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Continuous subadditive processes and formulae for
Lyapunov characteristic exponents

by Wojciech S lomczyński (Kraków)

Abstract. Asymptotic properties of various semidynamical systems can be examined
by means of continuous subadditive processes. To investigate such processes we consider
different types of exponents: characteristic, central, singular and global exponents and we
study their properties. We derive formulae for central and singular exponents and show
that they provide upper bounds for characteristic exponents. The concept of conjugate
processes introduced in this paper allows us to find lower bounds for characteristic expo-
nents. We also give applications to continuous cocycles.

0. Introduction. Let θ : M → M be a diffeomorphism of a compact
d-dimensional manifold M . Then the Lyapunov characteristic exponent of
a vector v at a point x ∈ M is defined as the upper limit of the sequence
n−1 log ‖Dxθ

n(v)‖ as n→∞. It is easy to show that varying v with x fixed
we obtain at most d different numbers which form the so-called Lyapunov
spectrum at x [34]. Its maximal element (the top Lyapunov exponent) is
equal to the upper limit of n−1 log ‖Dxθ

n‖ as n→∞ [24]. Since 1968, when
Oseledec proved his Multiplicative Ergodic Theorem [34], the characteristic
Lyapunov exponents have become one of the basic tools in the study of
smooth dynamical systems. The Oseledec theorem says, among other things,
that if µ is an ergodic measure for θ then for µ-almost every x ∈ M the
Lyapunov spectrum is the same and the Lyapunov exponents are strict , i.e.,
the upper limits in their definition can be replaced by limits. This allows us
to speak of the Lyapunov exponents of a fixed ergodic measure µ.

Only in case when µ is absolutely continuous with respect to the Lebesgue
measure on M , the Oseledec theorem provides precise information on the
Lyapunov exponents at the points of a “large” subset of M . The situation
is quite different for dissipative systems where each invariant measure is
singular. This leads to questions which are the starting point of this paper:
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1. How in general do the Lyapunov exponents depend on the initial point
of the phase space with respect to which they are calculated?

2. How are they connected with the Lyapunov exponents of ergodic mea-
sures on M?

3. When do strict exponents exist?

Similar questions already appeared in the work of Oseledec [34].
These questions seem to have a practical meaning. In recent years many

papers were devoted to the computation of Lyapunov exponents by numer-
ical methods or in physical experiments ([3], [4], [13], [16], [19], [41], [47]).
The calculated exponents are a priori related to the choice of the initial
point of the trajectory. It would be interesting to find the relation of the
computed quantities to those coming from the Oseledec theorem (see also
remarks in [24, Section 10(A)]). In some cases the experiments seem to sup-
port the conjecture that the Lyapunov spectrum does not depend on the
choice of (almost every) initial point ([1], [3], [16], [21], [41]).

An answer to Questions 1–3 may also involve one of the assumptions of
the Kaplan–Yorke conjectures. The fact that strict characteristic exponents
exist and the Lyapunov spectrum is the same for almost all initial points
with respect to the Lebesgue measure on M is concerned with the conjecture
on the equality of the Lyapunov dimension and probabilistic dimension of
strong attractors, as stated in [17], [18] (the statement in [2] is slightly differ-
ent). Another conjecture says that if all initial points in some neighbourhood
of a strong attractor yield the same Lyapunov spectrum then the Lyapunov
dimension of this attractor is typically equal to its capacity [17], [18].

It seems that the answer to Questions 1–3 for the top Lyapunov ex-
ponent is the following. For many smooth dynamical systems the upper
limit of n−1 log ‖Dxθ

n‖ as n → ∞ is equal to the supremum of the top
Lyapunov exponents of measures which are accumulation points of the se-
quence {n−1

∑n−1
i=0 δθix}n∈N, and the lower limit is equal to the correspond-

ing infimum (we call such x normal). In some special cases the sequence
n−1 log ‖Dxθ

n‖ converges to the supremum of the top Lyapunov exponents
of measures with supports in the closure of the trajectory of x. In both sit-
uations we get precise information about the top Lyapunov exponents. Let
us mention that interesting results in this direction were obtained in the
generic case by Mañé [32] and Millonshchikov [33] by different methods. We
can also obtain information about smaller exponents by considering so-called
wedge product flows [24]. If the dissipative ergodic theorem [6] holds for a
given smooth dynamical system (as e.g. for Axiom A dynamical systems
[5] and for the Lorenz attractor [7]) and the above conjecture on Lyapunov
exponents is true then the assumptions of the Kaplan–Yorke conjecture are
satisfied.
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In this paper we provide a general method of dealing with the problems
mentioned above based on the notion of continuous subadditive process.
Such processes appear naturally in the theory of Lyapunov exponents. De-
fine Φ : M ×N→M(d), where M(d) denotes the space of all d×d matrices,
by Φ(x, n) = Dxθ

n for x ∈ X and n ∈ N; then Φ is a continuous cocy-
cle over θ (see Definition 2.2). Further, define gn : M → R ∪ {−∞} by
gn(x) = log ‖Φ(x, n)‖ for x ∈M and n ∈ N; then the sequence {gn}n∈N is a
continuous subadditive process (see Definition 2.1). Hence the study of Lya-
punov exponents reduces to examining the convergence of {gn/n}n∈N. The
idea of applying subadditive processes to the study of Lyapunov exponents
is not new. For the first time it appeared in Ranghunathan–Ruelle’s proof
of the Oseledec theorem [36], [37]. There are three reasons why we use it in
the present paper.

Firstly, the obtained results can be applied not only to smooth dynam-
ical systems on finite-dimensional manifolds but also in all the cases where
the existence of Lyapunov exponents follows from Kingman’s subadditive
ergodic theorem. Such situations are encountered in semidynamical systems
in Hilbert spaces [38], stochastic linear differential equations [24], stochastic
dynamical systems [9], topological dynamical systems in metric spaces [25],
random transformations [26] and one-dimensional cellular automata [40] (1).

Secondly, this method allows us to get generalizations and uniform proofs
of various results obtained previously by Bylov et al. [8], Eden [14], [15],
Johnson et al. [24], Thieullen [44], Walters [46] and others. We can see
that subadditivity plays a crucial role in the study of Lyapunov expo-
nents.

Thirdly, our method leads to new results, even in the case of smooth
dynamical systems. Let us mention the formulae for central and singular ex-
ponents (Theorems 4.1, 4.5 and 5.17) which indicate a way for the numerical
computation of the Lyapunov exponents of invariant measures.

To study various properties of continuous subadditive processes we gen-
eralize some old definitions including those of central, singular and global
exponents (Definition 2.4) and we introduce a new notion of conjugate pro-
cesses (Definition 5.1), which serves here as a basic tool.

This paper is organized as follows:
In §1 we collect some basic facts concerning semidynamical systems,

invariant measures and subadditive processes which will be needed in the
sequel. Also, we state a simple topological lemma which will be used fre-
quently.

(1) Added in proof . Recently, R. Vilela Mendes used the Kingman theorem in his
construction of the quantum characteristic exponents (Phys. Lett. A 187 (1994), 299–
301).
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In §2 we define continuous subadditive processes. In addition to the
commonly used characteristic exponents we introduce central, singular and
global exponents, central numbers and functions. These notions allow us to
relate the exponents calculated at a point with those coming from invariant
measures.

We devote §3 to the study of relations between various types of expo-
nents. The main result (Theorem 3.2) says that central and singular expo-
nents provide upper bounds for characteristic exponents. An essential step
in the proof is an inequality for continuous subadditive processes (Proposi-
tion 3.1), which is also used in the next sections.

In §4 we present two methods of calculating central, singular and global
exponents. The first one allows us to find the value of an exponent from
the behaviour of the continuous subadditive process on the trajectory of the
given point and hence it can have a practical meaning. The second method
uses the notion of central functions and numbers.

In §5 we introduce the concept of conjugate processes. We use it to obtain
the invariance of characteristic exponents, lower bounds for these exponents,
and equalities between characteristic and central or singular exponents. Also,
we give some formulae for central and singular exponents.

In §6 we show how one can derive the continuous parameter versions of
the results obtained in the preceding sections.

In this paper we deal with pointwise convergence of the sequence
{gn/n}n∈N. Uniform convergence is treated in [42]. In that paper we give
several versions of the mean subadditive ergodic theorem in the space of
continuous functions on a compact set.

The material of this article forms a part of the author’s Ph.D. thesis
(Jagiellonian University, 1990).

1. Preliminaries

A. Semidynamical systems. Throughout X will denote a separable met-
ric space, θ a continuous map from X to X and Θ := {θn : n ∈ N} (2)
the discrete semidynamical system generated by θ. We write B(X) for the
Banach space of all bounded real-valued continuous functions on X with the
norm ‖f‖ := sup{|f(x)| : x ∈ X} and C(X) for the space of all real-valued
continuous functions on X.

We say that a set A ⊂ X is (positively) invariant if θ(A) ⊂ A, and that
a function f : X → R ∪ {−∞} is invariant if f(θx) = f(x) for all x ∈ X.

For x ∈ X the sets γ+(x) := {θn(x) : n ∈ N}, H+(x) := cl(γ+(x)) and
L+(x) := {y ∈ X : θnk(x) → y (k → ∞) for some subsequence (nk)k∈N

(2) We use N to denote both {1, 2, . . .} and {0, 1, 2, . . .}, depending on the context.
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of N} are called the positive orbit through x, positive hull and positive limit
set (or ω-limit set) of x respectively. The following lemma will be useful.

Lemma 1.1 ([39]). For every x ∈ X,

(i) L+(x) and H+(x) are closed and invariant ,
(ii) L+(θnx) = L+(x) for all n ∈ N, and
(iii) L+(x) =

⋂
k∈N H

+(θkx).

General assumption: In this paper we only consider semidynam-
ical systems that are Lagrange stable, i.e., H+(x) is compact for every
x ∈ X.

Note that if a system is Lagrange stable then L+(x) is also compact for
every x ∈ X.

B. Space of measures. We denote byM(X) the space of all Borel proba-
bility measures on X; we refer to them briefly as measures. For each x ∈ X
we denote by δx the Dirac measure at x. Let µ∈M(X). The smallest closed
set C such that µ(C) = 1 is called the support of µ and denoted by suppµ.
If A ⊂ X then we write M(X,A), or M(A) when no confusion can arise,
for the set of all measures with support contained in A.

The well-known theorem of Alexandrov says that B∗(X), the dual of
B(X), is isomorphic to the space of all finitely additive regular set functions
on the Borel σ-field of X [12]. Each measure on X is regular so we can treat
M(X) as a subset of B∗(X) and endow it with the w∗-topology relative to
M(X). This means that a net {µα} ⊂ M(X) converges to µ ∈ M(X) if
and only if

∫
f dµα converges to

∫
f dµ for all f ∈ B(X). The Alexandrov

theorem also implies that if µ and ν are measures on X, then µ = ν if and
only if

∫
f dµ =

∫
f dν for every f ∈ B(X). The topological space M(X)

can be given a separable metric [35].
The following lemma is easy to prove.

Lemma 1.2. Let A be a closed subset of X. Then µ ∈ M(X,A) if and
only if µ(A) = 1. If A is compact then so is M(X,A).

R e m a r k. Assume that A is a compact subset of X, {µα} is a net in
M(A) and µ ∈ M(A). If {µα} converges to µ then

∫
f dµα converges to∫

f dµ for every continuous, not necessarily bounded, function f : X → R.
This can be proved by considering first the function f |A, and then its con-
tinuous and bounded extension coming from the Tietze theorem.

C. Invariant measures. Let µ ∈ M(X) and let Θ be a discrete semi-
dynamical system on X. We say that µ is invariant if θµ = µ, where θµ
is the measure on X given by θµ(A) = µ(θ−1(A)), and denote by MΘ(X)
the set of all invariant measures on X. If A ⊂ X we write MΘ(A) for
MΘ(X)∩M(X,A). We say that A ⊂ X is of total measure if µ(A) = 1 for
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all µ ∈ MΘ(X). We call an invariant measure ergodic if each measurable
invariant set has either measure 0 or 1. It is easy to show thatMΘ(X) is a
closed and convex subset of M(X).

Now we introduce two set-valued functions which will play an important
role in the sequel.

Definition 1.3. Let x ∈ X. We define

V (x) :=
{
µ ∈M(X) : µ is an accumulation point of

{
n−1

n−1∑
i=0

δθix

}
n∈N

}
,

S(x) :=MΘ(H+(x)).

Lemma 1.4. If A ⊂ X is compact and invariant , (xn)n∈N is a se-
quence in A and µ is an accumulation point of {n−1

∑n−1
i=0 δθixn

}n∈N, then
µ ∈MΘ(A).

P r o o f. Let µ be the limit of the sequence {n−1
k

∑nk−1
i=0 δθiyk

}k∈N, where
yk = xnk

for k ∈ N. As all the elements of that sequence belong to M(A)
so does µ by Lemma 1.2. Thus it is enough to prove that µ is invariant. By
the Alexandrov theorem, it is sufficient to show that

∫
f dµ =

∫
f dθµ for

every f ∈ B(X). We have∫
f dθµ =

∫
f ◦ θ dµ = lim

k→+∞
n−1
k

nk−1∑
i=0

f(θi+1yk)

= lim
k→+∞

n−1
k

{ nk−1∑
i=0

f(θiyk) + f(θnkyk)− f(yk)
}
.

The first term converges to
∫
f dµ and the last two to 0 since |n−1

k (f(θnkyk)−
f(yk))| ≤ 2n−1

k ‖f‖A.

R e m a r k. The above proof shows that if the assumptions of Lemma 1.4
are satisfied then

∫
f dµ =

∫
f dθµ for every continuous, not necessarily

bounded, function f : X → R.

Proposition 1.5. For every x ∈ X,

(i) V (x) ⊂ S(x),
(ii) V (x) and S(x) are non-empty compact subsets of M(X),
(iii) S(x) =MΘ(L+(x)),
(iv) V (θkx) = V (x) and S(θkx) = S(x) for each k ∈ N.

P r o o f. (i) In Lemma 1.4, take A = H+(x) and xn = x for all n ∈ N.
(ii) By Lemma 1.2, S(x) is compact as the intersection of the closed set

MΘ(X) and the compact set M(H+(x)). Next, V (x) is closed and non-
empty, being the set of all accumulation points of a sequence contained in
the compact setM(H+(x)). Hence S(x) is non-empty and V (x) is compact.
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(iii) Let µ ∈MΘ(X). By Lemma 1.2, it is enough to show that µ(H+(x))
= 1 if and only if µ(L+(x)) = 1. Since H+(x) ⊂ θ−k(H+(θkx)) for each
k ∈ N, Lemma 1.1(iii) gives

µ(L+(x)) = µ
( ⋂
k∈N

H+(θkx)
)

= lim
k→+∞

µ(H+(θkx)) ≥ µ(H+(x)),

which proves (iii).
(iv) Let x ∈ X, k ∈ N. To prove V (x) = V (θkx) it is sufficient to show

that

lim
u→+∞

n−1
u

nu−1∑
i=0

(δθix − δθi+kx) = 0

for every subsequence (nu)u∈N of N. We have

lim
u→+∞

∣∣∣n−1
u

nu−1∑
i=0

(f(θix)−f(θi+kx))
∣∣∣= lim

u→+∞

∣∣∣n−1
u

k−1∑
i=0

(f(θix)−f(θi+nux))
∣∣∣

≤ lim
u→+∞

n−1
u

k−1∑
i=0

2‖f‖H+(x) = 0

for all f ∈ B(X), as required. To show the second equality, observe that by
(iii) and Lemma 1.1(ii), we have S(x) = MΘ(L+(x)) = MΘ(L+(θkx)) =
S(θkx).

The next proposition connects the limits of the ergodic averages with
the sets of measures introduced above. In the proof we use the following
classical lemma.

Lemma 1.6 (the subadditive lemma). Let (an)n∈N be a subadditive se-
quence in R ∪ {−∞} (i.e. an+k ≤ an + ak for all k, n ∈ N). Then an/n
converges to inf{an/n : n ∈ N}.

Proposition 1.7. Let x ∈ X, let A be a non-empty compact invariant
set , and let g ∈ C(X). Then

(i) lim sup
n→+∞

n−1
n−1∑
i=0

g(θix) = sup
{∫

g dµ : µ ∈ V (x)
}
,

lim inf
n→+∞

n−1
n−1∑
i=0

g(θix) = inf
{∫

g dµ : µ ∈ V (x)
}
,

(ii) lim
n→+∞

max
A

n−1
n−1∑
i=0

g ◦ θi = inf
n∈N

max
A

n−1
n−1∑
i=0

g ◦ θi

= sup
{∫

g dµ : µ ∈MΘ(A)
}
,
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(iii) lim
n→+∞

sup
j∈N

n−1
n−1∑
i=0

g(θi+jx) = inf
n∈N

sup
j∈N

n−1
n−1∑
i=0

g(θi+jx)

= sup
{∫

g dµ : µ ∈ S(x)
}
,

(iv) in (iii) “supj∈N” can be replaced by “lim supj→+∞”.

P r o o f. (i) Put l := lim supn→+∞ n−1
∑n−1
i=0 g(θix) and s := sup{

∫
g dµ :

µ ∈ V (x)}. Let µ ∈ V (x). Then there exists a subsequence (nk)k∈N of N
such that µ = limk→+∞ n−1

k

∑nk−1
i=0 δθix. Hence∫

g dµ = lim
k→+∞

n−1
k

nk−1∑
i=0

g(θix) ≤ l.

Thus s ≤ l. On the other hand, there exists a subsequence (nu)u∈N of
N such that l = limu→+∞ n−1

u

∑nu−1
i=0 g(θix). Set µu := n−1

u

∑nu−1
i=0 δθix ∈

M(H+(x)) for u ∈ N. By Lemma 1.2, passing to a subsequence if necessary,
assume that (µu)u∈N converges to some µ ∈M(H+(x)). Clearly, µ ∈ V (x).
We have

l = lim
u→+∞

n−1
u

nu−1∑
i=0

g(θix) =
∫
g dµ ≤ s,

which proves the first equality of (i). Applying it to h = −g we get the
second equality.

(ii) First note that the sequence an := maxA
∑n−1
i=0 g ◦ θi for n ∈ N is

subadditive. By Lemma 1.6, limn→+∞ n−1an = infn∈N n
−1an, which proves

the first equality of (ii). Next, suppose that µ ∈ MΘ(A). Then
∫
f dµ ≤

maxA f for f ∈ C(X). Applying this to fn := n−1
∑n−1
i=0 g ◦ θi for n ∈ N,

we get
∫
g dµ =

∫
fn dµ ≤ n−1an. Therefore sup{

∫
g dµ : µ ∈ MΘ(A)} ≤

infn∈N n
−1an. To prove the reverse inequality take, for each n ∈ N, xn ∈

A such that n−1an = n−1
∑n−1
i=0 g(θixn). Set µn := n−1

∑n−1
i=0 δθixn

. By
Lemma 1.2 we can assume that (µn) converges to some ν. Then ν ∈MΘ(A)
by Lemma 1.4. Hence

lim
n→+∞

n−1an = lim
n→+∞

n−1
n−1∑
i=0

g(θixn) =
∫
g dν

≤ sup
{∫

g dµ : µ ∈MΘ(A)
}
,

which completes the proof of (ii).
(iii) follows immediately from (ii), by taking A := H+(x).
(iv) As in the proof of (ii) the first equality follows from the subadditivity
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of {lim supj→+∞
∑n−1
i=0 g(θi+jx)}n∈N. From (iii) we obtain

lim
n→+∞

lim sup
j→+∞

n−1
n−1∑
i=0

g(θi+jx)

≤ lim
n→+∞

sup
j∈N

n−1
n−1∑
i=0

g(θi+jx) = sup
{∫

g dµ : µ ∈ S(x)
}
.

To prove the reverse inequality observe that for µ ∈ S(x),∫
f dµ ≤ sup{f(z) : z ∈ L+(x)} = sup

{
f(z) : z ∈

⋂
k∈N

H+(θkx)
}

= inf
k∈N

sup
j≥k

f(θjx) = lim sup
j→+∞

f(θjx)

for f ∈ C(X). Applying this to fn := n−1
∑n−1
i=0 g ◦ θi we get the desired

result.

R e m a r k. The assertion (ii) can also be deduced from a more general
result of Crauel [11, Theorem 6]. Moreover, in the proof of (iv) we could
use [20, Proposition 3.9]. To make our exposition self-contained, we gave a
direct proof.

We shall also consider the semidynamical systems Θm generated by θm

for m ∈ N. Then Vm and Sm will denote the corresponding set-valued maps
connected with these systems.

D. Subadditive processes. The theory of measurable subadditive processes
was developed by J. F. C. Kingman who proved the celebrated subadditive
ergodic theorem [27]–[29]. Since then, it has been generalized in many differ-
ent directions (see [30] for details). Let us now recall some basic definitions
and results.

Definition 1.8 [37]. Let (Ω,Σ, µ) be a probability space, let θ : Ω→Ω
be a measurable µ-preserving map and let G := (gn)n∈N be a family of mea-
surable functions from Ω to R∪ {−∞}. We call G a measurable subadditive
process if the following two conditions are satisfied:

(a) (integrability) g+
1 = max(g1, 0) ∈ L1(Ω,µ),

(b) (subadditivity) gn+k ≤ gn+gk ◦θn µ-almost everywhere, for n, k ∈ N.

We say that G is additive if equality holds in (b). Note that an additive
process must be of the form

∑n−1
i=0 g ◦ θi for some measurable g : Ω →

R ∪ {−∞}.

Definition 1.9. In the above situation we define

Λ(µ) := inf
n∈N

n−1
∫
gn dµ.
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If we deal with more than one subadditive process we write ΛG(µ) instead
of Λ(µ).

It is easy to deduce from (b) that the sequence {
∫
gn dµ}n∈N is subad-

ditive. Applying Lemma 1.6 we get

Proposition 1.10. Λ(µ) = limn→+∞ n−1
∫
gn dµ.

The following is a version of the Kingman subadditive ergodic theorem
given by Ruelle [37].

Theorem 1.11 (Subadditive ergodic theorem). Let G := (gn)n∈N be
a measurable subadditive process. Then there exists a measurable function
g : Ω → R ∪ {−∞} such that

(i) g+ ∈ L1(Ω,µ),
(ii) g is θ-invariant ,
(iii) g = limn→+∞ n−1gn µ-a.e.,
(iv)

∫
g dµ = Λ(µ).

If additionally θ is ergodic in (Ω,Σ, µ), then g = Λ(µ) µ-a.e.

Note that if G is a measurable subadditive process with respect to each
µ ∈MΘ(X) then we can choose g in the above theorem independent of µ.

Most of the present paper is independent of the Kingman subadditive
ergodic theorem.

Proposition 1.12. Let G be a measurable subadditive process with respect
to each µ ∈MΘ(X). Then

Λ(µ) =
∫
Λ(mx) dµ(x),

where x 7→ mx is the ergodic decomposition relative to Θ (see [26]).

P r o o f. Let µ ∈MΘ(X). Then, by Theorem 1.11, we have

Λ(µ) =
∫
g dµ =

∫ ( ∫
g dmx

)
dµ(x) =

∫
Λ(mx) dµ(x).

E. A topological lemma. We conclude this section with the following
useful lemma.

Lemma 1.13. Let M be a compact topological space. If {Gm}m∈N is a
subadditive sequence of upper semicontinuous functions from M to R∪{−∞},
then

(i) inf
m∈N

m−1Gm(x) = lim
m→+∞

m−1Gm(x) =: G(x) for all x ∈M ,

(ii) inf
x∈M

G(x) = inf
m∈N

inf
x∈M

m−1Gm(x) = lim
m→+∞

inf
x∈M

m−1Gm(x),

(iii) max
x∈M

G(x) = inf
m∈N

max
x∈M

m−1Gm(x) = lim
m→+∞

max
x∈M

m−1Gm(x).
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P r o o f. (i) follows from Lemma 1.6. To prove (ii) fix N ∈ N. Put AN :=
max{Gj(x) : x ∈M , j = 0, . . . , N −1}. For each m ∈ N, there exist km ∈ N
and rm ∈ {0, . . . , N − 1} such that m = kmN + rm. Then

Gm(x) ≤ kmGN (x) +Grm(x) ≤ kmGN (x) +AN

for all x ∈M . Hence

lim sup
m→+∞

inf
x∈M

1
m
Gm(x) ≤ inf

x∈M

1
N
GN (x).

As N was arbitrary we get the desired result.
(iii) Note first that G is upper semicontinuous, being the infimum of a

sequence of upper semicontinuous functions. Hence G, as well as each Gn,
attain their suprema on M .

The second equality follows from the subadditivity of max{Gm(x) : x ∈
M} and Lemma 1.6. We put α := infm∈N maxx∈M m−1Gm(x). Applying
(i) we get maxx∈M G(x) ≤ α. To prove the reverse inequality, set Bm :=
{x ∈ M : Gm(x) ≥ mα} for m ∈ N. Since Gm is upper semicontinuous,
Bm is closed for each m ∈ N. Now we show that {Bm}m∈N has the finite
intersection property. Let m1, . . . ,mk ∈ N. Set n := m1 · . . . · mk. Then
n−1Gn ≤ min{m−1

i Gmi
: i = 1, . . . , k}. Hence ∅ 6= Bn ⊂

⋂k
i=1Bmi

. Thus
there exists x0 ∈ M such that Gm(x0) ≥ mα for each m ∈ N. Hence
G(x0) ≥ α and so max{G(x) : x ∈M} ≥ α.

2. Characteristic, central, singular and global exponents and
their basic properties

Definition 2.1. Let G := (gn)n∈N be a family of functions from X to
R∪ {−∞}. We say that G is a continuous subadditive process (c.s.p.) if the
following two conditions are satisfied:

(a) (continuity) gn is continuous for each n ∈ N,
(b) (subadditivity) gn+k ≤ gn + gk ◦ θn for n, k ∈ N.

We say that G is finite if it assumes only finite values.

It is clear that each continuous subadditive process satisfies the integra-
bility condition from Definition 1.8 and hence it is a measurable subadditive
process.

Definition 2.2. Let M(d) be the space of d× d matrices and Φ a map
from X × N to M(d). We say that Φ is a continuous cocycle if

(i) Φ is continuous,
(ii) Φ satisfies the cocycle equality: Φ(x, n+ k) = Φ(θnx, k) ◦Φ(x, n) for

all x ∈ X and n, k ∈ N.
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In the present paper we consider continuous cocycles only, so we call
them briefly cocycles. Each cocycle generates a c.s.p. in the following way:

Proposition 2.3. Let gn : X → R ∪ {−∞} be given by gn(x) :=
ln ‖Φ(x, n)‖ for x ∈ X and n ∈ N, where ‖ ‖ is an arbitrary Banach al-
gebra norm in M(d) (we put ln 0 := −∞). Then (gn)n∈N is a c.s.p.

The proof is simple and is omitted.
The main subject of our work is the study of the convergence of the

sequence {n−1gn}n∈N for a c.s.p. (gn)n∈N. Now we introduce the quantities
which will be used to estimate the limit. We call them exponents meaning
the applications to the cocycles.

Definition 2.4. Suppose G := (gn)n∈N is a c.s.p., x ∈ X and A is a
non-empty closed invariant subset of X. We call

Λ(x) := lim inf
n→+∞

n−1gn(x) — the lower characteristic exponent at x,

Λ(x) := lim sup
n→+∞

n−1gn(x) — the upper characteristic exponent at x,

Ω(x) := inf{Λ(µ) : µ ∈ V (x)}— the lower central exponent at x,
Ω(x) := sup{Λ(µ) : µ ∈ V (x)}— the upper central exponent at x,
Σ(x) := sup{Λ(µ) : µ ∈ S(x)}— the singular exponent at x,
Σ(A) := sup{Λ(µ) : µ ∈MΘ(A)}— the global exponent of A.

Note that the singular exponent at x is equal to the global exponent of
the set H+(x). If the lower characteristic or central exponent is equal to the
corresponding upper one, we denote their common value by Λ(x) or Ω(x),
respectively, and we say that the exponent is strict .

The class of functions we now define provides upper bounds for charac-
teristic exponents (see Section 4).

Definition 2.5. Let G = (gn)n∈N be a c.s.p. and let R : N ×X → R.
We say that R is a central function if for each ε > 0 and x ∈ X there exists
D ∈ R such that

gn(θkx) ≤ D +
n+k−1∑
i=k

(R(i, x) + ε) for all n, k ∈ N.

We denote the set of all central functions by R. We write R0 for the subset
of R consisting of all central functions R such that R(·, x) is constant for
each x∈ X. Let r∈ R. We say that r is a central number of the set A if for
each ε > 0 there exists D ∈ R such that

gn(x) ≤ D + n(r + ε) for all n ∈ N and x ∈ A.
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The set of all central numbers of A is denoted by RA. Note that if r(x) is
a central number of H+(x) for each x ∈ X, then the function R defined by
R(n, x) := r(x) for n ∈ N and x ∈ X belongs to R0.

Now we describe the approximation method which allows us to reduce
the study of c.s.p.’s to the finite case.

Lemma 2.6. Let G := (gn)n∈N be a c.s.p. For each N ∈ N define

g(N)
n (x) := max(gn(x),−nN) for all x ∈ X and n ∈ N.

Then

(i) (g(N)
n )n∈N is a finite c.s.p. (we mark its exponents by the superscript

(N )),
(ii)

∫
g
(N)
n dµ ↓

∫
gn dµ (N → +∞) for all µ ∈M(X) and n ∈ N,

(iii) Λ(µ) = infN∈N Λ
(N)(µ) for each µ ∈MΘ(X),

(iv) Λ(x) = infN∈N Λ
(N)(x) and Λ(x) = infN∈N Λ

(N)(x) for each x ∈ X,
(v) Ω(x) = infN∈N Ω

(N)(x) and Ω(x) = infN∈N Ω
(N)(x) for each x ∈ X,

(vi) Σ(x) = infN∈N Σ
(N)(x) for each x ∈ X,

(vii) Σ(A) = infN∈N Σ
(N)(A) for each non-empty compact invariant

set A.

P r o o f. (i) is evident.
(ii) Let µ ∈M(X) and n ∈ N. We have∫

g(N)
n dµ =

∫
g(N)+
n dµ−

∫
g(N)−
n dµ =

∫
g+
n dµ−

∫
g(N)−
n dµ.

Now observe that
∫
g
(N)−
n dµ ↑

∫
g−n dµ (N → +∞) (by the Lebesgue mono-

tone convergence theorem).
(iii) Let µ ∈MΘ(X). Then by (ii) we have

Λ(µ) = inf
n∈N

∫
n−1gn dµ = inf

n∈N
inf
N∈N

∫
n−1g(N)

n dµ

= inf
N∈N

inf
n∈N

∫
n−1g(N)

n dµ = inf
N∈N

Λ(N)(µ).

(iv) For each N ∈ N, the function cN : R → R defined by cN (t) :=
max(t,−N) for t ∈ R is continuous and non-decreasing. Hence

Λ(N)(x) = lim inf
n→+∞

cN (n−1gn(x)) = cN (lim inf
n→+∞

n−1gn(x)) = cN (Λ(x)).

This implies the first equality of (iv). The second is proved analogously.
(v) Let now M be an arbitrary compact subset of MΘ(X). Let N ∈ N.

Define GN : M → R by

GN (µ) := NΛ(N)(µ) for µ ∈M.

It is easy to check that (GN )N∈N satisfies the assumptions of Lemma 1.13.
Setting M equal in turn to V (x), S(x) and MΘ(X), then applying (ii) and
Lemma 1.13(iii), we obtain (v),(vi), and (vii), respectively.
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Proposition 2.7. Suppose G := (gn)n∈N is a c.s.p., x ∈ X and A is a
non-empty compact invariant subset of X. Then

(i) in the definitions of central , singular and global exponents, “sup”
can be replaced by “max”,

(ii) Ω(x) = infm∈N inf{m−1
∫
gm dµ : µ ∈ V (x)},

(iii) Ω(x) = infm∈N max{m−1
∫
gm dµ : µ ∈ V (x)},

(iv) Σ(x) = infm∈N max{m−1
∫
gm dµ : µ ∈ S(x)},

(v) Σ(A) = infm∈N max{m−1
∫
gm dµ : µ ∈MΘ(A)},

(vi) in the above formulae, “ infm∈N” can be replaced by “ limm→+∞”.
(vii) Σ(A) = max{Λ(ν) : ν ∈MΘ(A), ν is ergodic }.

P r o o f. Let M be a compact subset of MΘ(X). Consider Gm : M →
R ∪ {−∞} defined by

Gm(µ) :=
∫
gm dµ for µ ∈M and m ∈ N.

If G is a finite c.s.p. then each Gm is continuous. In general, Gm is upper
semicontinuous, by Lemma 2.6(ii). Hence Gm attains its maximum on M . It
is easy to show that the sequence (Gm)m∈N is subadditive. By Lemma 1.13
we get

inf{Λ(µ) : µ ∈M} = inf
m∈N

inf
{
m−1
∫
gm dµ : µ ∈M

}
= lim

m→+∞
inf
{
m−1
∫
gm dµ : µ ∈M

}
and

max{Λ(µ) : µ ∈M} = inf
m∈N

max
{
m−1
∫
gm dµ : µ ∈M

}
= lim

m→+∞
max

{
m−1
∫
gm dµ : µ ∈M

}
.

Taking M equal in turn to V (x), S(x) and MΘ(A) we get (i)–(vi).
Now we prove (vii). It follows from (i) that there exists µ ∈MΘ(A) such

that Σ(A) = Λ(µ). From Proposition 1.12 we have Σ(A) =
∫
A
Λ(mx) dµ(x),

where x 7→ mx is the ergodic decomposition connected with Θ. Moreover,
Λ(mx) ≤ Σ(A) for all x ∈ A. Hence Λ(mx) = Σ(A), m-almost everywhere
on A, which gives (vii).

Theorem 2.8 (on invariance of exponents). Let G := (gn)n∈N be a c.s.p.,
x ∈ X and n ∈ N. Then

(i) Λ(x) ≤ Λ(θnx), Λ(x) ≤ Λ(θnx),
(ii) Ω(x) = Ω(θnx), Ω(x) = Ω(θnx),
(iii) Σ(x) = Σ(θnx).
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P r o o f. We have
Λ(x) = lim inf

k→+∞
k−1gk(x) = lim inf

k→+∞
(n+ k)−1gn+k(x)

≤ lim inf
k→+∞

(k−1gk(θnx) + k−1gn(x)) = Λ(θnx).

The proof of Λ(x) ≤ Λ(θnx) is analogous. The assertions (ii) and (iii) follow
from Proposition 1.5(iv).

The following simple example shows that the inequalities in (i) may be
strict, i.e., characteristic exponents need not be invariant.

Example 2.9. Let X be a compact space and Θ a semidynamical system
in X with an asymptotically stable fixed point x0 ∈ X. If W : X → R+ is
a strong Lyapunov function (i.e. W is continuous, W (x0) = 0, W (x) > 0
for x 6= x0, W (x) > W (θkx) for x 6= x0, k ∈ N) then gn(x) = −nW (x) for
x ∈ X, n ∈ N defines a c.s.p. with Λ(x) < Λ(θkx) for x 6= x0, k ∈ N.

In Section 5 we give a useful sufficient condition for the invariance of
characteristic exponents.

Let G be a c.s.p. and x ∈ X. We denote by G(x) the set of all accumu-
lation points of the sequence {n−1gn(x)}n∈N.

Proposition 2.10. Let G := (gn)n∈N be a c.s.p. and x ∈ X. Then
G(x) = [Λ(x), Λ(x)] and G(x) ⊂ R ∪ {−∞}.

P r o o f. It is clear that G(x) is closed. It is enough to show that it is
connected and does not contain +∞. First assume that gk(x) = −∞ for
some k ∈ N. Then gn(x) = −∞ for all n ≥ k. Hence Λ(x) = −∞ and
G(x) = {−∞}, which was to be proved. Next assume that gn(x) > −∞ for
every n ∈ N. Put cn := gn+1(x) − gn(x) for n ≥ 1, and c0 := g1(x). Then
cn ≤ ‖g1‖H+(x) for all n ∈ N. Now we need the following lemma which is a
modification of one used by Walters [46].

Lemma. If the sequence (cn)n∈N in R ∪ {−∞} is bounded from above
then the set of all accumulation points of {n−1

∑n−1
i=0 ci}n∈N is a connected

subset of R ∪ {−∞}.
Applying the lemma we get the desired result.

3. Relations between different exponents. Our main results are
based on the following inequality.

Proposition 3.1. Let G be a finite c.s.p., x ∈ X, and n,m ∈ N. Then

gn(x) ≤ m−1
n−1∑
i=0

gm(θix) + 3Bm,

where Bm := max{‖gk‖H+(x) : k = 1, . . . ,m}.
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P r o o f. First suppose that n ≥ m. We have

gn(x) = m−1
m−1∑
i=0

gn(x) ≤ m−1
m−1∑
i=0

(gn−m+i+1(x) + gm−i−1(θn−m+i+1x))

≤ m−1
m−1∑
i=0

gn−m+i+1(x) +Bm

≤ m−1
m−1∑
i=0

(gn−m+i+1(x)− gi(x)) + 2Bm,

where g0 := 0. Applying the identity
m−1∑
i=0

(ak+i − ai) =
k−1∑
i=0

(am+i − ai)

we see that

gn(x) ≤ m−1
n−m∑
i=0

(gm+i(x)− gi(x)) + 2Bm ≤ m−1
n−m∑
i=0

gm(θix) + 2Bm

= m−1
n−1∑
i=0

gm(θix)−m−1
n−1∑

i=n−m+1

gm(θix) + 2Bm

≤ m−1
n−1∑
i=0

gm(θix) + 3Bm,

as required.
Now consider the case n < m. We have gn(x) ≤ Bm and∣∣∣m−1

n−1∑
i=0

gm(θix)
∣∣∣ ≤ n

m
Bm ≤ Bm.

Hence

gn(x) ≤ m−1
n−1∑
i=0

gm(θix) + 2Bm.

Now we can prove the main result of this section.

Theorem 3.2 (upper bounds for characteristic exponents). Let G be a
c.s.p., x ∈ X and A be a non-empty compact invariant subset of X. Then

(i) Λ(x) ≤ Ω(x) ≤ Σ(x),
(ii) Λ(x) ≤ Ω(x),
(iii) Σ(A) = max{Λ(x) : x ∈ A},
(iv) Σ(x) = max{Λ(y) : y ∈ H+(x)}.
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P r o o f. First assume that G is finite. Let x ∈ X and m ∈ N. Applying
first Proposition 3.1 and then Proposition 1.7(i) we get

lim sup
n→+∞

n−1gn(x) ≤ lim sup
n→+∞

n−1
n−1∑
i=0

m−1gm(θix)

= max
{
m−1
∫
gm dµ : µ ∈ V (x)

}
.

Hence
Λ(x) ≤ inf

m∈N
max

{
m−1
∫
gm dµ : µ ∈ V (x)

}
,

which proves the first inequality of (i), by Proposition 2.7(iii). Using Lem-
ma 2.6(iv),(v) we can reduce the general case to the finite one. The proof of
(ii) is analogous. The second inequality in (i) follows from Proposition 1.5(i).

We now prove (iii). By (i), it is enough to show that Σ(A) ≤ max{Λ(x) :
x ∈ A}. From Proposition 2.7(vii) it follows that there exists ν ∈ MΘ(A)
such that ν is ergodic and Σ(A)=Λ(ν). Moreover, by Theorem 1.11, Λ(ν) =
Λ(x) for some x ∈ A, which completes the proof of (iii). Taking A = H+(x)
we obtain (iv).

R e m a r k. The inequalities between characteristic and central exponents
stated above correspond to the “easy half” of the proof of the Kingman
subadditive ergodic theorem [29]. Note, however, that the estimates used
there do not suffice to establish our result.

Now we give some examples to show that a lower characteristic or central
exponent need not be equal to the upper one and that the inequalities in
Theorem 3.2 may be strict.

Example 3.3. Set X = {0, 1} and θ(0) = θ(1) = 0. Define G := (gn)n∈N
by gn(0) = n and gn(1) =

∑n−1
i=0 εi for n ∈ N, where εi = 0, 1 for i ∈ N and

the sequence n−1
∑n−1
i=0 εi is divergent. Then it is easy to show that G is a

c.s.p. and Λ(1) < Λ(1). In [22], [23] and [46] we can find examples of c.s.p.’s
generated by cocycles for which the strict characteristic exponents do not
exist at some points.

Example 3.4. Let Θ be an arbitrary semidynamical system which is
minimal and not uniquely ergodic. Then there exist f ∈ C(X) and x ∈ X
such that the sequence n−1

∑n−1
i=0 f(θix) is divergent. If G is the additive

process generated by f then Λ(x) = Ω(x) < Ω(x) = Λ(x).

Example 3.5. Let X,Θ and G be as in Example 2.9. Then V (x) =
S(x) = {δx0} for x ∈ X. Hence Λ(x) = −W (x) < 0 = Ω(x) = Σ(x) for
x 6= x0.

Example 3.6. Let X={0, 1}N and let Θ be the one-sided shift. Consider
the two Bernoulli measures µ1 = B(1/3, 2/3), µ2 = B(1/2, 1/2), and g ∈
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C(X) such that
∫
g dµ1 <

∫
g dµ2. Take x0 ∈ X with V (x0) = {µ1} and

H+(x0) = X. Consider the additive process generated by g. Then Ω(x0) =
Λ(µ1) =

∫
g dµ1 and Σ(x0) = max{Λ(µ) : µ ∈ MΘ(X)} ≥

∫
g dµ2. Hence

Ω(x0) < Σ(x0).

Definition 3.7. Let G := (gn)n∈N be a c.s.p. We say that x ∈ X
is normal if Λ(x) = Ω(x) and Λ(x) = Ω(x). We call x ∈ X regular if
Λ(x) = Λ(x), i.e., the strict characteristic exponent at this point exists.

From the Kingman subadditive ergodic theorem it follows that the set
of all normal regular points is of total measure. If a process is additive then
each point is normal, by Proposition 1.7(i), but not necessarily regular, as
is seen from Example 3.4. In Section 5 we state some sufficient conditions
for all points to be normal or regular. One of the simplest conditions which
guarantees normality and regularity is the equicontinuity of {n−1gn}n∈N
together with the invariance of the characteristic exponent:

Proposition 3.8. Let G := (gn)n∈N be a finite c.s.p. Then

(i) if the functions {n−1gn}n∈N are equicontinuous then Λ and Λ are
continuous,

(ii) if Λ is continuous and invariant then Λ(x) = Ω(x) = Σ(x) for all
x ∈ X,

(iii) if Λ is continuous and invariant then Λ(x) = Ω(x) = Σ(x) for all
x ∈ X.

P r o o f. Let x ∈ X and ε > 0. Then there exists δ > 0 such that
|x − y| < δ implies |n−1gn(x) − n−1gn(y)| < ε for every y ∈ X and n ∈ N.
Hence, for all y ∈ X,

max(|Λ(x)− Λ(y)|, |Λ(x)− Λ(y)|) ≤ lim sup
n→+∞

|n−1gn(x)− n−1gn(y)| < ε.

If Λ (resp. Λ) is continuous and invariant, then it is constant on H+(x).
Now, (ii) and (iii) follow from Theorem 3.2.

Corollary 3.9. Let G := (gn)n∈N be a finite c.s.p. Suppose that the
functions {n−1gn}n∈N are equicontinuous and Λ is invariant. Then each x ∈
X is normal and regular. Moreover , the sequence {n−1gn}n∈N is uniformly
convergent.

P r o o f. The first assertion follows from Proposition 3.8. As the strict
characteristic exponent exists everywhere, the sequence {n−1gn}n∈N is point-
wise convergent. Now, the uniform convergence follows from equicontinu-
ity.

R e m a r k s. Theorem 3.2(iii) was proved independently by Thieullen
([44, Lemma 2.3.5]) in the general case and by Eden ([14, Theorem 3],
[15, Corollary 3.6]) for smooth semidynamical systems in separable Hilbert
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spaces. Methods developed in the present paper can be used to obtain an af-
firmative answer to Eden’s conjecture concerning relations between the local
and global Lyapunov dimension of an attractor ([14, p. 409, Question 1]).

4. Formulae for central, singular and global exponents. In this
section we give theorems which enable us to calculate the central and sin-
gular exponents at a point from the values of the c.s.p. on the trajectory of
that point. We also characterize central and singular exponents in terms of
central functions and numbers.

Theorem 4.1 (formulae for central exponents, I). Let G := (gn)n∈N be a
finite c.s.p. and x ∈ X. Then

(1) (i) Ω(x) = inf
m∈N

lim inf
k→+∞

(mk)−1
k−1∑
i=0

gm(θix),

(2) (ii) Ω(x) = inf
m∈N

lim sup
k→+∞

(mk)−1
k−1∑
i=0

gm(θix),

(iii) in (1) and (2), “ infm∈N” can be replaced by “ limm→+∞”.

P r o o f. The assertions follow immediately from Propositions 1.7(i)
and 2.7(ii), (iii).

R e m a r k. The theorem need not be true if G is not finite. Let X and Θ
be as in Example 3.3. Define G := (gn)n∈N by gn(0) = n and gn(1) = −∞
for n ∈ N. Then Ω(1) = Λ(δ0) = 1 but the right-hand sides of (1) and (2)
are −∞.

Let F : N→ R. We write F for lim supn→+∞ n−1
∑n−1
i=0 F (i).

Theorem 4.2. Let G := (gn)n∈N be a finite c.s.p. and x ∈ X. Then

(3) Ω(x) = inf{R(·, x) : R ∈ R}.

P r o o f. Let x ∈ X, R ∈ R and ε > 0. Then, applying (2), we obtain for
some D ∈ R,

Ω(x) ≤ inf
m∈N

lim sup
k→+∞

k−1
k−1∑
j=0

m−1
(
D +

m+j−1∑
i=j

(R(i, x) + ε)
)

= inf
m∈N

(
ε+m−1D +m−1 lim sup

k→+∞

m−1∑
i=0

(
k−1

k−1∑
j=0

R(i+ j, x)
))
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≤ ε+ inf
m∈N

m−1
m−1∑
i=0

(
lim sup
k→+∞

k−1
k−1∑
j=0

R(i+ j, x)
)

= ε+ inf
m∈N

m−1
m−1∑
i=0

R(·, x) = ε+R(·, x).

Hence Ω(x) ≤ inf{R(·, x) : R ∈ R}. To prove the opposite inequality we
define Rm : N×X → R by

Rm(k, x) := m−1gm(θkx) for k,m ∈ N and x ∈ X.
We show that Rm is central. Let x ∈ X and ε > 0. We put Dm := 3Bm,
where Bm is as in the assertion of Proposition 3.1. From Proposition 3.1 we
get

gn(θkx) ≤ m−1
n−1∑
i=0

gm(θi+kx) + 3Bm ≤
n+k−1∑
i=k

Rm(i, x) +Dm + ε,

as required. Applying Theorem 4.1(ii) we conclude that

inf{R(·, x) : R ∈ R} ≤ inf{Rm(·, x) : m ∈ N}

= inf
m∈N

lim sup
k→+∞

k−1
k−1∑
j=0

Rm(j, x)

= inf
m∈N

lim sup
k→+∞

k−1
k−1∑
j=0

m−1gm(θjx) = Ω(x).

Theorem 4.3 (formula for the global exponent). Let G := (gn)n∈N be a
c.s.p. and let A be a non-empty compact invariant subset of X. Then

(4) Σ(A) = inf
n∈N

max
A

n−1gn = lim
n→+∞

max
A

n−1gn.

P r o o f. First note that the sequence {maxA gn}n∈N is subadditive. Thus
the second equality follows from Lemma 1.6. To prove the first, assume that
G is finite. Set t := infn∈N maxA n−1gn. Then, for each n∈N, there is xn∈A
such that n−1gn(xn) ≥ t. Now, using Proposition 3.1, and then letting n→
+∞, we get t ≤

∫
m−1gm dµ for each m ∈ N and each accumulation point

µ of the sequence n−1
∑n−1
i=0 δθixn

. Hence t ≤ Λ(µ). Thus, by Lemma 1.4,
t ≤ sup{Λ(µ) : µ ∈MΘ(A)}. The reverse inequality is evident. This settles
the finite case. For arbitrary G, by Lemma 2.6(vii) we have

Σ(A) = inf
N∈N

Σ(N)(A) = inf
N∈N

inf
n∈N

max
A

n−1g(N)
n = inf

n∈N
max
A

n−1gn.

Theorem 4.4. Let G be a c.s.p. and let A be a non-empty compact in-
variant subset of X. Then

(5) Σ(A) = infRA.
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P r o o f. First assume that G is finite. Let r ∈ RA and ε > 0. Then there
is D ∈ R such that

max
A

n−1gn ≤ n−1D + r + ε

for all n ∈ N. Hence infn∈N maxA n−1gn≤r, and by Theorem 4.3, Σ(A) ≤ r.
To prove the reverse inequality put rm := maxAm−1gm for m ∈ N. We now
show that rm is a central number of A. Let x ∈ X, n ∈ N and ε > 0. By
Proposition 3.1, putting Dm := 3Bm, we get

gn(x) ≤ m−1
n−1∑
i=0

gm(θix) + 3Bm ≤ n(rm + ε) +Dm,

which means that rm ∈ RA. Finally, from Theorem 4.3 we have

infRA ≤ inf
m∈N

rm = Σ(A),

which was to be shown.
Now we show how to reduce the general case to the finite one. Let N ∈N

. We denote by R(N)
A the set of all central numbers of A for the process

{g(N)
n }n∈N. Then R(N)

A ⊂ RA. Hence, by Lemma 2.6(vii),

Σ(A) = inf
N∈N

Σ(N)(A) = inf
N∈N

infR(N)
A ≥ infRA.

Let now r ∈ RA. Then clearly r(N) = max(r,−N) ∈ R(N)
A . Therefore

Σ(A) = inf
N∈N

infR(N)
A ≤ inf

N∈N
inf{r(N) : r ∈ RA} = infRA.

Singular exponents can be calculated in many various ways as the fol-
lowing theorem shows.

Theorem 4.5 (formulae for singular exponents, I). Let G be a c.s.p. and
x ∈X. Then

(6) (i) Σ(x) = inf
m∈N

inf
k∈N

(mk)−1 sup
j∈N

k−1∑
i=0

gm(θi+jx),

(7) (ii) Σ(x) = inf
m∈N

sup
k∈N

m−1gm(θkx),

(8) (iii) Σ(x) = lim sup
m,k→+∞

m−1gm(θkx),

(iv) in (6), “ infm∈N” can be replaced by “ limm→+∞” or “ infk∈N”
by “ limk→+∞”, or “ supj∈N” by “lim supj→+∞” (also, all three
replacements, or any two of them, can be made simultaneously),

(v) in (7), “ infm∈N” can be replaced by “ limm→+∞” or “ supk∈N” by
“ lim supk→+∞” (or both).
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P r o o f. S t e p 1. First assume that G is finite. The assertions (i) and (iv)
follow immediately from Propositions 1.7(iii),(iv) and 2.7(iv),(vi). We have

lim sup
m→+∞

lim
k→+∞

sup
j∈N

k−1
k−1∑
i=0

Am,i+j ≤ lim sup
m→+∞

lim sup
k→+∞

Am,k(9)

≤ lim sup
m,k→+∞

Am,k ≤ lim sup
m→+∞

sup
k∈N

Am,k

for every double sequence {Am,k}m,k∈N in R ∪ {−∞}. Let x ∈ X. Put
Am,k := m−1gm(θkx) for m, k ∈ N. Then, by (6), Σ(x) is less than or
equal to the first term of (9). On the other hand, from Theorem 4.3 it
follows that Σ(x) is equal to the last term of (9). Hence all the terms in (9)
must be equal. This implies (iii) and, by the subadditivity of the sequence
{lim supk→+∞ gm(θkx)}m∈N, also (ii) and (v). Thus the proof of the finite
case is complete.

S t e p 2. Let G be an arbitrary c.s.p. and x ∈ X. It is enough to prove
that Σ(x) does not exceed the first term of (9), as the other arguments used
in step 1 work also in the general case. Let f : X → R∪{−∞} be continuous
and let µ ∈ S(x). Then∫

f dµ = inf
N∈N

∫
f (N) dµ ≤ inf

N∈N
lim sup
j→+∞

f (N)(θjx) = lim sup
j→+∞

f(θjx).

Applying this to f := k−1
∑k−1
i=0 m

−1gm(θix), for k,m ∈ N, we get the
desired result.

Theorem 4.6. Let G be a c.s.p. and x ∈ X. Then

(10) Σ(x) = inf{R(·, x) : R ∈ R0}.

P r o o f. The assertion follows immediately from Theorem 4.4.

R e m a r k s. (1) The results obtained in this section allow us to identify
the notions of exponents that come from the theory of linear differential
equations with those introduced in the present paper and hence justify our
terminology. In [8, pp.116–117] the authors define upper central and singular
exponents for a non-autonomous linear differential equation in Rd by the
formulae (3) and (10) (see also [45]). They show that (2) and (7) hold in
this case and prove an analogue of Theorem 3.2(i).

(2) For a c.s.p. generated by a cocycle the singular exponent can also
be defined as the top element of the continuous spectrum of the linear skew
product system associated with the cocycle. From [24, Theorem 2.3] it fol-
lows that this definition coincides with our general definition. In [24] it is
also shown that (8) holds in that case.

(3) Global exponents were introduced by means of formula (4) in the
paper of Constantin and Foiaş on attractors for the Navier–Stokes equa-
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tion [10]. In [43] Temam generalized this, considering characteristic and
global exponents for arbitrary smooth infinite-dimensional dynamical sys-
tems. He called them Lyapunov pointwise exponents and Lyapunov uniform
(or global) exponents respectively.

(4) In the proof of Theorem 4.3 we use ideas similar to those of Ledrap-
pier in the proof of a formula for the dilating dimension of the Lyapunov
spectrum ([31, Proposition 3]).

5. Conjugate processes. One of the main features which make subad-
ditive ergodic theory different from its additive counterpart is asymmetry.
In general, characteristic exponents are only subinvariant, we only have in-
equality between characteristic and central exponents and only some points
are regular, in contrast to the additive case. In this section we propose a new
method which allows us to improve these results, at least in some cases. We
introduce the notion of conjugate processes, which generalizes the concept
of an exact dominant of a measurable superadditive processes used in the
L1 case [30, p. 147].

In this section we consider finite c.s.p.’s only.

Definition 5.1. Suppose that G := (gn)n∈N and H := (hn)n∈N are
finite c.s.p.’s. We say that H is conjugate to G (or G and H are conjugate) if

hn + gn ≥ 0 for each n ∈ N.
Central and singular exponents of conjugate processes are related in the

following way.

Proposition 5.2. Let G := (gn)n∈N and H := (hn)n∈N be conjugate
finite c.s.p.’s. Then

(i) 0 ≤ ΛG(µ) + ΛH(µ) for µ ∈MΘ(X),
(ii) 0 ≤ ΩG(x)+ΩH(x) ≤ ΣG(x)+ΣH(x) ≤ ΣG(X)+ΣH(X) for x ∈ X.

P r o o f. Let µ ∈MΘ(X). We have

0 ≤ lim
n→+∞

∫
n−1(gn + hn) dµ

= lim
n→+∞

∫
n−1gn dµ+ lim

n→+∞

∫
n−1hn dµ = ΛG(µ) + ΛH(µ),

which proves (i). The assertion (ii) follows immediately from (i).

Definition 5.3. Let G := (gn)n∈N be a finite c.s.p. Suppose that H :=
(hn)n∈N is a finite c.s.p. conjugate to G. We say that H satisfies condition

(α) if gk ◦ θn ≤ gn+k + hn for all n, k ∈ N,
(β) if gn ≤ gn+k + hk ◦ θn for all n, k ∈ N,
(γ) if ΣG(X) +ΣH(X) = 0,
(δ) if ΣG(x) +ΣH(x) = 0 for all x ∈ X,
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(ε) if ΩG(x) +ΩH(x) = 0 for all x ∈ X,
(ζ) if ΛG(µ) + ΛH(µ) = 0 for all µ ∈MΘ(X),
(η) if the sequence {(gn+hn)/n}n∈N converges to 0, uniformly on each

non-empty compact invariant set, as n→ +∞.

Proposition 5.4. In the above situation the following implications hold :

(γ)⇒ (δ)⇒ (ε)⇒ (ζ)⇔ (η).

P r o o f. The first two implications follow directly from Proposition 5.2(ii).
We show that (ζ) implies (η). Let A be a non-empty compact invariant
set and µ ∈ MΘ(A). We have ΛG+H(µ) = ΛG(µ) + ΛH(µ) = 0. Hence
ΣG+H(A) = 0. Then, by Theorem 4.3, limn→+∞ n−1 max{gn(x) + hn(x) :
x ∈ A} = 0, as required.

By Proposition 1.12, to prove that (η) or (ε) implies (ζ) it is enough
to show that (ζ) is satisfied for all ergodic measures. Let ν be one. By
the Birkhoff ergodic theorem, there exists x0 such that V (x0) = {ν}. Con-
sequently, supp ν ⊂ H+(x0). First, assume that (ε) holds. Then ΛG(ν) +
ΛH(ν) = ΩG(x0) +ΩH(x0) = 0. On the other hand, if (η) is satisfied, then
Proposition 5.2(i) yields

0 ≤ ΛG(ν) + ΛH(ν) = lim
n→+∞

∫
n−1(gn + hn) dν

≤ lim
n→+∞

n−1‖gn + hn‖H+(x0) = 0.

None of the first three implications of Proposition 5.4 can be reversed.
Counterexamples can be constructed even in the additive case.

Example 5.5 (δ 6⇒ γ). Put X = {0, 1}, θ(0) = 0 and θ(1) = 1. Let G
and H be the additive processes generated by g and h respectively, where
g(0) = −1, g(1) = 0, h(0) = 1 and h(1) = 0. Then ΣG(0) + ΣH(0) =
ΣG(1) +ΣH(1) = 0 but ΣG(X) +ΣH(X) = 1.

Example 5.6 (ε 6⇒ δ). Let Y = {0, 1}N and Θ be the one-sided shift. Let
x0 ∈ Y be the sequence consisting of blocs of n ones and 2n zeros occurring
alternately. Consider the subshift generated by x0, i.e., X=H+(x0). Let G
and H be the additive processes generated by g and h respectively, where
g(x) = x(0) for x ∈ X and h = −g. For n ∈ N, denote by αn the sequence
of n zeros followed by ones and by βn the sequence of n ones followed by
zeros. Then L+(x0) = {αn : n ∈ N} ∪ {βn : n ∈ N}, X = γ+(x0) ∪ L+(x0)
and MΘ(X) = {δα0 , δβ0}. Moreover, for each k ∈ N, we have V (θkx0) =
V (βk) = S(βk) = {δβ0}, V (αk) = S(αk) = {δα0} and S(θkx0) = MΘ(X).
Hence ΩG(x) +ΩH(x) = 0 for each x ∈ X, but ΣG(x0) +ΣH(x0) = 1.

Example 5.7 (ζ 6⇒ ε). Let X,Θ, µ1, µ2 and g be as in Example 3.6. Take
x0 ∈ X such that µ1, µ2 ∈ V (x0). Consider the additive processes G and
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H generated by g and h = −g respectively. Clearly ΛG(µ) + ΛH(µ) = 0 for
each µ ∈MΘ(X). However, ΩG(x0) +ΩH(x0) ≥

∫
g dµ2 −

∫
g dµ1 > 0.

We now describe some general methods of constructing conjugate pro-
cesses for c.s.p.’s generated by cocycles.

Proposition 5.8. Let Φ : X ×N→ Gl(d) be a cocycle over Θ and let G
be the c.s.p. generated by Φ. Then

hn(x) := ln ‖Φ−1(x, n)‖ for x ∈ X and n ∈ N
defines a c.s.p. H conjugate to G and satisfying conditions (α) and (β).

If µ ∈MΘ(X), we write Λ∗(µ) for −ΛH(µ).

P r o o f. Let x∈X and n, k∈N. The asserted properties of H follow from
the identities Φ−1(x, n+k) = Φ−1(x, n)◦Φ−1(θnx, k), I = Φ−1(x, n)◦Φ(x, n),
Φ(θnx, k) = Φ(x, n+ k) ◦Φ−1(x, n), Φ(x, n) = Φ−1(θnx, k) ◦Φ(x, n+ k) and
the inequality ‖A ◦B‖ ≤ ‖A‖ · ‖B‖.

Proposition 5.9. Let G := (gn)n∈N be a finite c.s.p. which satisfies the
following condition:

(∗) there exists c ∈ R+ such that gk(θnx) + gn(x) ≤ gn+k(x) + c for all
x ∈ X,n, k ∈ N.

Then hn := c−gn for n ∈ N defines a c.s.p. H conjugate to G and satisfying
conditions (α), (β), (ζ) and (η).

P r o o f. From (∗) we see immediately that H is a c.s.p. and satisfies (α)
and (β). Moreover, 0 ≤ hn(x)+gn(x) = c for all x ∈ X and n ∈ N. Therefore
H is conjugate to G and satisfies (η), which is equivalent to (ζ).

Proposition 5.10. Suppose that X is compact. Let Φ : X × N→ M(d)
be a cocycle over Θ such that , for each x ∈ X, the matrix Φ(x, 1) has strictly
positive entries. Then the c.s.p. generated by Φ satisfies condition (∗).

P r o o f. In the proof we shall use the following lemma of Walters.

Lemma [46, Lemma 2.3]. Let A(1), . . . , A(k), B(1), . . . , B(n) be d× d ma-
trices with strictly positive entries. Then

‖A(k) ◦ . . .◦A(1)‖ · ‖B(1) ◦ . . .◦B(n)‖ ≤ C‖A(k) ◦ . . .◦A(1) ◦B(1) ◦ . . .◦B(n)‖,

where C := dmax{B(1)
ij /B

(1)
hj : i, j, h = 1, . . . , d} and ‖A‖ :=

∑d
i,j=1 |Aij |.

Let x ∈ X and n, k ∈ N. We apply the above lemma to A(i) :=
Φ(θn+i−1x, 1) for i = 1, . . . , k and B(j) := Φ(θn−jx, 1) for j = 1, . . . , n.
As all norms in M(d) are equivalent, there exists D ∈ R+ (independent of
x, n, k) such that

‖Φ(x, n)‖ · ‖Φ(θnx, k)‖ ≤ C‖Φ(x, n+ k)‖,
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where

C := max{Φij(θn−1x, 1)/Φhj(θn−1x, 1) : i, j, h = 1, . . . , d} ·Dd.

Hence gn(x) + gk(θnx) ≤ gn+k(x) + c, where

c := ln max{Φij(y, 1) : y ∈ X, i, j = 1, . . . , d}
− ln min{Φij(y, 1) : y ∈ X, i, j = 1, . . . , d}+ lnDd.

Using conjugate processes we get lower bounds for characteristic expo-
nents.

Theorem 5.11 (lower bounds for characteristic exponents). Suppose that
G := (gn)n∈N is a finite c.s.p., H := (hn)n∈N is a finite c.s.p. conjugate to
G and x ∈ X. Then

(i) −ΩH(x) ≤ ΛG(x),
(ii) −ΩH(x) ≤ ΛG(x).

P r o o f. Note that

ΛG(x) = lim sup
n→+∞

n−1gn(x) ≥ − lim inf
n→+∞

n−1hn(x) = −ΛH(x).

Applying Theorem 3.2(i) toH we obtain (i). The proof of (ii) is analogous.

Corollary 5.12. Let G := (gn)n∈N be a finite c.s.p. If there exists a
finite c.s.p. conjugate to G, then all lower and upper characteristic exponents
are finite.

P r o o f. Suppose that H := (hn)n∈N is a finite c.s.p. conjugate to G and
x ∈ X. Then, by Theorem 5.11, ΛG(x) ≥ −ΩH(x). Hence, by Theorems
3.2(i) and 4.5(ii), ΛG(x) ≥ −ΣH(x) ≥ −‖h1‖H+(x) > −∞. Finally, Proposi-
tion 2.9 gives ΛG(x) < +∞.

Corollary 5.13. Let Φ : X × N→ Gl(d) be a cocycle over Θ, G be the
c.s.p. generated by Φ, and x ∈X. Then

(i) sup{Λ∗(µ) : µ ∈ V (x)} ≤ Λ(x),
(ii) inf{Λ∗(µ) : µ ∈ V (x)} ≤ Λ(x)

(Λ∗ was defined after Proposition 5.8).

P r o o f. The corollary is an immediate consequence of Proposition 5.8
and Theorem 5.11.

R e m a r k. It is well known that Λ∗(µ) is the lowest element of the Lya-
punov spectrum of µ. Using this fact and applying the so-called wedge prod-
uct flows [24] we can obtain results on multidimensional characteristic ex-
ponents of a cocycle Φ.
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Theorem 5.14 (invariance of characteristic exponents). Let G :=
(gn)n∈N be a finite c.s.p. If there exists a finite c.s.p. conjugate to G and
satisfying condition (α), then the characteristic exponents are invariant , i.e.,

(i) Λ(x) = Λ(θnx), Λ(x) = Λ(θnx) and
(ii) G(x) = G(θnx)

for all x ∈ X and n ∈ N.

P r o o f. Suppose that H := (hn)n∈N is a finite c.s.p. conjugate to G and
satisfying (α). We have

Λ(x) = lim inf
k→+∞

k−1gk(x) = lim inf
k→+∞

k−1gn+k(x)

≥ lim inf
k→+∞

(k−1gk(θnx)− k−1hn(x)) = Λ(θnx).

The proof of Λ(x) ≥ Λ(θnx) is analogous. Now (i) follows from Theo-
rem 2.8(i). The assertion (ii) results from (i) and Proposition 2.10.

R e m a r k s. (1) By Proposition 5.8 the above theorem applies in partic-
ular to c.s.p.’s generated by cocycles with values in Gl(d).

(2) The existence of a finite conjugate c.s.p. satisfying (α) is not necessary
for the invariance of characteristic exponents. This can be seen from the
following example. Let X and Θ be as in Example 3.3. Put gn(0) = 0 and
gn(1) = −n1/2 for n ∈ N. Then G := (gn)n∈N is a c.s.p. with Λ(0)=Λ(1)=0
but gk(θn1) − gn+k(1) = (n + k)1/2 → +∞ (n → +∞) for each k ∈ N.
Consequently, there is no finite c.s.p. conjugate to G and satisfying (α).

We now show how the existence of a conjugate c.s.p. satisfying an ap-
propriate condition implies normality or regularity.

Theorem 5.15. Let G := (gn)n∈N be a c.s.p. and H := (hn)n∈N be a
finite c.s.p. conjugate to G.

(i) If H satisfies (ζ) or (η), then Λ(x) = Ω(x) and Λ(x) = Ω(x) for
each x ∈ X, i.e., each point is normal.

(ii) If H satisfies (ε), then Λ(x) = Ω(x) for each x ∈ X, i.e., each point
is normal and regular.

(iii) If H satisfies (δ), then Λ(x) = Ω(x) = Σ(x) for each x∈X.
(iv) If H satisfies (γ), then Λ(x) = Ω(x) = Σ(x) = Σ(X) for each x∈X.

P r o o f. In the proof we use Proposition 5.4.
(i) We have

ΩH(x) = sup{ΛH(µ) : µ ∈ V (x)} = − inf{ΛG(µ) : µ ∈ V (x)} = −ΩG(x).

Analogously ΩH(x) = −ΩG(x). Hence, applying Theorems 3.2(i), (ii) and
5.11(i), (ii) we get

ΩG(x) = −ΩH(x)ΛG(x) ≤ ΩG(x)
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and
ΩG(x) = −ΩH(x) ≤ ΛG(x) ≤ ΩG(x),

which proves (i).
(ii) Using the same arguments as in (i) we obtain ΩG(x) = −ΩH(x) =

ΩG(x). Now (ii) results from (i).
(iii) By Theorem 3.2(i) we have

ΣG(x) = −ΣH(x) ≤ −ΩH(x) = ΩG(x) ≤ ΣG(x).

Now apply (ii).
(iv) Clearly ΣG(X) = −ΣH(X) ≤ −ΣH(x) = ΣG(x) = ΣG(X) and so

(iv) results from (iii).

The following corollary results immediately from the above theorem and
Propositions 5.9 and 5.10.

Corollary 5.16. Suppose that X is compact and Φ : X×N→M(d) is a
cocycle over Θ such that , for each x ∈ X, the matrix Φ(x, 1) has strictly pos-
itive entries. Then each point is normal with respect to the c.s.p. generated
by Φ.

To end this section, we show how conjugate processes can be used to
obtain some formulae for central and singular exponents. Let x ∈ X and
m ∈ N. Recall that Vm(x) denotes the set of all accumulation points of
the sequence {n−1

∑n−1
i=0 δθmix}n∈N and Sm(x) is the set of all θm-invariant

measures with supports contained in cl{θmix : i ∈ N}.

Theorem 5.17 (formulae for central and singular exponents, II). Let
G := (gn)n∈N be a finite c.s.p. and m ∈ N. Suppose that there exists a finite
c.s.p. conjugate to G and satisfying condition (α). Then

(i) in Proposition 2.7(i)–(iv),(vi), V (x) can be replaced by Vm(x), and
S(x) by Sm(x),

(ii) in Theorem 4.1(ii),(iii), θ can be replaced by θm,
(iii) in Theorem 4.5, θ can be replaced by θm.

P r o o f. Let H := (hn)n∈N be a finite c.s.p. conjugate to G and satisfy-
ing (α).

By Proposition 1.7(i),(iii),(iv) the assertion (i) follows from (ii) and (iii).
Now suppose that k ∈ N and R : N×X → R is a central function for Θ.

Then, for each ε > 0 and x ∈ X, there exists D ∈ R such that

gm(θimx) ≤ D +
im+m−1∑
j=im

(R(j, x) + ε) for i,m ∈ N.
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Summing over i = 0, . . . , k − 1 and dividing both sides by mk we get

(mk)−1
k−1∑
i=0

gm(θimx) ≤ m−1D + ε+ (mk)−1
mk−1∑
j=0

R(j, x).

Hence

lim sup
m→+∞

m−1
(

lim sup
k→+∞

k−1
k−1∑
i=0

gm(θimx)
)
≤ R(·, x) + ε.

As ε was arbitrary, using Theorem 4.2, we obtain

(11) lim sup
m→+∞

m−1
(

lim sup
k→+∞

k−1
k−1∑
i=0

gm(θimx)
)
≤ Ω(x).

We denote the integer part of a ∈ R by [a]. Define Rm : N×X → R, for
m ∈ N, by

Rm(p, x) := m−1gm(θ[p/m]·mx) for x ∈ X and p ∈ N.

We now prove that Rm is central. Fix x ∈ X and set Bm :=
maxk=1,...,m ‖gk‖H+(x) and Cm := maxk=1,...,m ‖hk‖H+(x). Let n, u ∈ N.
Put k := [n/m] and j := [u/m]. Then

(12) gn(θux) ≤ gkm(θux) + gn−km(θu+kmx).

Moreover,

gkm(θux) ≤ gkm+u−jm(θjmx) + hu−jm(θjmx)(13)
≤ gkm(θjmx) + gu−jm(θjm+kmx) + hu−jm(θjmx)

≤
k+j−1∑
i=j

gm(θimx) +Bm + Cm.

From (12) and (13) we obtain

(14) gn(θux) ≤
k+j−1∑
i=j

gm(θimx) + 2Bm + Cm.

Finally, we get

gn(θux) ≤ 2Bm + Cm +
(k+j)m−1∑
p=jm

Rm(p, x)

= 2Bm + Cm +
n+u−1∑
p=u

Rm(p, x) +
u−1∑
p=jm

Rm(p, x)

−
n+u−1∑

p=(k+j)m

Rm(p, x)
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≤ 4Bm + Cm +
n+u−1∑
p=u

Rm(p, x),

as required.
Now fix n ∈ N. Then

n−1
n−1∑
p=0

Rm(p, x) = n−1

[n/m]−1∑
i=0

gm(θimx)

+ (nm)−1
n−1∑

p=[n/m]m

gm(θ[(n−1)/m]mx)

≤ [n/m]
n/m

· 1
[n/m]

[n/m]−1∑
i=0

m−1gm(θimx) + n−1Bm.

Hence

Rm(·, x) ≤ lim sup
k→+∞

k−1
k−1∑
i=0

m−1gm(θimx).

Therefore, applying Theorem 4.2, we have

Ω(x) ≤ inf
m∈N

lim sup
k→+∞

k−1
k−1∑
i=0

m−1gm(θimx)(15)

≤ lim inf
m→+∞

m−1
{

lim sup
k→+∞

k−1
k−1∑
i=0

gm(θimx)
}
.

From (11) and (15) the assertion (ii) follows.
To show (iii) we use the estimate (9) from the proof of Theorem 4.5. It

is enough to show that

(16) Σ(x) ≤ inf
m∈N

lim
k→+∞

k−1 sup
j∈N

k+j−1∑
i=j

m−1gm(θimx)

and

(17) lim sup
m→+∞

sup
k∈N

m−1gm(θkmx) ≤ Σ(x)

for x ∈ X.
Fix m∈N. Put kn := [n/m] and ju := [u/m]. Then, using (14), we have

gn(θux) ≤
kn+ju−1∑
i=ju

gm(θimx) + 2Bm + Cm.
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Hence

n

mkn
sup
u∈N

n−1gn(θux) ≤ (kn)−1 sup
j∈N

kn+j−1∑
i=j

m−1gm(θimx) +
2Bm + Cm

mkn
.

Taking the upper limit as n→ +∞ we get

Σ(x) = lim sup
n→+∞

sup
u∈N

n−1gn(θux) ≤ lim
k→+∞

k−1 sup
j∈N

k+j−1∑
i=j

m−1gm(θimx),

which proves (16). Moreover, by Theorem 4.5(ii), we have

lim sup
m→+∞

sup
k∈N

m−1gm(θkmx) ≤ lim sup
m→+∞

m−1 sup
u∈N

gm(θux) = Σ(x),

which proves (17) and completes the proof of (iii).

R e m a r k s. In [8, pp. 116–117], formulae are given for central and singu-
lar exponents of a non-autonomous linear differential equation in Rd, which
can be easily derived from the continuous parameter version of Theorem 5.17
(see Section 6).

6. Continuous parameter case. The results of the present paper can
be generalized to the continuous parameter case. We say that G := (gt)t∈R+

is a continuous subadditive process if (x, t)→ gt(x) is continuous and gt+s ≤
gt + gs ◦ θt for all s, t ∈ R+, where Θ := (θt)t∈R+ is a semiflow on X. We
adapt the other definitions from the discrete case with necessary changes.
There are two methods of deriving continuous parameter versions of the
results given in the preceding sections.

Firstly, we can adapt the theorems and proofs from the discrete case
replacing Cesàro means by integral means. Secondly, we can use the following
method.

Let T ∈ R+−{0}. Then {θnT : n ∈ N} =: ΘT is a discrete semidynamical
system and {gnT : n ∈ N} =: GT is a discrete c.s.p. over ΘT . Its exponents
are related to those of G in the following way.

Theorem 6.1. Let G := (gt)t∈R+ be a c.s.p. such that there exists a c.s.p.
conjugate to G and satisfying condition (β), and let T ∈ R+ − {0}. Then

(i) for every non-empty compact invariant set A, there exists C ∈ R+

such that for all t ∈ R+,∥∥∥∥1
t
gt −

1
[t/T ]T

g[t/T ]T

∥∥∥∥
A

≤ C

t
,

(ii) for all characteristic, central , singular and global exponents, the ex-
ponent for the continuous process G is equal to the corresponding exponent
for the discrete process GT divided by T.
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P r o o f. Let t, T ∈ R+. Put

CT := max{max(gs(x), hs(x)) : x ∈ A and 0 ≤ s ≤ T},
where H := (hn)n∈R+ is a c.s.p. conjugate to G and satisfying (β). Then

|g[t/T ]T (x)− gt(x)| ≤ CT and |g[t/T ]T (x)| ≤ [t/T ]CT .

Hence we obtain the required formula with C = 2CT . The assertion (ii) fol-
lows from (i), Theorems 4.1, 4.3, 4.5 and their continuous parameter coun-
terparts, which can be proved by the first method.

The above theorem has twofold applications. Firstly, putting T = 1,
we can use it to derive continuous parameter results from their discrete
parameter counterparts. Secondly, taking T 6=1, we can obtain new formulae
for exponents. This theorem applies in particular to c.s.p.’s generated by
cocycles with values in Gl(d) (by Proposition 5.8) and to c.s.p.’s generated
by cocycles with values in {M ∈M(d) : M has strictly positive entries} (by
Propositions 5.9 and 5.10).
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