r(i_1, \ldots, i_k; G)$ on (c, d). Since Theorem 2 was assumed to hold for $n = n_1, \psi_1$ is strictly F-convex on (x_1, d) . By Theorem 1, ψ satisfies $W_{n_1}(i_2, \ldots, i_k - 1, 1; F)$ on (x_1, d) . It follows that

(22) $\operatorname{sgn}(\psi_1(x) - \overline{\varphi}(x))$

$$= \operatorname{sgn}\left((x - x_k)^{i_k - 1} (x - x_{k+1}) \prod_{l=2}^{k-1} (x - x_l)^{i_l} \right), \quad x \in (x_1, d),$$

where $\overline{\varphi} \in F$ is determined by the conditions

$$\overline{\varphi}^{j_l}(x_l) = \psi_1^{j_l}(x_l), \qquad l = 2, \dots, k-1, \ j_l = 0, \dots, i_l - 1, \overline{\varphi}^{j_k}(x_k) = \psi_1^{j_k}(x_k), \qquad j_k = 0, \dots, i_k - 2, \overline{\varphi}(x_{k+1}) = \psi_1(x_{k+1}).$$

By the definition of $\overline{\varphi}$, ψ_1 and F we have

$$\overline{\varphi}(x) = \varphi_1(x), \quad \psi_1(x) = \psi(x), \quad x \in (x_1, d).$$

Combining these with (22) we get (21) on (x_1, d) , because $(x - x_1)^{i_1} > 0$ for $x \in (x_1, d)$. We only have to show that (21) holds on (c, x_1) . To do this, consider

$$\varphi_2(x) := \varphi(x_1^{i_1}, \dots, x_{k-1}^{i_{k-1}}, x_k^{i_k}; \psi; x), \quad x \in (c, d).$$

Since ψ satisfies $W_r(i_1, \ldots, i_k; G)$ on (c, d),

(23)
$$\operatorname{sgn}(\psi(x) - \varphi_2(x)) = \operatorname{sgn}\left(\prod_{l=1}^{\kappa} (x - x_l)^{i_l}\right), \quad x \in (c, d).$$

Hence

(24)
$$(-1)^r \varphi_2(x) < (-1)^r \psi(x), \quad x \in (c, x_1).$$

By the definition of φ_1 we have $\varphi_1(x_{k+1}) = \psi(x_{k+1})$, and $\psi(x_{k+1}) > \varphi_2(x_{k+1})$ from (23). Therefore

(25)
$$\varphi_1(x_{k+1}) > \varphi_2(x_{k+1}).$$

From the definitions of φ_1 and φ_2 we get

$$\varphi_1^{j_l}(x_l) = \varphi_2^{j_l}(x_l), \quad l = 1, \dots, k-1, \ j_l = 0, \dots, i_l - 1,$$

$$\varphi_1^{j_k}(x_k) = \varphi_2^{j_k}(x_k), \quad j_k = 0, \dots, i_k - 2,$$

and $i_1 + \ldots + i_{k-1} + (i_k - 1) = r - 1$. Hence, from the definition of an H_r -family ($\varphi_1, \varphi_2 \in G$) and from (25) we obtain

$$(-1)^{r-1}\varphi_1(x) > (-1)^{r-1}\varphi_2(x), \quad x \in (c, x_1),$$

which gives

$$(-1)^r \varphi_1(x) < (-1)^r \varphi_2(x), \quad x \in (c, x_1).$$

Combining this with (24) we see that

$$(-1)^r \varphi_1(x) < (-1)^r \psi(x), \quad x \in (c, x_1),$$

which implies (21) on (c, x_1) and the proof is complete.

Proof of Theorem 2. For n = 2 and n = 3 the theorem is true. Assume that it holds for $2, 3, \ldots, n-1$ $(n \ge 4)$.

Let F and ψ be as in the statement of the theorem. By Lemma 8, it suffices to consider the case $i_k = 1$.

If we prove that ψ satisfies $\widetilde{W}_n(1^{(n)}; F)$ on (a, b), the assertion follows. Fix $a < x_1 < \ldots < x_n < b$ and let $\varphi_1(x) := \varphi(x_1^1, \ldots, x_n^1; \psi; x)$ for $x \in (a, b)$. We have to show that

(26)
$$\operatorname{sgn}(\psi(x) - \varphi_1(x)) = \operatorname{sgn}\left(\prod_{l=1}^n (x - x_l)\right), \quad x \in (x_1, x_n).$$

Set

$$G := \{\varphi|_{(a,x_n)} : \varphi \in F, \ \varphi(x_n) = \psi(x_n)\}, \quad \psi_1 := \psi|_{(a,x_n)}.$$

Obviously, G is an H_{n-1} -family on (a, x_n) . The function ψ_1 satisfies $K_{n-1}(i_1, \ldots, i_{k-1}; G)$ on (a, x_n) , because ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b) and $i_k = 1$. Hence, from the inductive assumption and from Lemma 3 we conclude that ψ_1 is strictly G-concave on (a, x_n) . This implies that

(27)
$$\operatorname{sgn}(\psi(x) - \varphi_1(x)) = -\operatorname{sgn}\Big(\prod_{l=1}^{n-1} (x - x_l)\Big), \quad x \in (a, x_n).$$

Since $x - x_n < 0$ for $x \in (a, x_n)$, (27) gives (26) and the proof is complete.

One may ask whether Theorem 2 is true if some $i_j > 3$. We have not been able to settle this question.

Theorems 1 and 2 may be summarized as follows:

THEOREM 3. Let F and ψ be as in Theorem 1. If ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b) for some $i_1, \ldots, i_k \in \{1, 2, 3\}$ such that $i_1 + \ldots + i_k = n$, then ψ satisfies $W_n(i_1, \ldots, i_k; F)$ on (a, b) for any positive integers i_1, \ldots, i_k such that $i_1 + \ldots + i_k = n$.

Similar results can be obtained for strict concavity.

Using an analogous reasoning one can get similar results for convexity and concavity.

J. Krzyszkowski

References

- E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), 363–371.
- [2] D. Brydak, Application of generalized convex functions to second order differential inequalities, in: General Inequalities 4 (4th International Conference on General Inequalities, Oberwolfach, 1983), W. Walter (ed.), Birkhäuser, 1984, 297–305.
- P. Hartman, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo (2) 7 (1958), 123-142, MR 21#4211.
- [4] J. Krzyszkowski, On the generalized convex functions with respect to the threeparameters family of functions, Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Prace Matematyczne XII, 115 (1987), 47–61.
- [5] L. Tornheim, On n-parameter families of functions and associated convex functions, Trans. Amer. Math. Soc. 69 (1950), 457-467.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY PODCHORĄŻYCH 2 30-084 KRAKÓW, POLAND

> Reçu par la Rédaction le 2.12.1993 Révisé le 15.5.1994 et 8.12.1994