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On some shift invariant integral operators,
univariate case

by George A. Anastassiou (Memphis, Tenn.) and
Heinz H. Gonska (Duisburg)

Abstract. In recent papers the authors studied global smoothness preservation by
certain univariate and multivariate linear operators over compact domains. Here the
domain is R. A very general positive linear integral type operator is introduced through
a convolution-like iteration of another general positive linear operator with a scaling type
function. For it sufficient conditions are given for shift invariance, preservation of global
smoothness, convergence to the unit with rates, shape preserving and preservation of con-
tinuous probabilistic functions. Finally, four examples of very general specialized operators
are presented fulfilling all the above properties; in particular, the inequalities for global
smoothness preservation are proven to be sharp.

1. Introduction. In approximating a function f ∈ C(R) by means of
approximation operators Lk, it is interesting to examine which properties of
f are preserved by the approximants Lkf . For example some of these could
be: preservation of global smoothness given by the modulus of continuity,
shape preservation, and preservation of properties of a probabilistic distri-
bution function. Another important property of the operators Lk is the one
of shift invariance. Also of interest is their convergence to the unit operator
with rates.

In this article we introduce a very general family of operators Lk (see
§2) and we study the above characteristics by giving sufficient conditions so
they hold, plus we give several examples of such operators. Our research
has been mainly motivated by the works of Anastassiou, Cottin and Gonska
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[1–2] and Anastassiou and Yu [3–4]. We would like to mention some results
from there.

Theorem A ([1]). Let (X, d) be a compact metric space, and L : C(X)→
C(X), L 6= 0, be a bounded linear operator mapping Lip(X) to Lip(X) :=⋃
M>0 LipM (1;X) such that for all g ∈ Lip(X),

|Lg|Lip ≤ c|g|Lip

(
|g|Lip := sup

d(x,y)>0

|g(x)− g(y)|
d(x, y)

)
with constant c possibly depending on L, but independent of g. Then for all
F ∈ C(X) and t ≥ 0,

(∗) ω1(Lf ; t) ≤ ‖L‖ω̃1(f ; ct/‖L‖),
where ω̃1 is the least concave majorant of ω1.

In the univariate case we get

Theorem B ([1]). Let I be a compact interval , and L : C(I) → C(I),
L 6= 0, be a bounded linear operator mapping C1(I) to C1(I). Then the
estimate (∗) of Theorem A is true for all f ∈ C(I) if the condition

‖(Lg)′‖I ≤ c‖g′‖I
is satisfied for all g ∈ C1(I).

In the multivariate case we obtain

Theorem C ([2]). Let X be a compact convex subset of Rk equipped
with the metric dp, 1 ≤ p ≤ ∞, and let L : C(X) → C(X) be an operator
satisfying the assumptions of Theorem A. Then for all f ∈ C(X) and t ≥ 0
we have

ω1,dp
(Lf ; t) ≤ (‖L‖+ c)ω1,dp

(f ; t),
where ω1,dp

is the modulus of continuity with respect to dp and

dp((x1, . . . , xk), (y1, . . . , yk)) =
( k∑
i=1

|xi − yi|p
)1/p

, 1 ≤ p <∞,

d∞((x1, . . . , xk), (y1, . . . , yk)) = max
1≤i≤k

|xi − yi|.

Definition A. Let ϕ be a bounded right-continuous function on R of
compact support ⊆ [−a, a], a > 0. Define

ϕkj(x) := 2k/2ϕ(2kx− j) for k, j ∈ Z.

For f ∈ C(R), we define

(Ãkf)(x) :=
∞∑

j=−∞
〈f, ϕkj〉ϕkj(x) for k ∈ Z,



Shift invariant integral operators 227

where

〈f, ϕkj〉 :=
∞∫
−∞

f(t)ϕkj(t) dt.

Note that Ãk(f)(x) = Ã0(f(2−k·))(2kx).

Theorem D ([3]). Assume

(i)
∑∞
j=−∞ ϕ(x− j) ≡ 1, ∀x ∈ R;

(ii) there is a number b ∈ R such that ϕ(x) is non-decreasing if x ≤ b
and is non-increasing if x ≥ b.

Let F (x) be a continuous probabilistic distribution function on R. Then
Ãk(F ) is a probabilistic distribution function and satisfies

|Ãk(F )(x)− F (x)| ≤ ω1(F ; a/2k−1), x ∈ R, k ∈ Z.

Moreover , the above inequalities are sharp in the sense that the constant 1
in front of ω1 is the best possible.

Next, if ϕ is continuous and as in Definition A, we have

Theorem E ([4]). Assume

(i)
∑∞
j=−∞ ϕ(x− j) ≡ 1 on R;

(ii)
∑∞
j=−∞ jϕ(x− j) is a linear function on R;

(iii) there exist real numbers b1 and b2, b1 ≤ b2, such that ϕ(x) is convex
on (−∞, b1] and [b2,+∞) respectively , and ϕ(x) is concave on [b1, b2].

Then, for f ∈ C(R), if f is a convex function on R, Ãk(f) is also convex
on R and satisfy

|Ãk(f)(x)− f(x)| ≤ ω1(f ; a/2k−1), x ∈ R, k ∈ Z.

2. Main results. Let X := CU(R) be the space of uniformly continuous
real valued functions on R and C(R) the space of continuous functions from
R into itself. For any f ∈ X we have ω1(f ; δ) < +∞, δ > 0, where ω1 is the
first modulus of continuity with respect to the supremum norm.

Let {lk}k∈Z be a sequence of positive linear operators that map X into
C(R) with the property:

(1) lk(f ;x) = l0(f(2−k·);x), x ∈ R, f ∈ X.
For fixed a > 0 we assume that

(2) sup
u;y∈R
|u−y|≤a

|l0(f ;u)− f(y)| ≤ ω1

(
f ;
ma+ n

2r

)
for any f ∈ X, where m ∈ N, n ∈ Z+, r ∈ Z.



228 G. A. Anastassiou and H. H. Gonska

Let ϕ be a real valued function of compact support ⊆ [−a, a], ϕ ≥ 0, ϕ
is Lebesgue measurable and such that

(3)
∞∫
−∞

ϕ(x− u) du = 1, ∀x ∈ R.

One can easily find that

(4)
∞∫
−∞

ϕ(u) du = 1.

Examples.

(i) ϕ(x) := χ[−1/2,1/2)(x) =
{

1, x ∈ [−1/2, 1/2),
0, elsewhere,

the characteristic function;

(ii) ϕ(x) :=

{ 1− x, 0 ≤ x ≤ 1,
1 + x, −1 ≤ x ≤ 0,
0, elsewhere,

the hat function.

Let {Lk}k∈Z be the sequence of positive linear operators acting on X
and defined by

(5) Lk(f ;x) :=
∞∫
−∞

lk(f ;u)ϕ(2kx− u) du.

In particular,

(6) L0(f ;x) =
∞∫
−∞

l0(f ;u)ϕ(x− u) du.

By (1) we observe that

(7) Lk(f ;x) = L0(f(2−k·); 2kx), x ∈ R.
If the definition of lk is extended to C(R) and lk maps πn into itself, then
Lk does the same; here πn denotes the space of polynomials of degree at
most n ∈ Z+. For the sake of convenience we make the following informal
definition.

Definition 1. Let fα(·) := f(· + α), α ∈ R, and φ be an operator. If
φ(fα) = (φf)α, then φ is called a shift invariant operator .

Proposition 1. Assume that

(8) l0(f(2−k · + α); 2ku) = l0(f(2−k·); 2k(u+ α)),

for all k ∈ Z, α ∈ R fixed , all u ∈ R and any f ∈ X. Then Lk is a shift
invariant operator for all k ∈ Z.
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P r o o f. Note that

(L0f)(x) =
∞∫
−∞

(l0f)(u)ϕ(x− u) du =
∞∫
−∞

(l0f)(x− u)ϕ(u) du.

From (7) we have

Lk(f(·+ α);x) = Lk(fα;x) = L0(fα(2−k·); 2kx)

=
∞∫
−∞

(l0f(2−k · + α))(2kx− u)ϕ(u) du

=
∞∫
−∞

(l0f(2−k · + α))(2k(x− 2−ku))ϕ(u) du

=
∞∫
−∞

(l0(f(2−k·)))(2k(x− 2−ku+ α))ϕ(u) du

= L0(f(2−k·); 2k(x+ α)) = Lk(f ;x+ α),

i.e., Lk(fα) = (Lk(f))α.

Next we study the property of global smoothness preservation of the
operators Lk.

Theorem 1. For any f ∈ X assume that , for all u ∈ R,

(9) |l0(f ;x− u)− l0(f ; y − u)| ≤ ω1(f ; |x− y|),
for any x, y ∈ R. Then

(10) ω1(Lkf ; δ) ≤ ω1(f ; δ)

for any δ > 0.

P r o o f. Notice that

|L0(f ;x)− L0(f ; y)| =
∣∣∣ ∞∫
−∞

l0(f ;u)ϕ(x− u) du−
∞∫
−∞

l0(f ;u)ϕ(y − u) du
∣∣∣

=
∣∣∣ ∞∫
−∞

l0(f ;x− u)ϕ(u) du−
∞∫
−∞

l0(f ; y − u)ϕ(u) du
∣∣∣

≤
∞∫
−∞

ϕ(u)|l0(f ;x− u)− l0(f ; y − u)| du

≤
( ∞∫
−∞

ϕ(u) du
)

sup
u∈R
|l0(f ;x− u)− l0(f ; y − u)|

≤ ω1(f ; |x− y|),
by (4) and (9).
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From (7) we now have

|Lk(f ;x)− Lk(f ; y)| = |L0(f(2−k·); 2kx)− L0(f(2−k·); 2ky)|
≤ ω1(f(2−k·); 2k|x− y|) = ω1(f ; |x− y|),

i.e., global smoothness of Lk has been established.

The convergence of Lk to I as k → +∞ (I is the unit operator) with
rates is studied in the following:

Theorem 2. For f ∈ X, under the assumption (2), we have

(11) |Lk(f ;x)− f(x)| ≤ ω1

(
f ;
ma+ n

2k+r

)
,

where m ∈ N, n ∈ Z+, k, r ∈ Z.

P r o o f. From (7), (3) and suppϕ ⊆ [−a, a], we observe that

|Lk(f ;x)− f(x)| = |L0(f(2−k·); 2kx)− f(2−k(2kx))|

=
∣∣∣ ∞∫
−∞

[l0(f(2−k·);u)− f(2−k(2kx))]ϕ(2kx− u) du
∣∣∣

=
∣∣∣ 2kx+a∫
2kx−a

[l0(f(2−k·);u)− f(2−k(2kx))]ϕ(2kx− u) du
∣∣∣

≤ sup
2kx−a≤u≤2kx+a

|l0(f(2−k·);u)− f(2−k(2kx))|

×
( 2kx+a∫

2kx−a

ϕ(2kx− u) du
)
,

i.e.,

(12) |Lk(f ;x)− f(x)| ≤ sup
2kx−a≤u≤2kx+a

|l0(f(2−k·);u)− f(2−k(2kx))|.

Consider g := f(2−k·) ∈ X. Hence the right-hand side of (12) equals

sup
|u−2kx|≤a

|l0(g;u)− g(2kx)| ≤ ω1

(
g;
ma+ n

2r

)
= ω1

(
f ;
ma+ n

2k+r

)
,

the last inequality being valid by (2). Thus we have established (11).

R e m a r k 1. (i) Assume that ∂(l0f)(x− u)/∂x exists and is continuous
in x, u and ϕ(u) is continuous in u, for x ∈ R, u ∈ [−a, a]. Then, from (6)
by the Leibniz rule, we get

(13)
d(L0f)
dx

(x) =
a∫
−a

(l0f)x(x− u)ϕ(u) du.
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Thus (Lkf)(x) = (L0f(2−k·))(2kx), k ∈ Z, is also differentiable.
(ii) Let i ≥ 1 be an integer, assume that ∂i−1(l0f)(x − u)/∂xi−1 and

∂i(l0f)(x− u)/∂xi exist and are continuous in x, u and ϕ(u) is continuous
in u, for x ∈ R, u ∈ [−a, a]. Then

(14)
di(L0f)
dxi

(x) =
a∫
−a

∂i(l0f)
∂xi

(x− u)ϕ(u) du,

i.e., Lk is i times differentiable.
(iii) Assuming that l0 maps X(i) (the space of i times continuously dif-

ferentiable functions from X) into C(i)(R), the space of i times continu-
ously differentiable functions from R into itself, we see that if f ∈ X(i) then
∂i−1(l0f)(x−u)/∂xi−1 and ∂i(l0f)(x−u)/∂xi are continuous in x, u, where
i ≥ 1 is an integer.

We need the following

Lemma 1. If F (x, u) is continuous on R× [−a, a], then
∫ a
−a F (x, u) du is

continuous in x.

P r o o f. Trivial.

R e m a r k 2. (i) By Lemma 1, we see that if l0 maps X(i) into C(i)(R),
ϕ being continuous on [−a, a], then Lk maps also X(i) into C(i)(R), where
i ≥ 0 is an integer.

(ii) Since ϕ ≥ 0 and ϕ is continuous on [−a, a] we have: if

∂i(l0f)
∂xi

(x− u) ≥ 0, i ≥ 1 integer,

then

(15)
di(L0f)
dxi

(x) ≥ 0.

(iii) Again assume that ϕ is continuous on [−a, a]. One can easily prove
that if f (i) ≥ 0 and di

dxiL0(f ;x) ≥ 0 for some i ≥ 1, then

(16)
di

dxi
Lk(f ;x) ≥ 0, k ∈ Z.

Note that if l0f is an increasing continuous function and ϕ ≥ 0 is continuous
on [−a, a], one can easily see tha L0f is increasing and continuous.

The above motivates the following

Problem 1. If f and l0f are continuous (probabilistic) distribution func-
tions and ϕ ≥ 0 is continuous on [−a, a], can we conclude then that L0f is
a continuous distribution function?

Note that any continuous distribution function is in X := CU(R). The
answer to this problem is in the affirmative, see Theorem 4 which follows.



232 G. A. Anastassiou and H. H. Gonska

To prove Theorem 4 we need

Definition 2. Let G, ψ be functions from R2, R (respectively) to R.
We say that

lim
y→y0

G(x, y) = ψ(x)

uniformly with respect to x iff for every ε > 0, there is δ > 0 such that for
all x, if |y − y0| < δ then |G(x, y)− ψ(x)| < ε (|y| > δ if y0 = ±∞).

The next is a well-known basic result of Real Analysis.

Theorem 3. Assume that
∫ β
α
G(x, y) dx exists for all y ∈ R. If

limy→y0 G(x, y) = ψ(x) (y0 can be ±∞) uniformly with respect to x, then

(17) lim
y→y0

β∫
α

G(x, y) dx =
β∫
α

ψ(x) dx =
β∫
α

lim
y→y0

G(x, y) dx.

Again, here we assume that ϕ ≥ 0 is continuous on [−a, a], suppϕ ⊆
[−a, a],

∫∞
−∞ ϕ(x − u) du = 1 for all x ∈ R, and f and l0f are distribution

functions that are continuous from R into R. Obviously by (1), lkf is a
continuous distribution function too. We aim to prove that

(Lkf)(x) =
a∫
−a

G(x, u) du, k ∈ Z,

is a continuous distribution function, where

(18) G(x, u) := (lkf)(2kx− u)ϕ(u).

Note that G is continuous in (x, u) ∈ R × [−a, a], hence by Lemma 1, Lkf
is also continuous, and

lim
x→±∞

G(x, u) = ϕ(u), 0 (respectively) ∀u ∈ [−a, a].

Still we need to prove that

lim
x→±∞

a∫
−a

G(x, u) du =
a∫
−a

lim
x→±∞

G(x, u) du = 1, 0

(respectively). The last is true from the next Lemmas 2 and 3, (4) and
Theorem 3.

Lemma 2. limx→+∞G(x, u) = ϕ(u), uniformly with respect to u.

P r o o f. Let ε > 0 be given, and observe that

|G(x, u)− ϕ(u)| = |ϕ(u)| · |(lkf)(2kx− u)− 1|.

C a s e (i): |u| > a. Then |G(x, u)− ϕ(u)| = 0, by suppϕ ⊆ [−a, a].
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C a s e (ii): |u| ≤ a. Here |ϕ(u)| ≤ A. Then

|G(x, u)− ϕ(u)| = |ϕ(u)| · |(lkf)(2kx− u)− 1|
≤ A|(lkf)(2kx− u)− 1| = A(1− (lkf)(2kx− u))

≤ A(1− (lkf)(2kx− a)),

by lkf being a distribution function.
Also

lim
z→+∞

(lkf)(z) = 1,

i.e., for ε > 0 there is a δ (real) such that z > δ implies 1 − (lkf)(z) < ε.
Now choose δ (for the uniform convergence) as equal to (δ + a)/2k. Then
for x > δ one has 2kx− a > δ. Hence

1− (lkf)(2kx− a) < ε, ∀x > δ

(for x→ +∞). Now take ε/A instead of ε, and do the same things again.

Lemma 3. limx→−∞G(x, u) = 0, uniformly with respect to u.

P r o o f. Let ε > 0 be given, and observe that

|G(x, u)− 0| = |ϕ(u)| · |(lkf)(2kx− u)|.

C a s e (i): |u| > a. Then G(x, u) = 0.
C a s e (ii): |u| ≤ a. Here |ϕ(u)| ≤ A. Then

|G(x, u)| = |ϕ(u)| · |(lkf)(2kx− u)|
≤ A|(lkf)(2kx− u)| = A(lkf)(2kx− u)

≤ A(lkf)(2kx+ a),

by lkf being a distribution function.
We know that

lim
z→−∞

(lkf)(z) = 0,

i.e., for ε > 0 there is a δ > 0 such that z < −δ implies (lkf)(z) < ε. Now
choose δ = (δ + a)/2k > 0. Then for x < −δ one has 2kx+ a < −δ. Thus

(lkf)(2kx+ a) < ε, ∀x < −δ.

Now take ε/A instead of ε, and repeat the same things.

Now our final main result has been proven and is stated next.

Theorem 4. Let lk be positive linear operators from X into C(R) as in
(1) and f be a (probabilistic) distribution function from R into itself that
is continuous. Assume that lkf is also a continuous distribution function.
Assume furthermore that ϕ ≥ 0 is continuous on [−a, a], a > 0, supp(ϕ) ⊆
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[−a, a], and
∫∞
−∞ ϕ(x− u) du = 1 for all x ∈ R. Then the operator

(19) Lk(f ;x) =
a∫
−a

(lkf)(2kx− u)ϕ(u) du, k ∈ Z,

which is the same as in (5), when applied to f as above produces a continuous
(probabilistic) distribution function from R into itself.

3. Applications. Next we present four examples of shift invariant inte-
gral operators where lk is specified.

It will be shown that they satisfy exactly the theory presented in §2.
The basic function ϕ will always be as in §2. In particular, for the opera-
tors (Ak)k∈Z, to be defined next, ϕ will be assumed additionally to be an
even continuous function. The properties of our specific operators will be
presented according to the order of the properties of the general operators
Lk, k ∈ Z, in §2.

For each k ∈ Z, we define
(i)

(20) (Akf)(x) :=
∞∫
−∞

rfk (u)ϕ(2kx− u) du,

where

(21) rfk (u) := 2k
∞∫
−∞

f(t)ϕ(2kt− u) dt

is continuous in u, i.e., here

(22) lk(f ;u) = rfk (u), u ∈ R.

(ii)

(23) (Bkf)(x) :=
∞∫
−∞

f(u/2k)ϕ(2kx− u) du,

i.e., here

(24) lk(f ;u) = f(u/2k)

is continuous in u ∈ R.
(iii)

(25) (Lkf)(x) :=
∞∫
−∞

cfk(u)ϕ(2kx− u) du,
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where

(26) cfk(u) := 2k
2−k(u+1)∫
2−ku

f(t) dt

is continuous in u, i.e., here

(27) lk(f ;u) = cfk(u), u ∈ R.

(iv)

(28) (Γkf)(x) :=
∞∫
−∞

γfk (u)ϕ(2kx− u) du,

where

(29) γfk (u) :=
n∑
j=0

wjf

(
u

2k
+

j

2kn

)
, n ∈ N, wj ≥ 0,

n∑
j=0

wj = 1,

i.e., here

(30) lk(f ;u) = γfk (u)

is continuous in u ∈ R.
First observe that (1) is satisfied by all lk (see (22), (24), (27), (30))

corresponding to the operators Ak, Bk, Lk, Γk, k ∈ Z. Thus (7) is true for all
Ak, Bk, Lk, Γk:

(31)

Ak(f ;x) = A0(f(2−k·); 2kx),

Bk(f ;x) = B0(f(2−k·); 2kx),

Lk(f ;x) = L0(f(2−k·); 2kx),

Γk(f ;x) = Γ0(f(2−k·); 2kx), for all k ∈ Z.
Note that

(32) Ak(1) = Bk(1) = Lk(1) = Γk(1) = 1.

In case the above specific operators are defined on the whole C(R) and if
πn is the space of polynomials of degree ≤ n, then

(33) Ak(πn) ⊆ πn, Bk(πn) ⊆ πn, Lk(πn) ⊆ πn, Γk(πn) ⊆ πn.

Proposition 2. Ak, Bk, Lk, Γk are shift invariant operators.

P r o o f. Here we apply Proposition 1.
(i) For Ak operators (ϕ even): Note that

l0(f ;x) = rf0 (x) =
∞∫
−∞

f(t)ϕ(t− x) dt(34)
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=
∞∫
−∞

f(t)ϕ(x− t) dt =
∞∫
−∞

f(x− t)ϕ(t) dt.

Thus for a ∈ R we have

l0(f(2−k · + a); 2ku) =
∞∫
−∞

f(2−k(2ku− t) + a)ϕ(t) dt

=
∞∫
−∞

f(u+ a− 2−kt)ϕ(t) dt

=
∞∫
−∞

f(2−k2k(u+ a)− 2−kt)ϕ(t) dt

=
∞∫
−∞

f(2−k[2k(u+ a)− t])ϕ(t) dt

= l0(f(2−k·); 2k(u+ a)).

Here rf0 satisfies (8). Therefore Ak is a shift invariant operator.
(ii) For Bk operators: Here l0f = f . Thus

l0(f(2−k · + a); 2ku) = f(2−k2ku+ a)

= f(u+ a) = l0(f(2−k·); 2k(u+ a)).

(iii) For Lk operators: Here

l0(f, x) =
x+1∫
x

f(t) dt.

Then

l0(f(2−k · + a); 2ku) =
2ku+1∫
2ku

f(2−kt+ a) dt

=
2k(u+a)+1∫
2k(u+a)

f(2−kt) dt = l0(f(2−k·); 2k(u+ a)).

(iv) For Γk operators:

l0(f ;u) =
n∑
j=0

wjf

(
u+

j

n

)
.
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Thus

l0(f(2−k · + a); 2ku) =
n∑
j=0

wjf(2−k(2ku+ j/n) + a)

=
n∑
j=0

wjf(2−k(2k(u+ a) + j/n))

= l0(f(2−k·); 2k(u+ a)).
Next we show that the operators Ak, Bk, Lk, Γk have the property of

global smoothness preservation.

Theorem 5. For all f ∈ CU(R) and all δ > 0 we have

(35)
ω1(Akf ; δ) ≤ ω1(f ; δ), ω1(Bkf ; δ) ≤ ω1(f ; δ),
ω1(Lkf ; δ) ≤ ω1(f ; δ), ω1(Γkf ; δ) ≤ ω1(f ; δ).

P r o o f. Here we apply Theorem 1. It is enough to prove (9).
(i) For Ak operators (ϕ even): From (34) we have

|l0(f ;x− u)− l0(f ; y − u)| =
∣∣∣ ∞∫
−∞

(f(x− u− t)− f(y − u− t))ϕ(t) dt
∣∣∣

≤
∞∫
−∞

|f(x− u− t)− f(y − u− t)|ϕ(t) dt

≤
∞∫
−∞

ω1(f ; |x− y|)ϕ(t) dt = ω1(f ; |x− y|),

where the last equality holds by (4).
(ii) For Bk operators: Here l0f = f , therefore

|l0(f ;x− u)− l0(f ; y − u)| = |f(x− u)− f(y − u)| ≤ ω1(f ; |x− y|).

(iii) For Lk operators: We have

|l0(f ;x− u)− l0(f ; y − u)| = |cf0 (x− u)− cf0 (y − u)|

=
∣∣∣x−u+1∫
x−u

f(t) dt−
y−u+1∫
y−u

f(t) dt
∣∣∣

=
∣∣∣ 1∫
0

f(w − u+ x) dw −
1∫

0

f(w − u+ y) dw
∣∣∣

≤
1∫

0

|f(w − u+ x)− f(w − u+ y)| dw

≤ ω1(f ; |x− y|).
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(iv) For Γk operators: We have

|l0(f ;x− u)− l0(f ; y − u)| = |γf0 (x− u)− γf0 (y − u)|

=
∣∣∣ n∑
j=0

wj(f(x− u+ j/n)− f(y − u+ j/n))
∣∣∣

≤
n∑
j=0

wj |f(x− u+ j/n)− f(y − u+ j/n)|

≤ ω1(f ; |x− y|)
n∑
j=0

wj = ω1(f ; |x− y|).

Theorem 6. Inequalities (35) are sharp, in the sense that they hold as
equalities when f(x) = x ∈ CU(R).

P r o o f. (i) For Ak operators (ϕ even): Note that

(Akf)(x) =
∞∫
−∞

rfk (u)ϕ(2kx− u) du

=
∞∫
−∞

rfk (2kx− u)ϕ(u) du =
a∫
−a

rfk (2kx− u)ϕ(u) du.

Here

rfk (u) = 2k
∞∫
−∞

f(t)ϕ(2kt− u) dt = 2k
∞∫
−∞

f(t)ϕ(u− 2kt) dt

=
∞∫
−∞

f

(
τ

2k

)
ϕ(u− τ) dτ =

∞∫
−∞

f

(
u− τ

2k

)
ϕ(τ) dτ

=
a∫
−a

f

(
u− τ

2k

)
ϕ(τ) dτ.

Therefore

rfk (2kx− u) =
a∫
−a

f

(
x− u+ τ

2k

)
ϕ(τ) dτ.

If f(x) = x then

rfk (2kx− u)− rfk (2ky − u)

=
a∫
−a

(
f

(
x− u+ τ

2k

)
− f

(
y − u+ τ

2k

))
ϕ(τ) dτ

=
a∫
−a

(x− y)ϕ(τ) dτ = x− y,



Shift invariant integral operators 239

by (4). Thus

(Akf)(x)− (Akf)(y) =
a∫
−a

(rfk (2kx− u)− rfk (2ky − u))ϕ(u) du

=
a∫
−a

(x− y)ϕ(u) du = x− y,

proving that ω1(Ak(id); δ) = ω1(id; δ), δ > 0, where id stands for the identity
map.

(ii) For Bk operators: Note that

(Bkf)(x) =
∞∫
−∞

f

(
u

2k

)
ϕ(2kx− u) du

=
∞∫
−∞

f

(
2kx− u

2k

)
ϕ(u) du =

a∫
−a

f

(
x− u

2k

)
ϕ(u) du.

When f(x) = x we get

(Bkf)(x)− (Bkf)(y) =
a∫
−a

(
f

(
x− u

2k

)
− f

(
y − u

2k

))
ϕ(u) du

=
a∫
−a

(x− y)ϕ(u) du = x− y.

(iii) For Lk operators: Note that

(Lkf)(x) =
∞∫
−∞

cfk(u)ϕ(2kx− u) du

=
∞∫
−∞

cfk(2kx− u)ϕ(u) du =
a∫
−a

cfk(2kx− u)ϕ(u) du.

Here

cfk(u) = 2k
2−k(u+1)∫
2−ku

f(t) dt = 2k
2−k∫
0

f

(
t+

u

2k

)
dt,

that is,

cfk(2kx− u) = 2k
2−k∫
0

f

(
t+ x− u

2k

)
dt.
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If f(x) = x, then

cfk(2kx− u)− cfk(2ky − u) = 2k
2−k∫
0

(x− y) dt

= (x− y)2k
2−k∫
0

dt = x− y,

and so again

(Lkf)(x)− (Lkf)(y) =
a∫
−a

(x− y)ϕ(u) du = x− y.

(iv) For Γk operators: As before we obtain

Γk(f ;x) =
n∑
j=0

wj

∞∫
−∞

f

(
x− u

2k
+

j

2kn

)
ϕ(u) du.

If f(x) = x, then

Γk(f ;x)− Γk(f ; y) =
n∑
j=0

wj

∞∫
−∞

(x− y)ϕ(u) du

= (x− y)
( n∑
j=0

wj

) ∞∫
−∞

ϕ(u) du = x− y.

The operators Ak, Bk, Lk, Γk, k ∈ Z, converge to the unit operator I
with rates as given below.

Theorem 7. For k ∈ Z,

|Ak(f ;x)− f(x)| ≤ ω1

(
f ;

a

2k−1

)
,(36)

|Bk(f ;x)− f(x)| ≤ ω1

(
f ;

a

2k

)
,(37)

|Lk(f ;x)− f(x)| ≤ ω1

(
f ;
a+ 1

2k

)
,(38)

and

|Γk(f ;x)− f(x)| ≤ ω1

(
f ;
a+ 1

2k

)
.(39)

P r o o f. (i) For Ak operators (ϕ even): By (34) and (3),

sup
u,y∈R
|u−y|≤a

|l0(f, u)− f(y)|
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= sup
u,y∈R
|u−y|≤a

∣∣∣ ∞∫
−∞

f(t)ϕ(u− t) dt−
∞∫
−∞

f(y)ϕ(u− t) dt
∣∣∣

≤ sup
u,y∈R
|u−y|≤a

∞∫
−∞

|f(t)− f(y)|ϕ(u− t) dt

≤ sup
u,y∈R
|u−y|≤a

∞∫
−∞

ω1(f ; |t− y|)ϕ(u− t) dt

= ω1(f ; 2a)
∞∫
−∞

ϕ(u− t) dt = ω1(f ; 2a).

proving (2). Hence by Theorem 2, we obtain (36).
(ii) For Bk operators: Here l0(f, u) = f(u) and

sup
u,y∈R
|u−y|≤a

|l0(f ;u)− f(y)| = sup
u,y∈R
|u−y|≤a

|f(u)− f(y)| = ω1(f ; a),

and we use Theorem 2.
(iii) For Lk operators: Here

sup
u,y∈R
|u−y|≤a

|l0(f, u)− f(y)| = sup
u,y∈R
|u−y|≤a

∣∣∣ u+1∫
u

f(t) dt− f(y)
∣∣∣

≤ sup
u,y∈R
|u−y|≤a

u+1∫
u

|f(t)− f(y)| dt

≤ sup
u,y∈R
|u−y|≤a

u+1∫
u

ω1(f ; |t− y|) dt

= sup
u,y∈R
|u−y|≤a

1∫
0

ω1(f ; |t+ u− y|) dt

≤ sup
u,y∈R
|u−y|≤a

1∫
0

ω1(f ; t+ |u− y|) dt

≤ sup
u,y∈R
|u−y|≤a

ω1(f ; 1 + |u− y|) = ω1(f ; 1 + a),

and we use Theorem 2 again.
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(iv) For Γk operators: Here

sup
u,y∈R
|u−y|≤a

|l0(f, u)− f(y)| = sup
u,y∈R
|u−y|≤a

∣∣∣ n∑
j=0

wjf(u+ j/n)− f(y)
∣∣∣

≤ sup
u,y∈R
|u−y|≤a

n∑
j=0

wj |f(u+ j/n)− f(y)|

≤ sup
u,y∈R
|u−y|≤a

n∑
j=0

wjω1(f ; |u+ j/n− y|)

≤ sup
u,y∈R
|u−y|≤a

n∑
j=0

wjω1(f ; j/n+ |u− y|)

≤
( n∑
j=0

wj

)
ω1(f ; 1 + a) = ω1(f ; a+ 1).

Again, an application of Theorem 2 completes the proof.

Some final comments follow.

R e m a r k 3. According to Remark 2 we have:

(i) Here we assume ϕ ≥ 0, ϕ continuous on [−a, a], suppϕ ⊆ [−a, a]. Let
f ∈ X(i), i ≥ 0 an integer. If f (i) ≥ 0, then

(rf0 )(i) ≥ 0, (cf0 )(i) ≥ 0, (γf0 )(i) ≥ 0

and so

(A0f)(i) ≥ 0, (B0f)(i) ≥ 0, (L0f)(i) ≥ 0, (Γ0f)(i) ≥ 0.

(ii) If f (i) ≥ 0, i ≥ 0 an integer, ϕ ≥ 0, ϕ continuous on [−a, a], suppϕ ⊆
[−a, a], then

(Akf)(i) ≥ 0, (Bkf)(i) ≥ 0, (Lkf)(i) ≥ 0, (Γkf)(i) ≥ 0, for any k ∈ Z.
An application of Theorem 4 comes next:

(iii) Let ϕ ≥ 0, ϕ continuous on [−a, a], suppϕ ⊆ [−a, a],
∞∫
−∞

ϕ(x− u) du = 1, ∀x ∈ R.

Then the operators Ak, Bk, Lk, Γk (k ∈ Z) map continuous probabilistic
distribution functions into continuous probabilistic distribution functions.
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