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Convex and monotone operator functions

by Jaspal Singh Aujla (Jalandhar) and
H. L. Vasudeva (Chandigarh)

Abstract. The purpose of this note is to provide characterizations of operator con-
vexity and give an alternative proof of a two-dimensional analogue of a theorem of Löwner
concerning operator monotonicity.

1. Introduction. For m ∈ N, let Mm be the algebra of all hermitian
m×m complex matrices. Let I be an interval of R. We denote by Mm(I)
the set of all members of Mm whose spectrum is contained in I. Let f be a
real function of a real variable x in I. Let A =

∑m′

i=1 λiPi (m′ ≤ m) be the
spectral resolution of an A ∈ Mm(I). By f(A) we understand the matrix
f(A) =

∑m′

i=1 f(λi)Pi.
A real function f on an interval I is operator monotone if for each m ∈ N

and for every pair A,B ∈ Mm(I) with A ≤ B, we have f(A) ≤ f(B).
Likewise we say that f is operator convex if for each m ∈ N, f(tA +
(1− t)B) ≤ tf(A) + (1− t)f(B) for all A,B ∈Mm(I) and every t ∈ [0, 1].

For known results on operator monotone functions and operator convex
functions we refer to Ando [1] and Donoghue [3] rather than to original
sources.

Let m,n ∈ N and I, J be intervals of R. Let f be a real-valued function
of two real variables x in I and y in J . Let A ∈Mm(I) and B ∈Mn(J) have
spectral resolutions A =

∑m′

i=1 λiPi (m′ ≤ m) and B =
∑n′

j=1 µjQj (n′ ≤ n).
Then f(A,B), as in Korányi [5], is the matrix

f(A,B) =
m′∑
i=1

n′∑
j=1

f(λi, µj)Pi ⊗Qj .

f is called operator monotone on I × J if for each m,n ∈ N and for every
A,A1 ∈ Mm(I) and B,B1 ∈ Mn(J) with A ≤ A1 and B ≤ B1 we have the
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inequality

f(A1, B1)− f(A1, B)− f(A,B1) + f(A,B) ≥ 0.

Likewise f is called operator convex on I × J if for each m,n ∈ N,

f(t(A,B) + (1− t)(A1, B1)) ≤ tf(A,B) + (1− t)f(A1, B1)

for all A,A1 ∈Mm(I), B,B1 ∈Mn(J) and for every t ∈ [0, 1].
It is the purpose of this note to give characterizations of convex oper-

ator functions analogous to those of real-valued convex functions of one or
more real variables [8, pp. 98–103]. In the final section, we also provide an
alternative proof of a theorem of Korányi [5, Th. 4].

2. One variable case. Consider an open interval I in R and a con-
tinuously differentiable function f on I. Fix n ∈ N and take A ∈Mn(I). If
{eij : 1 ≤ i, j ≤ n} is a system of matrix units for Mn such that A =

∑
λieii,

we shall denote by f [1](A) the element in Mn with

f [1](A)|i,j =
{

(λi − λj)−1(f(λi)− f(λj)) if λi 6= λj ,
f ′(λi) if λi = λj .

Recall that the spectral resolution of a matrix in Mn yields a system of
matrix units and that a system of matrix units yields the Hadamard product
operation on matrices. The symbol ◦X shall denote the Hadamard product
of matrices in a basis that diagonalizes X.

2.1. Lemma [4, Lemma 3.1 or 2, III]. With f and A as above, we have

lim
ε→0

ε−1{f(A+ εH)− f(A)} = f [1](A) ◦A H

for every H ∈Mn.

For a proof of the lemma, the reader is referred to [4, Lemma 3.1] or
[2, III].

2.2. Theorem. For a function f ∈ C1(I), the following statements are
equivalent :

(i) f is operator convex on I,
(ii) f(A)− f(B)− f [1](B) ◦B (A−B) ≥ 0 for all A,B ∈Mn(I) and
(iii) f [1](A) ◦A (A−B)− f [1](B) ◦B (A−B) ≥ 0 for all A,B ∈Mn(I).

P r o o f. (i)⇒(ii). Fix n and take B ∈Mn(I). Choose a system of matrix
units for Mn that diagonalizes B. For A ∈Mn(I) and t ∈ [0, 1], we have

f(B + t(A−B)) ≤ (1− t)f(B) + tf(A).
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This implies

0 = lim
t→0

t−1{f(B + t(A−B))− f(B)− tf [1](B) ◦B (A−B)}

≤ f(A)− f(B)− f [1](B) ◦B (A−B),

by Lemma 2.1 and the foregoing inequality.
(ii)⇒(iii). Fix n ∈ N. Let A,B ∈Mn(I). Then

f(A)− f(B) ≥ f [1](B) ◦B (A−B)

and
f(B)− f(A) ≥ f [1](A) ◦A (B −A).

On adding the last two inequalities, one gets

f [1](A) ◦A (A−B)− f [1](B) ◦B (A−B) ≥ 0.

(iii)⇒(i). Let ϕ : [0, 1]→Mn be defined by

ϕ(t) = f(tA+ (1− t)B), A,B ∈Mn(I).

For 0 ≤ t1 < t2 ≤ 1, let Ui = tiA + (1 − ti)B, i = 1, 2. Then U2 − U1 =
(t2 − t1)(A−B). In view of the given condition, we have

f [1](U2) ◦U2 (U2 − U1)− f [1](U1) ◦U1 (U2 − U1) ≥ 0.

Observe that

ϕ′(t) = lim
h→0

h−1{ϕ(t+ h)− ϕ(t)} = f [1](tA+ (1− t)B) ◦X (A−B),

where X = tA+ (1− t)B, by Lemma 2.1. Now,

ϕ′(t1) = f [1](U1) ◦U1 (U2 − U1) ≤ f [1](U2) ◦U2 (U2 − U1) = ϕ′(t2),

i.e. ϕ′ is increasing. Consequently, ϕ is convex. Therefore,

f(tA+ (1− t)B) = ϕ(t) = ϕ(t · 1 + (1− t) · 0)
≤ tϕ(1) + (1− t)ϕ(0) = tf(A) + (1− t)f(B).

For our next result, we need the following lemma.

2.3. Lemma (cf. [2, III]). Let f ∈ C2(I). Fix n and take A ∈ Mn(I). If
{eij : 1 ≤ i, j ≤ n} is a system of matrix units for Mn such that A =

∑
λieii,

then

eii lim
ε→0

ε−2{f(A+ εH)− f(A)− εf [1](A) ◦A H}ejj

=
1

λi − λj

∑
k

{
f(λi)− f(λk)

λi − λk
− f(λj)− f(λk)

λj − λk

}
hikhkjeij

for every H ∈ Mn and for λi 6= λj 6= λk. In case λi = λj or λj = λk or
λi = λk, the difference quotient on the right hand side is to be replaced by
the appropriate derivative.
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P r o o f. If f(x) = xp then the second order term in ε of f(A + εH) is∑
AmHArHAs, the summation being taken over all m, r, s ≥ 0 such that

m+ r + s = p− 2. Consequently,

eii
∑
m,r,s

AmHArHAsejj =
∑
m,r,s

λmi λ
s
jeiiHA

rHejj

=
∑

m,r,s,k

λmi λ
s
jλ
r
khikhkjeij

= (λi − λj)−1
∑
k

{
λpi − λ

p
k

λi − λk
−
λpj − λ

p
k

λj − λk

}
hikhkjeij

as desired. Since the linear span of such functions is dense in C2(I) in the
topology of uniform convergence on compact sets, the result follows.

2.4. Theorem ([1], Lemma 3.1). If f ∈ C2(−1, 1) and f(0) = 0, then f
is operator convex iff f [2](A;µ) ≥ 0, where A =

∑
i λieii and

f [2](A;µ)|i,j = (λi − λj)−1

{
f(λi)− f(µ)

λi − µ
− f(λj)− f(µ)

λj − µ

}
,

and µ ∈ (−1, 1) is arbitrary. The right hand of the above equality is to be
interpreted appropriately in case λi = λj or λi = µ or λj = µ.

P r o o f. Fix n and take A ∈ Mn(I) (I = (−1, 1)) and choose a system
of matrix units for Mn such that A is diagonal. Let µ∈ I be arbitrary. Let
A′ = diag(λ1, . . . , λn, λn+1), where λn+1 = µ. Suppose f is operator convex.
Then

f(A′ + δεH) = f((1− δ)A′ + δ(A′ + εH)) ≤ (1− δ)f(A′) + δf(A′ + εH).

Dividing by δ and letting δ → 0 gives

0 ≤ f(A′ + εH)− f(A′)− εf [1](A′) ◦A H,

using Lemma 2.1. Lemma 2.3 then implies that the matrix whose (i, j)th
entry is

(1) (λi − λj)−1
n+1∑
k=1

{
f(λi)− f(λk)

λi − λk
− f(λj)− f(λk)

λj − λk

}
hikhkj

is non-negative. Choose

H =


0 0 . . . 0 ξ1
0 0 . . . 0 ξ2
. . . . . . . . . . . . . . . ξn
ξ1 ξ2 . . . ξn 0

 .
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Then (1) becomes

(λi − λj)−1

{
f(λi)− f(µ)

λi − µ
− f(λj)− f(µ)

λj − µ

}
ξiξj .

Since the vector (ξ1, ξ2, . . . , ξn) is arbitrary, it follows that f [2](A;µ) ≥ 0.
On the other hand, suppose that f [2](A;µ) ≥ 0, µ ∈ I. In particular,

f [2](A; 0) ≥ 0, which is g[1](A) ≥ 0, where g(x) = f(x)/x for x 6= 0 and
g(0) = f ′(0). This implies, by using Lemma 2.1 of [1], that g(x) is operator
monotone. Consequently, f(x) is operator convex by Lemma 3.1 of [1].

3. Functions of several variables. In this section, we provide charac-
terizations of operator convexity for functions of two variables.

Consider a real-valued function of two real variables x and y in I =
(−1, 1). Assume that (i) f(x, 0) = f(0, y) = 0 for all x, y in I and (ii) the
first partial derivatives and the mixed second partial derivative of f exist
and are continuous. Fix m,n ∈ N and take A in Mn(I) and B in Mn(J). Let
{eij : 1 ≤ i, j ≤ m} and {fij : 1 ≤ i, j ≤ n} be matrix units for Mm and Mn

respectively such that A =
∑m
i=1 λieii and B =

∑n
i=1 µifii. Let H ∈ Mm

and K ∈ Mn be arbitrary. We shall denote by f [1,0](A,B), f [0,1](A,B),
f [1,1](A,B), f [2,0](A,B) and f [0,2](A,B) the elements in Mm ⊗Mn defined
by:

f [1,0](A,B)|ij;kl = (λi − λk)−1{f(λi, µj)− f(λk, µj)}
if λi 6= λk, and equal to ∂f

∂x (λi, µj) if λi = λk;

f [0,1](A,B)|ij;kl = (µj − µl)−1{f(λi, µj)− f(λi, µl)}

if µj 6= µl, and equal to ∂f
∂y (λi, µj) if µj = µl;

f [1,1](A,B)|ij;kl =
f(λi, µj)− f(λi, µl)− f(λk, µj) + f(λk, µl)

(λi − λk)(µj − µl)
if λi 6= λk and µj 6= µl, and the divided difference is to be interpreted
appropriately when λi = λk or µj = µl;

f [2,0](A,B) ◦ (H2 ⊗ I)|ij;kl

= (λi−λk)−1
∑
α

{
f(λi, µj)− f(λα, µj)

λi − λα
− f(λk, µj)− f(λα, µj)

λk − λα

}
hiαhαlδαl

if λi 6= λk, λi 6= λα, λk 6= λα, and the divided difference is to be interpreted
appropriately when λi = λk or λi = λα or λk = λα; finally,

f [0,2](A,B) ◦ (I ⊗K2)|ij;kl

= (µj − µl)−1
∑
α

{
f(λi, µj)− f(λi, µα)

µj − µα
− f(λi, µl)− f(λi, µα)

µl − µα

}
kiαkαlδiα
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if µj 6= µl, µj 6= µα, µl 6= µα, and the divided difference is to be interpreted
appropriately when µj = µl or µj = µα or µl = µα.

If f(x, y) = g(x)h(y), the operator f(A,B) coincides with g(A) ⊗ h(B)
and the following formulae hold for the Hadamard product ◦ of matrices in
a basis obtained from the basis that diagonalizes A and B:

f [1,0](A,B) ◦H ⊗ I = (g[1](A) ◦A H)⊗ h(B),

f [0,1](A,B) ◦ I ⊗K = g(A)⊗ (h[1](B) ◦B K),

f [1,1](A,B) ◦H ⊗K = (g[1](A) ◦A H)⊗ (h[1](B) ◦B K),

f [2,0](A,B) ◦H2 ⊗ I = (g[2](A) ◦A H2)⊗ h(B),

f [0,2](A,B) ◦ I ⊗K2 = g(A)⊗ (h[2](B) ◦B K2).

Since every f with the properties stipulated at the beginning of the section
is the uniform limit of a sequence of linear combinations of such functions,
the following lemma holds:

3.1. Lemma. With f and A, B as above, we have

(i) lim
ε→0

ε−1{f(A+ εH,B)− f(A,B)} = f [1,0](A,B) ◦H ⊗ I,

(ii) lim
ε→0

ε−1{f(A,B + εK)− f(A,B)} = f [0,1](A,B) ◦ I ⊗K,

(iii) lim
ε→0

ε−1{f(A+ εH,B + εK)− f(A,B)} = f [1,0](A,B) ◦H ⊗ I

+ f [0,1](A,B) ◦ I ⊗K,

(iv) lim
ε1→0
ε2→0

ε−1
1 ε−1

2 {f(A+ ε1H,B + ε2K)− f(A+ ε1H,B)

− f(A,B + ε2K) + f(A,B)} = f [1,1](A,B) ◦H ⊗K,

(v) lim
ε→0

ε−2{f(A+ εH,B)− f(A,B)− εf [1,0](A,B) ◦H ⊗ I}

= f [2,0](A,B) ◦H2 ⊗ I,

(vi) lim
ε→0

ε−2{f(A,B + εK)− f(A,B)− εf [0,1](A,B) ◦ I ⊗K}
= f [0,2](A,B) ◦ I ⊗K2,

for every H ∈Mm and K ∈Mn.

R e m a r k. f [1,0](A,B), f [0,1](A,B), f [1,1](A,B), f [2,0](A,B), and
f [0,2](A,B) resemble in many ways the appropriate derivatives of f . How-
ever, they depend on the basis considered for Mm ⊗Mn.

3.2. Theorem. Let f be a real-valued function of two real variables x
and y in I = (−1, 1). Assume that (i) f(x, 0) = f(0, y) = 0 for all x, y in I
and (ii) the first partial derivatives and the mixed second partial derivative
of f exist and are continuous. Then the following statements are equivalent :

(i) f is operator convex on I × I,
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(ii) f(A,B)− f(A0, B0) ≥ f [1,0](A0, B0) ◦ (A−A0)⊗ I
+ f [0,1](A0, B0) ◦ I ⊗ (B −B0)

for all A0, A ∈Mm(I), B0, B ∈Mn(I) and for every m,n ∈ N, and

(iii) f [1,0](A2, B2) ◦ (A2 −A1)⊗ I + f [0,1](A2, B2) ◦ I ⊗ (B2 −B1)

−f [1,0](A1, B1) ◦ (A2 −A1)⊗ I − f [0,1](A1, B1) ◦ I ⊗ (B2 −B1) ≥ 0

for all A1, A2 in Mm(I), all B1, B2 in Mn(I) and all m,n ∈ N.

P r o o f. (i)⇒(ii). Fix m and n in N and take A0 ∈ Mm(I) and B0 ∈
Mn(I). Choose systems of matrix units for Mm and Mn that diagonalize
A0 and B0. For A ∈Mm(I) and B ∈Mn(I) and t ∈ [0, 1], we have

f(A0 + t(A−A0), B0 + t(B −B0)) = f((1− t)(A0, B0) + t(A,B))
≤ (1− t)f(A0, B0) + tf(A,B).

This implies

lim
t→0

t−1{f(A0+t(A−A0), B0+t(B−B0))−f(A0, B0)} ≤ f(A,B)−f(A0, B0),

i.e.

f(A,B)−f(A0, B0) ≥ f [1,0](A0, B0)◦(A−A0)⊗I+f [0,1](A0, B0)◦I⊗(B−B0)

by Lemma 3.1(iii).
(ii)⇒(iii). Fix m,n ∈ N. Let Ai (i = 1, 2) be in Mm(I) and Bi (i = 1, 2)

be in Mn(I). Then

f(A2, B2)− f(A1, B1) ≥ f [1,0](A1, B1) ◦ (A2 −A1)⊗ I
+ f [0,1](A1, B1) ◦ I ⊗ (B2 −B1)

and
f(A1, B1)− f(A2, B2) ≥ f [1,0](A2, B2) ◦ (A1 −A2)⊗ I

+ f [0,1](A2, B2) ◦ I ⊗ (B1 −B2).

On adding the above inequalities, we get the desired result.
(iii)⇒(i). Let ϕ : [0, 1]→Mm ⊗Mn be defined by

ϕ(t) = f(t(A2, B2) + (1− t)(A1, B1))
= f(tA2 + (1− t)A1, tB2 + (1− t)B1).

Let t1, t2 ∈ [0, 1] be such that 0 ≤ t1 < t2 ≤ 1. Set

Ui = tiA2 + (1− ti)A1 and Vi = tiB2 + (1− ti)B1, i = 1, 2.

Then U2 − U1 = (t2 − t1)(A2 −A1) and V2 − V1 = (t2 − t1)(B2 −B1). The
given condition then implies

f [1,0](U1, V1) ◦ (A2 −A1)⊗ I + f [0,1](U1, V1) ◦ I ⊗ (B2 −B1)
≤ f [1,0](U2, V2) ◦ (A2 −A1)⊗ I + f [0,1](U2, V2) ◦ I ⊗ (B2 −B1).
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Observe that

ϕ′(ti) = f [1,0](Ui, Vi) ◦ (A2 −A1)⊗ I + f [0,1](Ui, Vi) ◦ I ⊗ (B2 −B1),

i = 1, 2, by Lemma 3.1(iii). The above inequality then becomes ϕ′(t1) ≤
ϕ′(t2), i.e., ϕ′ is increasing and hence ϕ is convex. Now,

f(t(A2, B2) + (1− t)(A1, B1)) = ϕ(t) = ϕ(t · 1 + (1− t) · 0)
≤ tϕ(1) + (1− t)ϕ(0)
= tf(A2, B2) + (1− t)f(A1, B1).

3.3. Theorem. Let f ∈ C2(I × I), where I = (−1, 1), be such that
f(x, 0) = f(0, y) = 0 for x, y in I. Then f is operator convex on I × I iff
the matrix

f [2,0](A,B) ◦H2 ⊗ I + f [1,1](A,B) ◦H ⊗K + f [0,2](A,B) ◦ I ⊗K2 ≥ 0

for A in Mm(I) and B in Mn(I).

P r o o f. Let H ∈ Mm and K ∈ Mn be arbitrary. Set ϕ(t) = f(A +
tH,B + tK). Then ϕ(t) is a convex function of t in some neighbourhood of
the origin. Since f ∈ C2(I × I) then so also is ϕ, and ϕ′′(0) ≥ 0. But

ϕ′′(0)
2!

= lim
t→0

t−2{ϕ(t)− ϕ(0)− tϕ′(0)}.

Also
ϕ′(0) = lim

t→0
t−1{ϕ(t)− ϕ(0)}

= lim
t→0

t−1{f(A+ tH,B + tK)− f(A,B)}

= f [1,0](A,B) ◦H ⊗ I + f [0,1](A,B) ◦ I ⊗K,
by Lemma 3.1(iii). Now,

t−2{f(A+tH,B+tK)−f(A,B)−tf [1,0](A,B)◦H⊗I−tf [0,1](A,B)◦I⊗K}
= t−2{f(A+ tH,B + tK)− f(A+ tH,B)− f(A,B + tK) + f(A,B)}

+ t−2{f(A+ tH,B)− f(A,B)− tf [1,0](A,B) ◦H ⊗ I}

+ t−2{f(A,B + tK)− f(A,B)− tf [0,1](A,B) ◦ I ⊗K}.
Consequently,

ϕ′′(0)
2!

= f [2,0](A,B) ◦H2⊗ I + f [1,1](A,B) ◦H ⊗K + f [0,2](A,B) ◦ I ⊗K2.

Thus, if f is operator convex, it then follows that the matrix

f [2,0](A,B) ◦H2 ⊗ I + f [1,1](A,B) ◦H ⊗K + f [0,2](A,B) ◦ I ⊗K2

is non-negative.
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Conversely, if the condition is satisfied then ϕ(t) is convex and hence f is
operator convex since its restriction to any line segment in Mm(I)×Mn(I)
is operator convex.

4. Operator monotonicity of functions of two variables. Lemmas
3.1(iv) and 4.1 provide an alternative proof of a theorem of Korányi [5, Th. 4]
and a theorem of Vasudeva [9, Th. 3]—a complete analogue to Löwner’s
theorem for functions of two variables and its finite-dimensional version
respectively.

4.1. Lemma. If s → A(s) [resp. t → B(t)] is a C1 function from [0, 1]
to the space of m × m matrices [resp. n × n matrices] with spectrum in
I = (−1, 1) and if f ∈ C1(I × I), then

f(A(1), B(1))− f(A(1), B(0))− f(A(0), B(1)) + f(A(0), B(0))

=
1∫

0

1∫
0

f [1,1](A(s), B(t)) ◦
(
dA(s)
ds

⊗ dB(t)
dt

)
ds dt.

P r o o f. From Lemma 3.1(iv) we observe that

f(A(s′), B(t′))− f(A(s′), B(t))− f(A(s), B(t′)) + f(A(s), B(t))
= f [1,1](A(s), B(t)) ◦ [(A(s′)−A(s))⊗ (B(t′)−B(t))] + θ(s′, s, t′, t),

where θ(s′, s, t′, t)→ 0 as |s′−s| → 0, |t′−t| → 0. Choose ε > 0. Then there
exist integers m′, n′ ∈ N such that ‖θ(s′, s, t′, t)‖ < ε whenever |s′ − s| <
1/m′, |t′ − t| < 1/n′. With Ak = A(k/m′), 0 ≤ k ≤ m′, and Bl = B(l/n′),
0 ≤ l ≤ n′, we therefore have

f(A(1), B(1))− f(A(1), B(0))− f(A(0), B(1)) + f(A(0), B(0))

=
∑
k,l

[f(Ak+1, Bl+1)− f(Ak+1, Bl)− f(Ak, Bl+1) + f(Ak, Bl)]

=
∑
k,l

{f [1,1](Ak, Bk) ◦ [(Ak+1 −Ak)⊗ (Bk+1 −Bk)]

+ θ((k + 1)/m′, k/m′, (l + 1)/n′, l/n′)}.

The first part of the sum converges to the Riemann integral
1∫

0

1∫
0

f [1,1](A(s), B(t)) ◦
(
dA(s)
ds

⊗ dB(t)
dt

)
ds dt

as the area of the mesh of the subdivision tends to zero. The second term
of the sum is less than the preassigned positive number ε. Hence the result
follows.
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4.2. Theorem. Let f be a real-valued function of two real variables x
and y in I = (−1, 1). Assume that (i) f(x, 0) = f(0, y) = 0 for all x, y in I
and (ii) the first partial derivatives and the mixed second partial derivative
of f exist and are continuous. Then f is a monotone operator function of
two variables iff f [1,1](A,B) ≥ 0 for every A ∈Mm(I) and B ∈Mn(I) and
for m,n ∈ N.

P r o o f. Fix m,n ∈ N and let A =
∑
λieii and B =

∑
µifii, where

{eij : 1 ≤ i, j ≤ m} and {fij : 1 ≤ i, j ≤ n} are matrix units for Mm and Mn

respectively. Suppose f is operator monotone. Choose H =
∑
eij and K =∑

fij . Then m−1H, n−1K are one-dimensional projections. Consequently,

0 ≤ ε−1
1 ε−1

2 {f(A+ε1H,B+ε2K)−f(A+ε1H,B)−f(A,B+ε2K)+f(A,B)},
whence f [1,1](A,B) ≥ 0, by Lemma 3.1(iv), since H ⊗K is the unit for the
Hadamard product.

Conversely, suppose that f [1,1](A,B) ≥ 0. Choose A′ ∈ Mm(I) and
B′ ∈Mn(I) such that A′ ≥ A and B′ ≥ B. Set A(s) = (1− s)A+ sA′ and
B(t) = (1− t)B + tB′. Then

dA(s)
ds

= A′ −A ≥ 0,
dB(t)
dt

= B′ −B ≥ 0.

Consequently, using Lemma 4.1, we have

f(A′, B′)− f(A′, B)− f(A,B′) + f(A,B)

=
1∫

0

1∫
0

f [1,1](A(s), B(t)) ◦ (A′ −A)⊗ (B′ −B) ds dt ≥ 0,

because the Hadamard product of positive matrices is again positive.
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[7] C. L öwner, Über monotone Matrixfunktionen, ibid. 38 (1934), 177–216.



Convex and monotone operator functions 11

[8] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York,
1973.

[9] H. Vasudeva, On monotone matrix functions of two variables, Trans. Amer. Math.
Soc. 176 (1973), 303–318.

DEPARTMENT OF APPLIED MATHEMATICS DEPARTMENT OF MATHEMATICS

REGIONAL ENGINEERING COLLEGE PANJAB UNIVERSITY

JALANDHAR, PUNJAB, INDIA CHANDIGARH, INDIA
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