ANNALES
POLONICI MATHEMATICI
LXIL1 (1995)

Convex and monotone operator functions

by JASPAL SINGH AUJLA (Jalandhar) and
H. L. VASUDEVA (Chandigarh)

Abstract. The purpose of this note is to provide characterizations of operator con-
vexity and give an alternative proof of a two-dimensional analogue of a theorem of Léwner
concerning operator monotonicity.

1. Introduction. For m € N, let M,, be the algebra of all hermitian
m x m complex matrices. Let I be an interval of R. We denote by M,,(])
the set of all members of M,, whose spectrum is contained in I. Let f be a
real function of a real variable z in I. Let A = Zzl AiP; (m' < 'm) be the
spectral resolution of an A € M,,(I). By f(A) we understand the matrix
F(A) =X FO)P.

A real function f on an interval I is operator monotone if for each m € N
and for every pair A,B € M,,(I) with A < B, we have f(A) < f(B).
Likewise we say that f is operator convex if for each m € N, f(tA +
(1—-t)B) <tf(A)+ (1 —t)f(B) for all A, B € M,,(I) and every t € [0, 1].

For known results on operator monotone functions and operator convex
functions we refer to Ando [1] and Donoghue [3] rather than to original
sources.

Let m,n € N and I, J be intervals of R. Let f be a real-valued function
of two real variables z in I and y in J. Let A € M,,(I) and B € M, (J) have
spectral resolutions A = Z;Zl \iP; (m' <m)and B = Z;/zl piQ; (n’ <n).
Then f(A, B), as in Koranyi [5], is the matrix

FAAB) =" fi ) Pi® Q.

i=1 j=1
f is called operator monotone on I x J if for each m,n € N and for every
A Ay € M,,(I) and B, By € M, (J) with A < A; and B < B; we have the
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inequality
f(A1, B1) — f(A1, B) — f(A, B1) + f(A,B) = 0.
Likewise f is called operator convexr on I x J if for each m,n € N,
f(t(A, B) + (1 = t)(A1, B1)) < tf(A,B) + (1 — 1) f(A1, B1)

for all A, Ay € M,,,(I), B, By € M,(J) and for every t € [0,1].

It is the purpose of this note to give characterizations of convex oper-
ator functions analogous to those of real-valued convex functions of one or
more real variables [8, pp. 98-103]. In the final section, we also provide an
alternative proof of a theorem of Kordnyi [5, Th. 4].

2. One variable case. Consider an open interval I in R and a con-
tinuously differentiable function f on I. Fix n € N and take A € M, (I). If
{e;j : 1 <14,j < n}is asystem of matrix units for M,, such that A = > Aje;;,
we shall denote by f[/(A) the element in M,, with

FUA);, = {?E‘/\—i)/\j)_l(f(/\i) — (%) ﬁ iz i ij

Recall that the spectral resolution of a matrix in M,, yields a system of
matrix units and that a system of matrix units yields the Hadamard product
operation on matrices. The symbol ox shall denote the Hadamard product
of matrices in a basis that diagonalizes X.

2.1. LEMMA [4, Lemma 3.1 or 2, III]. With f and A as above, we have
lim = {f(A+ £H) — f(A)} = f(4) o0 H
e—
for every H € M,.

For a proof of the lemma, the reader is referred to [4, Lemma 3.1] or
[2, II1].

2.2. THEOREM. For a function f € CY(I), the following statements are
equivalent:

(i) f is operator convex on I,
(ii) f(A) — f(B) — fll(B) op (A= B) >0 for all A, B € M, (I) and
(iii) fIU(A)os (A—B) — flI(B)og (A—B) >0 for all A, B € M,(I).

Proof. (i)=(ii). Fix n and take B € M,,(I). Choose a system of matrix
units for M,, that diagonalizes B. For A € M, (I) and t € [0, 1], we have

f(B+t(A=DB)) <(1-1)f(B)+tf(A).
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This implies
0= lim¢~ ' {f(B +t(A - B)) — f(B) - tf!(B) op (A - B)}
< f(A) = f(B) - fM(B) op (A— B),

by Lemma 2.1 and the foregoing inequality.
(ii)=(iii). Fix n € N. Let A, B € M,,(I). Then

f(A) = f(B) > f'(B) op (A - B)
and

F(B) = f(4) = f1(A) o (B~ A).

On adding the last two inequalities, one gets
FU(A)os (A= B)— fH(B)op (A~ B) 2 0.
(iii)=-(i). Let ¢ : [0,1] — M,, be defined by
ot)=ftA+(1—-t)B), A,Be M,(I).
For 0 <t; <ty <1l letU; =t;A+(1—1t;)B,i=1,2. Then Uy —U; =
(t2 — t1)(A — B). In view of the given condition, we have
F(Us) o, (Uz = Uy) = f1(UL) ou, (Uz = Ut) > 0
Observe that
@) = lim b= {p(t + h) — p(t)) = fU(EA+ (1~ 1)B) ox (A~ B),
where X =tA + (1 —¢)B, by Lemma 2.1. Now,
¢ (t1) = fU(U) ou, (U2 = Un) < fU(U) oy, (Ua = Un) = ¢ (t2),
i.e. ¢’ is increasing. Consequently, ¢ is convex. Therefore,
@A+ (1 —=t)B)=¢(t) =p(t-14+(1—1)-0)
<te(l) + (1 —1)p(0) =tf(A)+ (1 —t)f(B). =
For our next result, we need the following lemma.

2.3. LEMMA (cf. [2, II1)). Let f € C*(I). Fiz n and take A € M, (I). If
{eij 1 1 <i,5 < n} isasystem of matriz units for M,, such that A =" \;ei;,
then

?3%)5_2{f(f1 +eH) — f(A) —efU(A) ox H}ey,

JOw) — FOy) = F(A)
A—)\ Z{ N ;j—Ak }hi’“h’“je”

for every H € M, and for \; # X\j # Ap. In case \; = \j or \j = A, or
Ai = Ag, the difference quotient on the right hand side is to be replaced by
the appropriate derivative.
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Proof. If f(x) = zP then the second order term in ¢ of f(A + cH) is
ST A™HA"HA®, the summation being taken over all m,r, s > 0 such that
m +r + s = p — 2. Consequently,

(73 Z AmHATHAsejj = Z /\Tz\;e“HATHejj

= ) APAAhicheje;

m,r,s,k
AP — AP AP — NP
:)‘i_/\‘ilg ‘ b B L hikhigeq
( ]) - {)\’L_)\k )\]_Ak: k k]e]

as desired. Since the linear span of such functions is dense in C?(I) in the
topology of uniform convergence on compact sets, the result follows. =

2.4. THEOREM ([1], Lemma 3.1). If f € C?(—1,1) and f(0) = 0, then f
is operator convex iff fP(A;p) >0, where A = > Ai€ii and

J) = flw)  fy) — f(u)}
Ai — 1 Nj—p )

A )iy = N = )\j)_l{
and p € (=1,1) is arbitrary. The right hand of the above equality is to be
interpreted appropriately in case \j = \j or \; = |1 or \j = L.

Proof. Fix n and take A € M, (I) (I = (—1,1)) and choose a system
of matrix units for M,, such that A is diagonal. Let u € I be arbitrary. Let
A’ =diag(\1, ..., Adny Ant1), where A\, 11 = u. Suppose f is operator convex.
Then

J(A +6eH)=f(1—6)A +6(A +eH)) < (1-0)f(A")+df(A" +H).
Dividing by  and letting § — 0 gives
0 < f(A +eH) = f(A") —efH(A) o H,

using Lemma 2.1. Lemma 2.3 then implies that the matrix whose (7, j)th
entry is

M =AY {f(A;? = {ff’“) - f“;? - ];](f’“) }hikhkj
k=1 v J

is non-negative. Choose

0 0 0 &

0 0 0 &,
H= S

............... [
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Then (1) becomes

o DS 0D e
i T H j M
Since the vector (£1,£a,...,&,) is arbitrary, it follows that f2I(A; u) > 0.
On the other hand, suppose that f?/(4;u) > 0, p € I. In particular,
f21(A;0) > 0, which is gl*!(4) > 0, where g(x) = f(x)/z for  # 0 and
9(0) = f/(0). This implies, by using Lemma 2.1 of [1], that g(z) is operator
monotone. Consequently, f(z) is operator convex by Lemma 3.1 of [1].

3. Functions of several variables. In this section, we provide charac-
terizations of operator convexity for functions of two variables.

Consider a real-valued function of two real variables z and y in I =
(—1,1). Assume that (i) f(z,0) = f(0,y) = 0 for all z, y in I and (ii) the
first partial derivatives and the mixed second partial derivative of f exist
and are continuous. Fix m,n € N and take A in M,,(I) and B in M,,(J). Let
{e;j : 1 <4, <m}and{fi;:1<4,j<n} be matrix units for M,, and M,
respectively such that A = >~ Nje;; and B = Y. | p;fi;. Let H € M,
and K € M, be arbitrary. We shall denote by fI01(A, B), f01(A, B),
(A, B), f2Y(A, B) and f%2I(A, B) the elements in M,, ® M,, defined
by:

FUONA, B)lijre = (N = M) ™ s pg) = (s 1)}
if \; # Ag, and equal to 3L (N, py) if A = A

FONA, B) i = (g — p) " Qi g) — f )}
if p1; # i, and equal to %@];()\iaﬂj) if py = s
Fs i) = Fas ) = F ks 1) + ks )

(X = M) (g — )

if \i # A\ and p; # gy, and the divided difference is to be interpreted
appropriately when \; = Ay, or p; = p;
FPO(A,B) o (H? @ I)|ijim

SRR {f()\i,ﬂi\). - i(/\mﬂj) B f(/\k,u;: - i(Amﬂj) }hiahal5al

if \j # Ak, Ai # Ao, Ak # Aa, and the divided difference is to be interpreted
appropriately when \; = Ax or A\; = A\, or Ax = Ay finally,
F1O?1(A, B) o (I ® K?)|ijk
— f)\znu _f >\ia,uoz f>\i7/~Ll _f)\inua
Gy 3 {0 = O] _ o) = o)
Hj — Ha M — Ha

(A, B)

153kl =

}kia kal(sia

[e%
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if p; # i, 5 # pa, 1 # ta, and the divided difference is to be interpreted
appropriately when p; = p; or pij = pio O py = pie.

If f(z,y) = g(x)h(y), the operator f(A, B) coincides with g(A4) ® h(B)
and the following formulae hold for the Hadamard product o of matrices in
a basis obtained from the basis that diagonalizes A and B:

A, Byo H® I = (g1(A) oy H) @ h(B),

FOUA B oI ® K = g(A) ® (h(B) op K),
fUU(AB) o H @ K = (gM(4) o4 H) @ (WY (B) o5 K),
F2%A BYo H> @1 = (g% (A) o4 H?) ® h(B),
04, B)oT® K% = g(A) ® (h2(B) op K?).

Since every f with the properties stipulated at the beginning of the section
is the uniform limit of a sequence of linear combinations of such functions,
the following lemma holds:

3.1. LEMMA. With f and A, B as above, we have
(i) lim e Yf(A+eH,B) - f(A,B)} = fMN(A,B)o H® I,
(if) lim e Yf(A,B+¢eK)— f(A,B)} = fOU(A,B) o I® K,
(iif) lim e Yf(A+eH,B+eK)— f(A,B)} = fA%A ByoH® 1T
+ /04, B) o T K,
(iv) Elligosl_lggl{f(A +e1H,B+e3K)— f(A+e1H,B)

e2—0

— [(A,B+&K)+ f(A,B)} = fU(A,B)o HO K,
(v) lim e 2{f(A+¢eH,B) — f(A,B) —ef1(4,B)o H® I}
= f2%A B oH?®1I,
(vi) lim e 2{f(A,B+¢eK)— f(A,B) —ef%U(A B)o I © K}
= f0%(A,B)o T ® K2,
for every H € M, and K € M,,.
Remark. (A, B), 084, B), fb1U(A,B), f%A,B), and

f192(A, B) resemble in many ways the appropriate derivatives of f. How-
ever, they depend on the basis considered for M,, ® M,.

3.2. THEOREM. Let f be a real-valued function of two real variables x
andy in I = (=1,1). Assume that (i) f(z,0) = f(0,y) =0 for all z, y in I
and (ii) the first partial derivatives and the mized second partial derivative
of f exist and are continuous. Then the following statements are equivalent:

(i) f 1is operator convex on I X I,
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(ii) f(A,B) — f(Ao, Bo) > f(Ag, By) o (A— Ag) ® I

+ f[o’l](Ao, Bo) ol ® (B — BQ)
for all Ag, A € M,,,(I), By, B € M, (I) and for every m,n € N, and

(iif) f(Ag, By) o (Ay — A @ I + fl0U(Ay, By) o I @ (By — By)
—fBOA B o (Ay — A @ T — fOU(A, B))oT @ (By — By) >0
for all Ay, Ay in M,,(I), all By, B in M,(I) and all m,n € N.

Proof. (i)=(ii). Fix m and n in N and take Ag € M,,(I) and By €
M, (I). Choose systems of matrix units for M,, and M,, that diagonalize
Ap and By. For A € M,,(I) and B € M, (I) and t € [0, 1], we have

f(Ao +t(A = Ao), Bo + t(B — By)) = f((1 —t)(Ao, Bo) + 1(A, B))
< (1—=1t)f(Ao,Bo) +tf(A,B).
This implies
lim 1 { f(Ag+H(A~Ay), Bo-+(B—Bo))— (Ao, Bo)} < F(A, B)—f(Ay, Bo),
i.e.
F(A,B)—f(Ao, Bo) > f"%N(Ag, By)o(A—Ag)@I+f "1 (Ay, By)oI®(B—By)
by Lemma 3.1(iii).
(ii)=-(iii). Fix m,n € N. Let A; (i =1,2) be in M,,(I) and B; (i = 1,2)
be in M, (I). Then
f(A2,Ba) — f(A1,By) > fO(Ay, By)o (Ay — A @ 1
+ fOU(A), B)) o T ® (By — By)
and
f(A1, By) — f(A2,By) > f"%( Ay, By) o (A1 — Ay) ® T
+ f[o’l}(Ag, Bg) ol ® (Bl — BQ)
On adding the above inequalities, we get the desired result.
(iii)=(i). Let ¢ : [0,1] — M,, ® M,, be defined by
o(t) = f(t(A2, B2) + (1 — t)(A1, B1))
= f(tA2 + (1 = t)A1, 1B + (1 = t) B1).
Let t1,t2 € [0, 1] be such that 0 <3 <ty < 1. Set
U, =t; Ay + (1 — ti)Al and V; =¢;Bs + (1 — ti)Bl, 1=1,2.
Then U2 — U1 = (tz — tl)(AQ — Al) and V2 — ‘/1 = (tz — tl)(BQ — Bl) The
given condition then implies
UL, Vi) 0 (A2 — A @ T + fON (UL, Vi) o T @ (B2 — By)
< O (U, Vo) 0 (Ag — A) @ I + fOU(Uy, Vo) o I @ (By — By).
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Observe that
' (t:i) = fOUUL Vi) o (Ay — Ay) @ T + fON(U;, V) o I @ (By — By),
i = 1,2, by Lemma 3.1(iii). The above inequality then becomes ¢'(t;) <
¢ (t2), i.e., ¢’ is increasing and hence ¢ is convex. Now,
f(t(Az, Ba) + (1 = t)(A1, Br)) = p(t) = ¢(t- 14 (1 —1)-0)
< tp(1) 4+ (1 —1)¢(0)
=tf(A2,B2) + (1 = 1) f(A1,By). m
3.3. THEOREM. Let f € C*(I x I), where I = (—1,1), be such that

f(x,0) = f(0,y) =0 for x, y in I. Then f is operator convex on I x I iff
the matriz

FRPYNA B o H? @I+ fPN(A,BYo HR K + flON (A, B)o T ® K? >0
for A in My, (I) and B in M, (I).

Proof. Let H € M,, and K € M, be arbitrary. Set p(t) = f(A +
tH,B+tK). Then ¢(t) is a convex function of ¢ in some neighbourhood of
the origin. Since f € C?(I x I) then so also is ¢, and ¢”(0) > 0. But

!

: 2(!0) = lim 7 {p(t) — 0(0) — t¢/(0)}.

Also
¢'(0) = }ig%t‘l{so(t) —p(0)}
= }i_r%t_l{f(A+tH,B+tK) — f(A,B)}
= B4 By o H® T+ fOUA B) oI K,
by Lemma 3.1(iii). Now,
t~2{f(A+tH, B+tK)—f(A,B)—tf1%(A, ByoH@ I -t fI%U(A, B)o I K}
=t 2{f(A+tH,B+tK)— f(A+tH,B) — f(A,B+tK) + f(A,B)}
+t72{f(A+tH,B) — f(A,B) —tfl (A, By o H® I}
+172{f(A, B+tK) — f(A,B) —tf(4,B) o T & K}.

Consequently,

1
L4 2('0) = fB9A BYoH? @I+ fMY (A, B) o HR K + fI%%(A4, B) o I © K2.

Thus, if f is operator convex, it then follows that the matrix
%A ByoH?* @ I+ fIMYN(A,B)o H® K + fl%?(A,B) o I ® K?

is non-negative.
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Conversely, if the condition is satisfied then ¢(t) is convex and hence f is
operator convex since its restriction to any line segment in M,, (1) x M, (I)
is operator convex. m

4. Operator monotonicity of functions of two variables. Lemmas
3.1(iv) and 4.1 provide an alternative proof of a theorem of Koranyi [5, Th. 4]
and a theorem of Vasudeva [9, Th. 3]—a complete analogue to Lowner’s
theorem for functions of two variables and its finite-dimensional version
respectively.

4.1. LEMMA. If s — A(s) [resp. t — B(t)] is a C! function from [0,1]
to the space of m x m matrices [resp. n X n matrices| with spectrum in

I=(-1,1) and if f € C*(I x I), then
f(A(l),B(l))—f(A(l),B(O))—f(A(O) B(1)) + f(A(0), B(0))

:fff[ll (t))o<dilii) ()>d8dt

Proof. From Lemma 3.1(iv) we observe that

FIA(S), B(t')) = f(A(s'), B(t)) — f(A(s), B(t")) + f(A(s), B(t))

= /I (A(s), B(t)) o [(A(s') = A(s)) © (B(t') = B(1))] + 6(s', 5, ', t),
where 0(s',s,t',t) — 0 as |s'—s| — 0, |[t' —t| — 0. Choose € > 0. Then there
exist integers m’,n’ € N such that ||0(s',s,t’,t)|| < € whenever |s' — s| <
I/m/ |t/ —t| < 1/n'. With Ay = A(k/m/), 0 < k <m’, and B; = B(l/n’),
0 <1 <7/, we therefore have
F(AQL), B(1)) = f(A(1), B(0)) — f(A(0), B(1)) + f(A(0), B(0))

= Y [f(Arsr, Bier) = f(Arir, Bi) = f(Ax, Bier) + f(Ax, B
k,l

_ Z{f[hl} (Ag, Bi) o [(Ag+1 — Ak) ® (Br+1 — Bg)]
k.l

+0((k+1)/m' k/m', (I +1)/n,1/n")}.

The first part of the sum converges to the Riemann integral

o 1,1 dA(S) dB()
ofaff[ (A (t))o( O )d dt

as the area of the mesh of the subdivision tends to zero. The second term
of the sum is less than the preassigned positive number €. Hence the result
follows. =
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4.2. THEOREM. Let f be a real-valued function of two real variables x
andy in I = (—1,1). Assume that (i) f(z,0) = f(0,y) =0 for all z, y in I
and (ii) the first partial derivatives and the mixed second partial derivative
of f exist and are continuous. Then f is a monotone operator function of
two variables iff flLU(A, B) > 0 for every A € M,,(I) and B € M, (I) and
form,n € N.

Proof. Fix m,n € N and let A = > \je;; and B = > p; fi;, where
{e;j : 1 <i4,5 <m}and {f;; : 1 <i,j <n} are matrix units for M,, and M,
respectively. Suppose f is operator monotone. Choose H =) e;; and K =
> fij- Then m™'H, n~'K are one-dimensional projections. Consequently,
0 <ey'ey {f(A+e1H, B+eaK)—f(A+e1H, B)— f(A, B+e:K)+f(4, B)},

whence fIM1(A, B) >0, by Lemma 3.1(iv), since H ® K is the unit for the
Hadamard product.
Conversely, suppose that fIM1(A, B) > 0. Choose A’ € M,,(I) and
B’ € M, (I) such that A’ > A and B’ > B. Set A(s) = (1 —s)A+ sA’ and
B(t) =(1—t)B+tB’. Then
dA(s)
ds
Consequently, using Lemma 4.1, we have

f(A/vB/) - f(A/7B) - f(A’ B/) + f(A7 B)

dB(t
=A"—-A>0, di):B’—Bzo.

Zfflf“’”(A(S),B(t))o(A’—A)®(B’—B)dsdt20,
0 0

because the Hadamard product of positive matrices is again positive.
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