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Weak and strong topologies and integral equations
in Banach spaces

by Donal O’Regan (Galway)

Abstract. The Schauder–Tikhonov theorem in locally convex topological spaces and
an extension of Krasnosel’skĭı’s fixed point theorem due to Nashed and Wong are used to
establish existence of Lα and C solutions to Volterra and Hammerstein integral equations
in Banach spaces.

1. Introduction. This paper establishes existence of solutions to the
Volterra integral equation

(1.1) y(t) = h(t) +
t∫

0

k(t, s)f(s, y(s)) ds a.e. on [0, T ], T > 0 is fixed,

and the Hammerstein integral equation

(1.2) y(t) = h(t) +
1∫

0

k(t, s)f(s, y(s)) ds a.e. on [0, 1].

Here y takes values in a real Banach space B.
In Section 2 existence of Lα([0, a], B) (with α > 1, a = T or 1) solutions

will be established for (1.1) and (1.2) where B is a reflexive Banach space.
In [6], C. Corduneanu first studied the Volterra equation in this setting. Our
results extend and complement those in [6]. Also, our technique discusses
naturally the interval of existence [0, T ]. The method also extends so that we
can examine the Hammerstein equation in the above setting. Throughout
this section our analysis will rely on the Schauder–Tikhonov fixed point
theorem in locally convex spaces.

Section 3 establishes existence of C([0, a], B) solutions to (1.1) and (1.2);
here B will be a real Banach space. We will assume that f has the split-
ting f(t, u) = f1(t, u) + f2(t, u) where f1 is a nonlinear contraction (to be
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described later) on bounded sets and f2 is completely continuous. The tech-
nique used will rely on an extension of Krasnosel’skĭı’s fixed point theorem
[10] due to Nashed and Wong [16].

Some very interesting existence results for (1.1) and (1.2), in the case
B = R, may be found in [3–5, 13, 14]. For example, in [14] the Hammer-
stein equation (1.2), with B = R, is examined and existence of C[0, 1] solu-
tions is established if the nonlinearity f satisfies a “sublinear” type growth
condition. The Volterra equation (1.1), with B = R, is discussed in [13].
Gripenberg, Londen and Staffans’ basic idea is to show (1.1) has a (local)
solution. They then discuss “continuation” of solutions. However, the inter-
val of existence from a construction point of view is only briefly discussed.

For the remainder of this section we gather together some preliminaries
that will be needed in Sections 2 and 3. Let (Ω,Σ, µ) be a finite measure
space. A Banach space B has the Radon–Nikodym (R–N) property with
respect to (Ω,Σ, µ) if for each µ-continuous vector measure ν : Σ → B of
bounded variation there exists g ∈ L1(µ,B) such that ν(E) =

∫
E
g dµ for

all E ∈ Σ.

Theorem 1.1 [9]. If B is a reflexive Banach space then B has the R–N
property.

Theorem 1.2 [2]. Let (Ω,Σ, µ) be a finite measure space. Suppose K⊆
Lα(µ,B), 1 < α <∞, is bounded with K(A) = {

∫
A
g dµ : g ∈ K} relatively

weakly compact in B for each A ∈ Σ. If B and B∗ have the R–N property
then K is relatively weakly compact.

Theorem 1.3 [9]. Let (Ω,Σ, µ) be a finite measure space, 1 < α < ∞,
and B a Banach space. Then (Lα(µ,B))∗ = Lβ(µ,B∗) where 1/α+1/β = 1
iff B∗ has the R–N property with respect to µ.

R e m a r k. In fact, for φ ∈ (Lα(µ,B))∗ there exists g ∈ Lβ(µ,B∗) with

φ(f) =
∫
Ω

〈f, g〉 dµ for all f ∈ Lα(µ,B).

Here 〈f, g〉(t) = g(t)(f(t)) for t ∈ Ω.

Theorem 1.4 [7, 11, 17]. A subset of a reflexive Banach space is weakly
compact iff it is closed in the weak topology and bounded in the norm topol-
ogy.

Theorem 1.5 [7, 11, 17]. A convex subset of a normed space is closed iff
it is weakly closed.

Theorem 1.6 (Schauder–Tikhonov) [3]. Let K be a closed convex subset
of a locally convex topological Hausdorff space E. Assume that g : K → K
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is continuous and that g(K) is relatively compact in E. Then g has at least
one fixed point in K.

Theorem 1.7 [17]. Let B1, B2 be Banach spaces and u : [a, b]→ B1 be
Bochner integrable. If Γ : B1 → B2 is a bounded linear operator then Γu :
[a, b]→ B2 is integrable and

∫
E
Γu(t) dt = Γ

∫
E
u(t) dt for each measurable

E ⊆ [a, b].

An operator T1 is a nonlinear contraction on B (a Banach space) into
B if for all y1, y2 ∈ B we have

‖T1(y1)− T1(y2)‖ ≤ φ(‖y1 − y2‖)

where φ is a real-valued continuous function satisfying φ(x) < x for x > 0.

Theorem 1.8 (Krasnosel’skĭı–Nashed–Wong) [16]. Let C ⊆ B (a Banach
space) be a closed convex subset and T1, T2 be operators on B with T1(x) +
T2(y) ∈ C for all x, y ∈ C. Suppose that

(i) T2 : B → B is continuous and compact (T2(B) is relatively compact),
(ii) T1 : B → B is a nonlinear contraction.

Then there exists y ∈ C with T1(y) + T2(y) = y.

R e m a r k. If T2 = 0 in Theorem 1.8 then in fact there exists a unique
(cf. [1]) y ∈ C with T1(y) = y.

Theorem 1.9 (Arzelà–Ascoli) [15]. Let B be a Banach space. A subset
M of C([a, b], B) is relatively compact iff M is bounded , equicontinuous and
the set {u(t) : u ∈M} is relatively compact in B for each t ∈ [a, b].

2. Solutions in Lα, α > 1. Throughout this section B will be a reflex-
ive Banach space. We begin by first examining the Hammerstein integral
equation

(2.1) y(t) = h(t) +
1∫

0

k(t, s)f(s, y(s)) ds a.e. on [0, 1].

Theorem 2.1. Suppose 1 < α < ∞ and β is the conjugate of α. Let
f : [0, 1]×B → B and Fu(t) = f(t, u(t)). Assume that

(2.2) h ∈ Lα([0, 1], B),
(2.3) k : [0, 1] × [0, 1] → R with (t, s) → k(t, s) measurable and∫ 1

0

∫ 1

0
|k(t, s)|α ds dt <∞,

(2.4) F : Lα([0, 1], B)→ Lβ([0, 1], B) is weakly continuous,
(2.5) there exists a nondecreasing continuous function ψ : [0,∞)→ [0,∞)

with
∫ 1

0
‖f(s, u(s))‖β ds≤ψ(

∫ 1

0
‖u(s)‖α ds) for any u∈Lα([0, 1], B),
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(2.6) 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)

lim sup
x→∞

ψα/β(x)
x

< 1.

Then (2.1) has a solution y ∈ Lα([0, 1], B).

R e m a r k. As an example of how to apply Theorem 2.1 let α = β = 2,
and let 0 6= b0 ∈ B be fixed. Also suppose f(t, u) = b0 + u and

2
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
< 1.

Now (2.5) is satisfied with ψ(x) = ‖b0‖2 + 2‖b0‖
√
x+ x since

1∫
0

‖f(s, u(s))‖2 ds ≤
1∫

0

(‖b0‖2 + 2‖b0‖‖u(s)‖+ ‖u(s)‖2) ds

≤ ‖b0‖2 + 2‖b0‖
( 1∫

0

‖u(s)‖2 ds
)1/2

+
1∫

0

‖u(s)‖2 ds

= ψ
( 1∫

0

‖u(s)‖2 ds
)

for any u ∈ L2([0, 1], B).

In addition, (2.4) is true since if yn ⇀ y in L2([0, 1], B) then f(t, yn) =
b0+yn ⇀ b0+y = f(t, y) in L2([0, 1], B). Here ⇀ denotes weak convergence.
Finally, (2.6) is satisfied with the above ψ and so (2.1) has a solution in
L2([0, 1], B).

P r o o f o f T h e o r e m 2.1. Consider the set S of real numbers x ≥ 0
which satisfy the inequality

x ≤ 2α−1
1∫

0

‖h(t)‖α dt+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
ψα/β(x).

Then S is bounded above, i.e. there exists a constant M1 with

(2.7) x ≤M1 for all x ∈ S.

If (2.7) were not true then there would exist a sequence 0 6= xn ∈ S with
xn →∞ as n→∞ and

1 ≤
2α−1

∫ 1

0
‖h(t)‖α dt
xn

+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)ψα/β(xn)

xn
.

Thus

1 ≤ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)

lim sup
xn→∞

ψα/β(xn)
xn

,
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which contradicts (2.6). Thus (2.7) is true. Choose M0 > M1. Then

(2.8) 2α−1
1∫

0

‖h(t)‖α dt+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
ψα/β(M0) < M0

for otherwise M0 ∈ S and this would contradict (2.7).
Our strategy will be to apply the Schauder–Tikhonov theorem to

Lα([0, 1], B) endowed with the weak topology. Let

K =
{
y ∈ Lα([0, 1], B) :

1∫
0

‖y(s)‖α ds ≤M0

}
.

NowK is convex and norm closed. HenceK is weakly closed by Theorem 1.5.
A solution to (2.1) will be a fixed point of the operator N : Lα([0, 1], B)→
Lα([0, 1], B) defined by

Ny(t) = h(t) +
1∫

0

k(t, s)f(s, y(s)) ds.

We claim that N : K → K is weakly continuous and N(K) is relatively
weakly compact in Lα([0, 1], B). If this is true then the Schauder–Tikhonov
theorem (Theorem 1.6) implies that N has a fixed point in K, i.e. (2.1) has
a solution y ∈ Lα([0, 1], B).

It remains to prove the claim. First we show N : K → K. To see this
notice that for a.e. t ∈ [0, 1] we have

‖Ny(t)‖α ≤ 2α−1‖h(t)‖α + 2α−1
1∫

0

|k(t, s)|α ds
( 1∫

0

‖f(s, y(s))‖β ds
)α/β

≤ 2α−1‖h(t)‖α + 2α−1
1∫

0

|k(t, s)|α dsψα/β
( 1∫

0

‖y(s)‖α ds
)

≤ 2α−1‖h(t)‖α + 2α−1
1∫

0

|k(t, s)|α dsψα/β(M0)

and so
1∫

0

‖Ny(t)‖α dt ≤ 2α−1
1∫

0

‖h(s)‖α ds

+ 2α−1ψα/β(M0)
1∫

0

1∫
0

|k(t, s)|α ds dt < M0

from (2.8). Consequently, N : K → K. Next we show N(K) is relatively
weakly compact in Lα([0, 1], B). Clearly, since N(K)⊆K, we see that N(K)
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is bounded in Lα([0, 1], B). Notice as well that

N(K)(A) =
{ ∫
A

g dt : g ∈ N(K)
}

is relatively weakly compact in B for every subset A of [0, 1]. This follows
immediately from Theorem 1.4 and

‖(Ny)(A)‖ ≤
1∫

0

‖Ny(t)‖ dt ≤
( 1∫

0

‖Ny(t)‖α dt
)1/α

≤M1/α
0 ;

here y ∈ K and A is any measurable subset of [0, 1]. Thus N(K)(A) is
relatively weakly compact in B. This, together with Theorem 1.2 (due
to Brooks and Dinculeanu), implies that N(K) is relatively weakly com-
pact in Lα([0, 1], B). Finally, it remains to show that N : Lα([0, 1], B) →
Lα([0, 1], B) is weakly continuous, i.e.

if yn ⇀ y in Lα([0, 1], B) then Nyn ⇀ Ny inLα([0, 1], B);

hence (yn) is a net in Lα([0, 1], B). Let φ∈(Lα([0, 1], B)∗. Then there exists
g ∈ Lβ([0, 1], B∗) with (see Theorem 1.3)

φ(Nyn −Ny) =
1∫

0

g(t)
( 1∫

0

k(t, s)[f(s, yn(s))− f(s, y(s))] ds
)
dt.

Theorem 1.7 and changing the order of integration yield

φ(Nyn −Ny) =
1∫

0

1∫
0

k(t, s)g(t)(f(s, yn(s))− f(s, y(s))) ds dt

=
1∫

0

1∫
0

k(t, s)g(t)(f(s, yn(s))− f(s, y(s))) dt ds

=
1∫

0

( 1∫
0

k(t, s)g(t) dt
)

(f(s, yn(s))− f(s, y(s))) ds

=
1∫

0

g1(s)(f(s, yn(s))− f(s, y(s))) ds

where g1(s) =
∫ 1

0
k(t, s)g(t) dt. This, together with (2.4) and g1 ∈

Lα([0, 1], B∗) (note (2.6) and g∈Lβ([0, 1], B∗)), implies that N : Lα([0, 1], B)
→ Lα([0, 1], B) is weakly continuous.

The Schauder–Tikhonov theorem guarantees that N has a fixed point
in K.
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Essentially the same reasoning as in Theorem 2.1 immediately establishes
an existence result for the Volterra integral equation

(2.9) y(t) = h(t) +
t∫

0

k(t, s)f(s, y(s)) ds a.e. on [0, T ].

Theorem 2.2. Suppose 1 < α <∞ and β is the conjugate of α. Let f :
[0, T ]×B → B where B is a reflexive Banach space and Fu(t) = f(t, u(t)).
Assume that

(2.10) h ∈ Lα([0, T ], B),
(2.11) k : [0, T ] × [0, T ] → R with (t, s) → k(t, s) measurable and∫ T

0

∫ t
0
|k(t, s)|α ds dt <∞,

(2.12) F : Lα([0, T ], B)→ Lβ([0, T ], B) is weakly continuous,
(2.13) there exists a nondecreasing continuous function ψ : [0,∞) →

[0,∞) with
∫ t
0
‖f(s, u(s))‖β ds ≤ ψ(

∫ t
0
‖u(s)‖α ds) for t ∈ [0, T ]

and any u ∈ Lα([0, T ], B),

(2.14) 2α−1
( T∫

0

t∫
0

|k(t, s)|α ds dt
)

lim sup
x→∞

ψα/β(x)
x

< 1.

Then (2.9) has a solution y ∈ Lα([0, T ], B).

However, it is possible to improve this result.

Theorem 2.3. Let 1 < α < ∞ and β be the conjugate of α. Suppose
f : [0, T ]× B → B and Fu(t) = f(t, u(t)). Assume that (2.10)–(2.13) hold.
In addition, assume that

(2.15) 2α−1
( T∫

0

‖h(s)‖α ds+
T∫

0

t∫
0

|k(t, s)|α ds dt
)
<
∞∫
0

du

1 + ψα/β(u)
.

Then (2.9) has a solution y ∈ Lα([0, T ], B).

P r o o f. Let

I(z) =
z∫

0

du

1 + ψα/β(u)

and

(2.16) a(t) = I−1
(

2α−1
t∫

0

‖h(s)‖α ds+ 2α−1
t∫

0

s∫
0

|k(s, x)|α dx ds
)
.

Now let

K =
{
y ∈ Lα([0, T ], B) :

t∫
0

‖y(s)‖α ds ≤ a(t)
}
.
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The set K is convex and weakly closed. Also, a solution to (2.9) will be a
fixed point of the operator N : Lα([0, T ], B)→ Lα([0, T ], B) defined by

Ny(s) = h(s) +
s∫

0

k(s, x)f(x, y(x)) dx.

We claim that N : K → K. To see this notice for a.e. s ∈ [0, T ] that

‖Ny(s)‖α ≤ 2α−1‖h(s)‖α + 2α−1
s∫

0

|k(s, x)|α dx
( s∫

0

‖f(x, y(x))‖β dx
)α/β

≤ 2α−1‖h(s)‖α + 2α−1
s∫

0

|k(s, x)|α dxψα/β
( s∫

0

‖y(x)‖α dx
)

≤
(

2α−1‖h(s)‖α + 2α−1
s∫

0

|k(s, x)|α dx
)

(1 + ψα/β(a(s))).

Thus for t ∈ [0, T ] we have
t∫

0

‖Ny(s)‖α ds

≤
t∫

0

(
2α−1‖h(s)‖α + 2α−1

s∫
0

|k(s, x)|α dx
)

(1 + ψα/β(a(s))) ds

=
t∫

0

a′(s) ds = a(t)

since (2.16) implies
a(s)∫
0

du

1 + ψα/β(u)
= 2α−1

( s∫
0

‖h(x)‖α dx+
s∫

0

z∫
0

|k(z, x)|α dx dz
)
.

Consequently, Ny ∈ K and so N : K → K. Essentially the same rea-
soning as in Theorem 2.1 shows that N(K) is relatively weakly compact in
Lα([0, T ], B) and N : K→K is weakly continuous. The Schauder–Tikhonov
theorem now guarantees a fixed point of N in K.

3. Solutions in C. Throughout this section, B will be a real Banach
space. We consider first the Volterra integral equation

(3.1) y(t) = h(t) +
t∫

0

k(t, s)f(s, y(s)) ds, t ∈ [0, T ].

We will assume that f : [0, T ]×B → B is a Lβ-Carathéodory function; here
β ≥ 1. By this we mean that



Integral equations in Banach spaces 253

(i) the map t→ f(t, z) is measurable (Bochner) for all z ∈ B,
(ii) the map z → f(t, z) is continuous for almost all t ∈ [0, T ],
(iii) for each r > 0 there exists µr ∈ Lβ([0, T ],R) such that ‖z‖ ≤ r

implies ‖f(t, z)‖ ≤ µr(t) for almost all t ∈ [0, T ].

Theorem 3.1. Let 1 ≤ α ≤ ∞ and β be the conjugate of α. Suppose
f : [0, T ] × B → B has the decomposition f = f1 + f2 where f1 and f2 are
Lβ-Carathéodory functions. Assume that

(3.2) h ∈ C([0, T ], B),
(3.3) k(t, s) ∈ Lα([0, T ],R) for each t ∈ [0, T ] and the map t → k(t, s) is

continuous from [0, T ] to Lα([0, T ],R),
(3.4) there exists a nondecreasing continuous function Φ : [0,∞)→ [0,∞)

with
∫ t
0
‖k(t, s)f(s, u(s))‖ ds ≤ Φ(

∫ t
0
‖u(s)‖ ds) for t ∈ [0, T ] and any

u ∈ C([0, T ], B),

(3.5) T <
∞∫
0

du

Φ(u) + h0
where h0 = sup[0,T ] ‖h(t)‖.

Let

J(z) =
z∫

0

du

Φ(u) + h0

and notice that J : [0,∞)→ [0,∞) is strictly increasing. Define

(3.6) M1 = J−1(T ) and M0 = h0 + Φ(M1).

In addition, suppose that

(3.7) for each t ∈ [0, T ] the set {
∫ t
0
k(t, s)f2(s, u(s)) ds : u ∈ C([0, T ], B)

with ‖u(s)‖ ≤M0 for all s ∈ [0, T ]} is relatively compact ,
and
(3.8) there exists a continuous Q : [0, T ]→ [0,∞) such that

sup
[0,T ]

∥∥∥e−Q(t)
t∫

0

k(t, s)[f1(s, u(s))− f1(s, v(s))] ds
∥∥∥

≤ φ
(

1
2 sup

[0,T ]

e−Q(t)‖u(t)− v(t)‖
)

for all u, v ∈ C([0, T ], B) with ‖u(s)‖, ‖v(s)‖ ≤M0 for all s ∈ [0, T ];
here φ is a real-valued nondecreasing continuous function satisfying
φ(x) < x for x > 0.

Then (3.1) has a solution y ∈ C([0, T ], B).

R e m a r k s. (i) Let k ≡ 1 and suppose there exists q ∈ L1([0, T ],R) with

‖f1(t, u)− f1(t, v)‖ ≤ q(t)‖u− v‖
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for a.e. t ∈ [0, T ] and all u, v ∈ B with ‖u‖ ≤M0, ‖v‖ ≤M0. Then (3.8) is
satisfied. To see this consider any u, v ∈ C([0, T ], B) with ‖u(s)‖, ‖v(s)‖ ≤
M0 for s ∈ [0, T ]. With Q(t) = 2

∫ t
0
q(s) ds we have

sup
[0,T ]

∥∥∥e−Q(t)
t∫

0

[f1(s, u(s))− f1(s, v(s))] ds
∥∥∥

≤ sup
t∈[0,T ]

e−Q(t)
t∫

0

eQ(s)q(s)e−Q(s)‖u(s)− v(s)‖ ds

≤ ‖u− v‖Q sup
t∈[0,T ]

e−Q(t) 1
2 [eQ(t) − 1]

= 1
2 (1− e−Q(T ))‖u− v‖Q

where ‖u− v‖Q = sup[0,T ] e
−Q(t)‖u(t)− v(t)‖. Clearly (3.8) is satisfied with

φ(x) = (1− e−Q(T ))x.

(ii) We can replace 1
2 in (3.8) by 1 if B = H, a Hilbert space.

(iii) We can replace e−Q(t) in (3.8) with an arbitrary weight function
w(t).

(iv) If f2 = 0 in Theorem 3.1 then in fact (3.1) has a unique solution
y ∈ C([0, T ], B).

P r o o f o f T h e o r e m 3.1. Consider the modified Volterra equation

(3.9) y(t) = h(t) +
t∫

0

k(t, s)[f1(s, r(y(s))) + f2(s, r(y(s)))] ds, t ∈ [0, T ],

where r : B → B(0,M0) = {y : ‖y‖ ≤M0} defined by

r(u) =
{
u, ‖u‖ ≤M0,
M0u/‖u‖, ‖u‖ > M0,

is the radial retraction; M0 is as described in (3.6). Recall the radial retrac-
tion r is Lipschitz [8, 12] and in fact

(3.10) ‖r(u1)− r(u2)‖ ≤ 2‖u1 − u2‖ for all u1, u2 ∈ B.

R e m a r k. If B = H, a real Hilbert space, then in fact r is nonexpansive
[10, 12].

Let us endow C([0, T ], B) with the norm

(3.11) ‖u‖Q = sup
t∈[0,T ]

e−Q(t)‖u(t)‖.
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A solution to (3.9) is a fixed point of the operator S : C([0, T ], B) →
C([0, T ], B) defined by

Sy(t) = h(t) +
t∫

0

k(t, s)f(s, r(y(s))) ds ≡ (T1y)(t) + (T2y)(t)

where

(T1y)(t) = h(t) +
t∫

0

k(t, s)f1(s, r(y(s))) ds,

(T2y)(t) =
t∫

0

k(t, s)f2(s, r(y(s))) ds.

Now T1 : C([0, T ], B) → C([0, T ], B) is a nonlinear contraction since for
u, v ∈ C([0, T ], B) we have, with ‖ · ‖Q as described in (3.11),

‖T1(u)− T1(v)‖Q = sup
[0,T ]

∥∥∥e−Q(t)
t∫

0

k(t, s)[f1(s, r(u(s)))−f1(s, r(v(s)))] ds
∥∥∥

≤ φ
(

1
2 sup

[0,T ]

e−Q(t)‖r(u(t))− r(v(t))‖
)

≤ φ(sup
[0,T ]

e−Q(t)‖u(t)− v(t)‖) = φ(‖u− v‖Q),

using (3.8), (3.10) and the fact that φ is nondecreasing.
Next we show that T2 : C([0, T ], B) → C([0, T ], B) is continuous and

compact. To see continuity let yn → y in C([0, T ], B). Now ‖r(yn(s))‖ ≤M0

and ‖r(y(s))‖ ≤ M0 for all s ∈ [0, T ]. Also, there exists µ ∈ Lβ([0, T ],R)
with ‖f2(t, u)‖ ≤ µ(t) for a.e. t ∈ [0, T ] and all ‖u‖ ≤ M0. In addition, for
each t ∈ [0, T ] we have

k(t, s)f2(s, r(yn(s)))→ k(t, s)f2(s, r(y(s))) for a.e. s ∈ [0, T ]

and this, together with the Lebesgue dominated convergence theorem, im-
plies T2yn(s) → T2y(s) pointwise on [0, T ]. Next we show the convergence
is uniform and this of course implies T2 : C([0, T ], B) → C([0, T ], B) is
continuous. Let t, t1 ∈ [0, T ] with t1 < t. Then

‖T2yn(t)− T2yn(t1)‖

≤ ‖h(t)− h(t1)‖+
t1∫
0

|k(t, s)− k(t1, s)| ‖f(s, r(yn(s)))‖ ds

+
t∫

t1

|k(t, s)| ‖f(s, r(yn(s)))‖ ds
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≤ ‖h(t)− h(t1)‖+
( T∫

0

|k(t, s)− k(t1, s)|α ds
)1/α( T∫

0

µβ(s) ds
)1/β

+ sup
t∈[0,T ]

( T∫
0

|k(t, s)|α ds
)1/α( t∫

t1

µβ(s) ds
)1/β

.

A similar bound can be obtained for ‖T2y(t)−T2y(t1)‖. Thus for any ε > 0
there exists δ > 0 such that t, t1 ∈ [0, T ] and |t− t1| < δ imply

(3.12) ‖T2yn(t)− T2yn(t1)‖ < ε for all n and ‖T2y(t)− T2y(t1)‖ < ε.

Now (3.12), together with the fact that T2yn(s)→ T2y(s) pointwise on [0, T ],
implies that the convergence is uniform. Consequently, T2 : C([0, T ], B) →
C([0, T ], B) is continuous. In addition, the Arzelà–Ascoli theorem (Theo-
rem 1.9), together with (3.7) and the ideas used to prove (3.12), implies
that T2 : C([0, T ], B)→ C([0, T ], B) is compact.

The Krasnosel’skĭı–Nashed–Wong fixed point theorem guarantees a fixed
point of S, i.e. (3.9) has a solution y ∈ C([0, T ], B). We now show that y is
a solution of (3.1).

R e m a r k. It is worth remarking here that (3.4) and (3.5) are only
needed, so far, to define M0; in fact, we have shown that (3.9) has a so-
lution for any constant M0.

Now for each t ∈ (0, T ),

‖y(t)‖ ≤ ‖h(t)‖+
t∫

0

|k(t, s)| ‖f(s, r(y(s)))‖ ds

≤ ‖h(t)‖+ Φ
( t∫

0

‖r(y(x))‖ dx
)
≤ h0 + Φ

( t∫
0

‖y(x)‖ dx
)
,

using (3.4) and the fact that ‖r(y(x))‖ ≤ ‖y(x)‖, x ∈ [0, T ]; here h0 =
sup[0,T ] ‖h(t)‖. Consequently, integration from 0 to t yields∫ t

0
‖y(x)‖ dx∫
0

du

Φ(u) + h0
≤ t ≤ T,

so
t∫

0

‖y(x)‖ dx ≤ J−1(T ) = M1 for t ∈ [0, T ].

Also, we have

‖y(t)‖ ≤ h0 + Φ
( t∫

0

‖y(x)‖ dx
)
≤ h0 + Φ(M1) = M0.

Thus f(s, r(y(s))) = f(s, y(s)), so y is a solution of (3.1).
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R e m a r k. Φ(
∫ t
0
‖y(x)‖ dx) in (3.4) could be replaced byΦ(

∫ t
0
‖y(x)‖σ dx)

for some constant σ ≥ 1 and existence of a solution to (3.1) is again guar-
anteed (of course (3.5) has to be appropriately adjusted).

Next we examine the Hammerstein integral equation

(3.13) y(t) = h(t) +
1∫

0

k(t, s)f(s, y(s)) ds, t ∈ [0, 1].

Throughout, f : [0, 1] × B → B will be a Lβ-Carathéodory function. Also,
the following will be satisfied (here 1 ≤ α ≤ ∞ and β is the conjugate to α):

(3.14) h ∈ C([0, 1], B),
(3.15) k(t, s) ∈ Lα([0, 1],R) for each t ∈ [0, 1] and the map t → k(t, s) is

continuous from [0, 1] to Lα([0, 1],R),
(3.16) there exists a nondecreasing continuous function θ : [0,∞) →

[0,∞) with
∫ 1

0
‖f(s, u(s))‖β ds ≤ θ(

∫ 1

0
‖u(s)‖α ds) for any u ∈

C([0, 1], B),

(3.17) 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)

lim sup
x→∞

θα/β(x)
x

< 1.

R e m a r k. (3.17) has an obvious analogue when α =∞.

Consider the set S of real numbers x ≥ 0 which satisfy the inequality

x ≤ 2α−1
1∫

0

‖h(t)‖α dt+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
θα/β(x).

Then S is bounded above (see Theorem 2.1), i.e. there exists a constant M2

with

(3.18) x ≤M2 for all x ∈ S.

Theorem 3.2. Suppose f : [0, 1] × B → B has the decomposition f =
f1+f2 where f1 and f2 are Lβ-Carathéodory functions. Assume that (3.14)–
(3.17) hold. Let M2 be as in (3.18) and define

(3.19) M3 = sup
[0,1]

‖h(t)‖+ sup
[0,1]

( 1∫
0

|k(t, s)|α ds
)1/α

θ1/β(M2).

In addition, assume that

(3.20) for each t ∈ [0, 1] the set {
∫ 1

0
k(t, s)f2(s, u(s)) ds : u ∈ C([0, 1], B)

with ‖u(s)‖ ≤M3 for all s ∈ [0, 1]} is relatively compact ,
(3.21) there exists a continuous Q : [0, 1]→ [0,∞) such that
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sup
[0,1]

∥∥∥e−Q(t)
1∫

0

k(t, s)[f1(s, u(s))− f1(s, v(s))] ds
∥∥∥

≤ φ
(

1
2 sup

[0,1]

e−Q(t)‖u(t)− v(t)‖
)

for all u, v ∈ C([0, 1], B) with ‖u(s)‖, ‖v(s)‖ ≤M3 for all s ∈ [0, 1];
here φ is a real-valued nondecreasing continuous function satisfying
φ(x) < x for x > 0.

Then (3.13) has a solution y ∈ C([0, 1], B).

P r o o f. Consider the modified Hammerstein equation

(3.22) y(t) = h(t) +
1∫

0

k(t, s)f(s, r(y(s))) ds, t ∈ [0, 1],

where r : B → B(0,M3) = {y : ‖y‖ ≤ M3} is the radial retraction. Es-
sentially the same reasoning as in Theorem 3.1 implies that (3.22) has a
solution y ∈ C([0, 1], B).

Now for t ∈ (0, 1) we have

(3.23) ‖y(t)‖ ≤ ‖h(t)‖+
1∫

0

|k(t, s)| ‖f(s, r(y(s)))‖ ds.

We will just consider the case 1 ≤ α < ∞. The case α = ∞ is similar.
Hölder’s inequality, together with (3.16), yields

1∫
0

‖y(t)‖α dt ≤ 2α−1
1∫

0

‖h(t)‖α dt

+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
θα/β

( 1∫
0

‖r(y(s))‖α ds
)

≤ 2α−1
1∫

0

‖h(t)‖α dt

+ 2α−1
( 1∫

0

1∫
0

|k(t, s)|α ds dt
)
θα/β

( 1∫
0

‖y(s)‖α ds
)

since θ is nondecreasing and ‖r(y(s))‖ ≤ ‖y(s)‖, s ∈ [0, 1]. This, together
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with (3.18), yields
1∫

0

‖y(s)‖α ds ≤M2.

Returning to (3.23), for t ∈ [0, 1] we have

‖y(t)‖ ≤ sup
[0,1]

‖h(t)‖+
( 1∫

0

|k(t, s)|α ds
)1/α

θ1/β
( 1∫

0

‖r(y(s))‖α ds
)

≤ sup
[0,1]

‖h(t)‖+ sup
[0,1]

( 1∫
0

|k(t, s)|α ds
)1/α

θ1/β(M2) = M3

since
∫ 1

0
‖r(y(s))‖α ds ≤

∫ 1

0
‖y(s)‖α ds ≤ M2. Since ‖y(t)‖ ≤ M3 for t ∈

[0, 1], we find that f(s, r(y(s))) = f(s, y(s)) and the result follows.
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