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Abstract. The following problem of Markus and Yamabe is answered affirmatively:
Let f be a local diffeomorphism of the euclidean plane whose jacobian matrix has negative
trace everywhere. If f(0) = 0, is it true that 0 is a global attractor of the ODE dx/dt =
f(x) ? An old result of Olech states that this is equivalent to the question if such an f is
injective. Here the problem is treated in the latter form by means of an investigation of
the behaviour of f near infinity.

1. Introduction. In this work we solve (1) the following problem which
is known as the two-dimensional Global Asymptotic Stability Jacobian Con-
jecture or Markus–Yamabe Stability Conjecture.

Problem 1. Let f ∈ C1(R2, R2) be such that :

1. detDf(x) > 0 for all x ∈ R
2.

2. tr Df(x) < 0 for all x ∈ R
2.

3. f(0) = 0.

Here Df(x) denotes the Jacobian matrix , det the determinant and tr the

trace. Is it true that under the conditions 1–3 every solution of

ẋ(t) = f(x(t))

approaches 0 as t → ∞?

This problem and its n-dimensional reformulation go back to Markus
and Yamabe [MY] in 1960.

1991 Mathematics Subject Classification: 34D05, 34D45, 57R30, 57R40, 57R42.
Key words and phrases: Markus–Yamabe conjecture, asymptotic behaviour of solu-

tions of ODE’s, immersions, embeddings, injectivity of mappings, curve lifting, foliations.

(1) I acknowledge that Carlos Gutierrez has also solved this problem independently.
Both he and the present author presented their proofs [Gu], [Fe] on the conference about
Recent Results on the Global Asymptotic Stability Jacobian Conjecture, Università di
Trento, Povo, Italy, September 1993.
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In the two-dimensional case several authors achieved an affirmative an-
swer to this problem under various additional assumptions. Krasovskĭı [Kr]
solved a related problem with a certain growth condition on f . Markus and
Yamabe [MY] treated the case when one of the partial derivatives of f van-
ishes identically on R

2. Hartman [Ha] used the stronger hypothesis that the
symmetric part of Df(x) is negative definite everywhere. His result is also
valid in higher dimensions. Olech [Ol] solved the problem affirmatively if
|f | is bounded from below in some neighbourhood of infinity. A general-
ization to higher dimensions can be found in Hartman and Olech [HO]. In
1988 Meisters and Olech [MO] proved the conjecture for polynomial maps.
The attention of the author was attracted to the problem by an article of
Gasull, Llibre and Sotomayor [GLS] where the relation of this conjecture to
several other problems was investigated. Barabanov [Ba] showed that this
conjecture is false if n ≥ 4.

Olech [Ol] proved in 1963 that Problem 1 is equivalent to

Problem 2. Let f ∈ C1(R2, R2) be such that :

1. detDf(x) > 0 for all x ∈ R
2.

2. tr Df(x) < 0 for all x ∈ R
2.

Is it true that f is injective?

This gives the key to our solution. Our Theorem 1 is an affirmative
answer to Problem 2. Actually, it is even more general: The hypotheses of
Problem 2 are equivalent to assuming that the eigenvalues of Df(x) have
negative real parts for all x ∈ R

2. Therefore hypothesis 2 of our Theorem 1
is weaker than hypothesis 2 of Problem 2. Furthermore, we only need it in
a neighbourhood of infinity.

2. The solution of the problem

Theorem 1. Let f ∈ C1(R2, R2) be such that :

1. detDf(x) > 0 for all x ∈ R
2 (i.e. f is a local diffeomorphism).

2. There is a compact set K ⊂ R
2 such that Df(x)v 6= λv for all

x ∈ R
2\K, v ∈ R

2\{0} and λ ∈ ]0,∞[ (i.e. Df(x) has no real positive

eigenvalues for any x in some neighbourhood of infinity).

Then f is injective.

P r o o f. The proof will be given using several definitions and lemmata.
We assume throughout that f is not injective. Only using hypothesis 1 of
Theorem 1 we thus arrive at Lemma 10. Since this is a general result about
non-injective self-immersions of the plane we restate it as Theorem 2. At
this point we also need a general result about certain curves in the plane
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which is given in Theorem 3. Combining both we will finally arrive at a
contradiction to hypothesis 2 of Theorem 1.

Thus, if f is not injective we will find x0, x1 ∈ R
2, x0 6= x1, such that

f(x0) = f(x1). Without loss of generality we may assume that f(x0) =
f(x1) = 0.

Definition 1. We define C to be the set of all curves α ∈ C1([0, 1], R2)
such that:

(i) ∀s ∈ [0, 1] : α̇(s) 6= 0.
(ii) α(0) = x0, α(1) = x1.
(iii) α is injective.
(iv) α(]0, 1[) ∩ f−1(0) = ∅.

Lemma 1. C 6= ∅.

P r o o f. Let αl(s) := (1 − s)x0 + sx1 be the straight line segment from
x0 to x1. Then α obviously has all properties in order to be contained in
C except for (iv). Since f is a local homeomorphism, the set f−1(0) is
discrete. Therefore we can slightly modify αl near the (finitely many) points
of αl(]0, 1[) ∩ f−1(0) so that this set becomes empty (see (iv)). Of course,
this can be done in such a way that the other properties required for a curve
to be in C remain valid.

Definition&Lemma 1. 1. Every curve β ∈ C0(I, R2 \ {0}) (I = ][a, b][
being an arbitrary interval) induces an angle function

6 β ∈ C0(I, R), 6 β(s) := arg βC(s).

Here βC ∈ C0(I, C \ {0}) denotes the curve β composed with the canonical
identification of R

2 with the complex plane C, and arg denotes a continu-
ous branch of the complex argument function. (Later we will use the fact
that arg z = Im ln z on every simply connected area of C \ {0} with an
appropriately chosen branch of the logarithm ln.)

If 0 ∈ I we choose arg βC(0) ∈ [0, 2π[ unless otherwise stated. Moreover,
if β ∈ C1(I, R2 \ {0}) then also 6 β ∈ C1(I, R).

2. If β ∈ C1([a, b[, R2) (or β ∈ C1(]a, b], R2), resp.) is such that 0 6∈
β(]a, b[) and

β(a) = 0, β̇(a) 6= 0 (or β(b) = 0, β̇(b) 6= 0, resp.)

then

lim
sցa

6 β(s) = 6 β̇(a) + 2πk, k ∈ Z

(or lim
sրb

6 β(s) = 6 β̇(b) + π + 2πk, k ∈ Z, resp.)

Therefore we may extend the function 6 β ∈ C0(]a, b[, R) continuously to
[a, b[ (or ]a, b], resp.) in this case.
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P r o o f. 1. Since 0 6∈ β(I), arg βC is defined on I. The definition of 6 β
shows that (6 β)· = Im β̇/β. Therefore, β being C1 implies 6 β being C1.

2. Since β is differentiable at a and β(a) = 0 we know that β(s) =
β̇(a)(s − a) + ϕ(s − a), with a ϕ ∈ o(id). Hence

6 β(s) mod 2πβC = Im ln βC(s)

= Im ln(s − a)(β̇C(a) + ϕC(s − a)/(s − a))

= Im(ln(s − a) + ln(β̇C(a) + ϕC(s − a)/(s − a)))

= Im ln(β̇C(a) + ϕC(s − a)/(s − a))

→ Im ln β̇C(a) = 6 β̇(a) mod 2π as s ց a.

The proof for s ր b is analogous. However, since s − b < 0 in this case we
obtain a summand π added.

Definition&Lemma 2. 1. Every curve α ∈ C induces functions 6 α̇,
6 f ◦ α, 6 (f ◦ α)· ∈ C0([0, 1], R). Moreover, 6 f ◦ α ∈ C1(]0, 1[, R].

2. For every curve α ∈ C we also define the function Θα ∈ C0([0, 1], R)
by

Θα(s) := 6 (f ◦ α)·(s) − 6 f ◦ α(s)

and observe that Θα(0) mod 2π = 0 and Θα(1) mod 2π = π.

3.We will call the curve β∈C0([a, b], R2) piecewise regular (p.w. regular)
if it is locally injective and if there exist si, i = 1, . . . , n, such that a = s1 <
. . . < sn = b and that βi := β|[si, si+1] is regular for all i = 1, . . . , n − 1. βi

being regular means that βi is continuously differentiable (at si and si+1 we
consider one-sided differentials) and that β̇i(s) 6= 0 for all s ∈ [si, si+1].

For such curves we may also define a unique tangent angle function 6 β̇
as follows: If we assume that s ∈ [si, si+1] then

6 β̇(s) := 6 β̇i(s) − 6 β̇i(si) +

i−1∑

k=1

6 β̇k(sk+1) − 6 β̇k(sk) + δk+1,

where δk+1 denotes the “tangent angle jump” in the edge of β at sk+1. We
will define it in the following way: Let ∆kβk−1(h) := βk−1(sk)−βk−1(sk−h)
and ∆kβk(h) := βk(sk + h) − βk(sk). Since β̇k−1(sk), β̇k(sk) 6= 0 there are
unique functions h0, h1 ∈ C0([0, ε[, [0,∞[) with h0(0) = h1(0) = 0 such that

‖∆kβk−1(h0(r))‖2 = r, ‖∆kβk(h1(r))‖2 = r

for all r ∈ [0, ε[ (implicit function theorem). Let ϕ|π| ∈ ]−π, π] denote the
unique angle with ϕ|π| = ϕ mod 2π. Since β is locally injective, the angle

δ̂k(r) := (6 ∆kβk(h1(r)) − 6 ∆kβk−1(h0(r)))|π|

never equals π for small r > 0. Therefore, δ̂k is continuous for such r and
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limr→0 δ̂k(r) ∈ [−π, π] exists. Thus, we may finally define

δk := lim
r→0

δ̂(r) ∈ [−π, π].

P r o o f. 1. α ∈ C ⇒ α̇, (f ◦ α)· are continuous and never 0 (see Defini-
tion 1) ⇒ 6 α̇, 6 (f ◦ α)· are defined and continuous (see Definition&Lem-
ma 1.1).

α ∈ C ⇒ f ◦ α ∈ C1([0, 1], R2), 0 6∈ f ◦ α(]0, 1[),

f ◦ α(0) = f ◦ α(1) = 0 ⇒ 6 f ◦ α is defined on [0, 1] and is continuously
differentiable (see Definition&Lemma 1).

2. This is obvious from Definition&Lemma 1.2.

Lemma 2. If Θα(s) mod 2π ∈ ]0, π[ (∈ ]π, 2π[, resp.) for all s ∈ ]s1, s2[
then 6 f ◦ α is strictly increasing (strictly decreasing , resp.) on [s1, s2].

P r o o f. We conclude from our hypothesis that 0, 1 6∈ ]s1, s2[ since Θα(s)
mod 2π ∈ {0, π} if s ∈ {0, 1}. Therefore, using our definitions we may
calculate:

(6 f ◦ α)· = Im (f ◦ α)·C/(f ◦ α)C

= Im |(f ◦ α)·C|e
i 6 (f◦α)·/(f ◦ α)C

= Im (|(f ◦ α)·C|/(f ◦ α)C)ei 6 (f◦α)+iΘα

= Im
|(f ◦ α)·

C
|(f ◦ α)C

|(f ◦ α)C|2
·

(f ◦ α)C

|(f ◦ α)C|
eiΘα =

|(f ◦ α)·
C
|

|(f ◦ α)C|
sin Θα.

Applying Rolle’s theorem yields the assertion.

Definition 2 (See Figure 1). 1. For every α ∈ C we define the family
of rays

Γα ∈ C1(]0, 1[ × [0,∞[, R2) by Γα(s, t) := t · f ◦ α(s).

(Notice that for every s ∈ ]0, 1[ the curve Γα(s, ·) is the straight ray ema-
nating from 0 and passing through f ◦ α(s) 6= 0 (Definition 1(iv)).)

2. Moreover, we need the f -induced lift of the family Γα, denoted by
Γ f

α : Ωα → R
2 with Ωα ⊂ ]0, 1[ × [0,∞[. We define it by lifting every ray

Γα(s, ·) of the family separately, i.e.

Γ f
α (s, ·) := (Γα(s, ·))f : Ωα(s) → R

2,

where we choose the unique lift such that

Γ f
α (s, 1) := α(s) ∈ f−1(Γα(s, 1)).

It is defined on a maximal open interval of existence Ωα(s) ⊂ [0,∞[ with 1∈
Ωα(s). Then Ωα =

⋃
s∈]0,1[{s}×Ωα(s). Note that Ωα is open in ]0, 1[×[0,∞[.
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Fig. 1
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We will often use the following simple observation: If Γ f
α (s1, t1) =

Γ f
α (s2, t2) (or Γα(s1, t1) = Γα(s2, t2), resp.) and t1, t2 6= 0 then

im Γ f
α (s1, ·) = im Γ f

α (s2, ·) (im Γα(s1, ·) = im Γα(s2, ·), resp.).

(Thus, the sets Γ f
α ({s} × (Ωα(s)\{0})) and Γα({s} × ]0,∞[), resp. may be

considered as leaves of a foliation on some open subset of R
2\f−1(0) or

R
2\{0}, resp.)

3. Γ f
α ∈ C1(Ωα, R2) and for every s ∈ ]0, 1[ we may define the maps

6 Γα(s, ·) ∈ C1([0,∞[, R), 6 Γ̇α(s, ·) ∈ C0([0,∞[, R) and 6 (Γ f
α )·(s, ·) ∈

C0(Ωα(s), R) according to Definition&Lemma 1.
4. 6 Γ̇α(s, t) = 6 Γα(s, t) = 6 f ◦ α(s) mod 2π for s ∈ ]0, 1[ and t ∈ ]0,∞[.

Now we aim at a modification of our curve α (see Definition&Lemma 6)
such that it has at most two intersections with every lifted ray Γ f

α (s, ·)
(tangencies are counted twice). To this end we use a finite iteration of the
modification step of Definition&Lemma 5. In order to prove the finiteness
of this iteration we need the set Vα ∪ Wα of exceptional curve parameters
(Definition&Lemma 3). It is related to the number of intersections of α with
im Γ f

α (s, ·) (Lemma 3, Definition&Lemma 4). We show that every modifica-
tion step strictly decreases the number of elements in Vα ∪ Wα.

Definition&Lemma 3 (See Figure 1). 1. For every curve α ∈ C we
define

Vα := {s ∈ [0, 1] | Θα(s) mod π = 0},

i.e. Vα is the set of all s where f ◦ α is tangent to the ray Γα(s, ·) or,
equivalently, where α is tangent to T f

α (s, ·). We say that s ∈ Vα is transversal

if the zero of the function Θα(·) mod π at s is transversal.
2. There are α ∈ C such that Vα is a finite set containing transversal

elements only except for 0 and 1. We denote the subset of all such α ∈ C
by Cf . In this case we find an order preserving, finite numbering of Vα, i.e.

Vα = {v1, . . . , vn} with 0 = v1 < . . . < vn = 1.

In order to unify the notation we define v0 := v1, vn := 1.
3. If Vα is a finite set then the sets

(6 f ◦ α mod 2π)−1(ϕ)

are also finite for every angle ϕ ∈ [0, 2π[ (i.e. f ◦ α has only finitely many
intersections with every straight ray emanating from 0). We can even find
an angle ωα ∈ [0, 2π[ such that Wα ∩ Vα = ∅ with

Wα := (6 f ◦ α mod 2π)−1(ωα).

P r o o f. 2. Lemma 1 shows that C 6= ∅. It is easy to see that arbitrarily
close to every α0 ∈ C we find an α ∈ C such that the function Θα mod π
has only a finite number of transversal zeros.
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3. Because of statement 2 we know that [0, 1] = [v1, v2]∪ . . .∪ [vn−1, vn].
Lemma 2 shows that 6 f◦α is strictly monotone on every [vi, vi+1]. Therefore
(|6 f ◦ α(vi+1) − 6 f ◦ α(vi)|/2π) + 1 yields an upper bound on (6 f ◦ α
mod 2π)−1(ϕ)∩ [vi, vi+1] implying that (6 f ◦α mod 2π)−1(ϕ) is finite itself.
Since ♯Vα is finite, so is ♯6 f ◦ α(Vα) mod 2π. Therefore, [0, 2π[\6 f ◦ α(Vα)
mod 2π 6= ∅, and ωα may be chosen to be any element of this set.

Lemma 3. Let s1 < s2 be two successive intersections of α with the image

of a ray Γ f
α (s, ·). Then:

• if s2 < 1 then [s1, s2[ contains an element of Vα ∪ Wα,
• if s2 = 1 then [s1, s2] contains such an element.

P r o o f. If s1 = 0 or s2 = 1 we are done since 0, 1 ∈ Vα. So assume
that s1 > 0 and s2 < 1. Since α(s1), α(s2) ∈ im Γ f

α (s1, ·) we know that
f ◦ α(s1), f ◦ α(s2) ∈ im Γα(s1, ·). This implies that

(1) 6 f ◦ α(s1) = 6 f ◦ α(s2) mod 2π

(see Definition 2.4).

Assuming that there is no s ∈ [s1, s2[ with s ∈ Vα, Lemma 2 shows that
6 f ◦ α is strictly increasing (decreasing, resp.) in [s1, s2]. Therefore

6 f ◦ α(s1) 6= 6 f ◦ α(s2)

and we deduce from (1) that

6 f ◦ α(s2) − 6 f ◦ α(s1) = 2πk

with a k ∈ Z \ {0}. Thus the continuity of 6 f ◦ α implies that there must
be an s ∈ [s1, s2[ such that 6 f ◦ α(s) = ωα mod 2π, i.e. s ∈ Wα.

Definition&Lemma 4. For all s1, s2 ∈ [0, 1], s1 < s2, we define
nα(s1, s2) ∈ N by

nα(s1, s2) :=

{
♯([s1, s2[ ∩ (Vα ∪ Wα)) if s2 < 1,
♯([s1, s2] ∩ (Vα ∪ Wα)) if s2 = 1.

Then, for every s ∈ ]0, 1[ and every α ∈ Cf ,

♯α−1(im Γ f
α (s, ·)) − 1 ≤ nα(sα, sα),

where

sα := min α−1(im Γ f
α (s, ·)), sα := max α−1(im Γ f

α (s, ·))

(i.e. the total number of intersections of α with the image of Γ f
α (s, ·) minus

1 is at most the number of elements of Vα ∪Wα which are between the first
and the last intersection). Furthermore, we define tα(s), tα(s) ∈ Ωα(s) to be
the unique elements such that

Γ f
α (s, tα(s)) = α(sα) and Γ f

α (s, tα(s)) = α(sα).
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P r o o f. Since α ∈ Cf we know from Definition&Lemma 3.2, 3 that
♯α−1(im Γ f

α (s, ·)) is also finite (see also Definition 2.4). Moreover, s ∈
α−1(im Γ f

α (s, ·)) by definition. Thus sα, sα are defined. Now, the assertion
is a direct consequence of Lemma 3.

Lemma 4. 1. tα(s) = tα(s) ⇒ sα = sα.
2. sα = 0 and sα = 1 at the same time is impossible.

3. There is a neighbourhood Uα(s) of Γ f
α ({s} × [tα(s), tα(s)]) in R

2 such

that

f |Uα(s) : Uα(s) → f(Uα(s))

is a diffeomorphism and f(Uα(s)) is a neighbourhood of Γα({s} ×
[tα(s), tα(s)]).

P r o o f. 1. tα(s) = tα(s) ⇒ α(sα) = α(sα) (see the definition of tα, tα

in Definition&Lemma 4) ⇒ sα = sα since α is injective.
3. Γα(s, ·) is injective by definition, hence f | imΓ f

α (s, ·) is injective. If the
assertion were false, we could construct two convergent (since B := Γ f

α ({s}×
[tα(s), tα(s)]) ⊂ im Γ f

α (s, ·) is compact) sequences xn → x∈ B, yn → y∈ B
with f(xn) = f(yn). However, this implies f(x) = f(y), which is a contra-
diction since we already know that f |B is injective.

2. From the definitions we conclude that α(sα), α(sα) ∈ Uα(s). If sα = 0
and sα = 1 then α(sα) 6= α(sα) (α is injective), hence assertion 3 implies
that also f ◦ α(sα) 6= f ◦ α(sα). However, f ◦ α(0) = f ◦ α(1) by definition
of α—a contradiction.

Definition&Lemma 5 (See Figure 1). Let us assume that α ∈ Cf and
s ∈ ]0, 1[ are such that

(2) ♯α−1(im Γ f
α (s, ·)) ≥ 2.

Then we will construct a modified α (depending on s), called α mod ∈ C
(associated with s), such that

nα mod
(0, 1) ≤ nα(0, 1) − (♯α−1(im Γ f

α (s, ·)) − 2).

First we define the curve β0 ∈ C0([0, 1], R2) by

β0(s) :=

{
f ◦ α(s) if s ∈ [0, sα] ∪ [sα, 1],
Γα(s, τ(s)) if s ∈ [sα, sα],

with τ(s) := (s − sα)tα(s)/(sα − sα) + (s − sα)tα(s)/(sα − sα). Inequality
(2) shows that sα 6= sα, hence tα(s) 6= tα(s). Therefore

1. β0|[sα, sα] is injective.

If we choose a neighbourhood Uα(s) of Γ f
α ({s}× [tα(s), tα(s)]) according

to Lemma 4.3 we can also find a neighbourhood [sα − εα, sα + εα] relative
to [0, 1] such that:
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2. β0([sα − εα, sα + εα]) ⊂ f(Uα(s)),
6 β0([sα − εα, sα + εα]) ⊂ [6 Γα(s, 1) − π/4, 6 Γα(s, 1) + π/4] mod 2π.

3. β0 | [sα − εα, sα + εα] is injective.
4. [sα − εα, sα[ ∩ (Vα ∪ Wα) = ]sα, sα + εα] ∩ (Vα ∪ Wα) = ∅.

At this stage we have to distinguish two cases:

C a s e 1: εα, εα > 0 and

6 β0(sα − εα) < 6 β0(sα) = 6 β0(s
α) < 6 β0(s

α + εα)

or vice versa, i.e. with “<” replaced by “>”.

C a s e 2: The condition for case 1 does not hold. This means that either
sα = 0 or sα = 1 or in one of the two inequalities above we have “>” and
in the other we have “<”.

In both cases we can find a C1-curve β arbitrarily close to β0 such that:

5. β(s) = β0(s) = f ◦ α(s) if s ∈ [0, sα − εα] or s ∈ [sα + εα, 1].
6. β([sα − εα, sα + εα]) ⊂ f(Uα(s)),

6 β([sα − εα, sα + εα]) ⊂ [6 Γα(s, 1) − π/4, 6 Γα(s, 1) + π/4] mod 2π
(i.e. the modified part is contained in a half-cone).

7. β̇(s) 6= 0 for all s ∈ [0, 1].
8. β|[sα − εα, sα + εα] is injective.
9. In case 1 (case 2, resp.) the function

(3) (6 β̇(·) − 6 β(·)) mod π

has no zero (exactly one zero, resp.) in [sα − εα, sα + εα]. In case 2 this zero
is transversal. (Remember that (3) being zero is the condition for β being
tangent at s to a straight ray emanating from 0.)

10. There is at most one s ∈ [sα − εα, sα + εα] such that

6 β(s) mod 2π = ωα

in case 1 and there is no such s in case 2.

Finally, we define α mod ∈ C1([0, 1], R2) by

α mod (s) :=

{
(f |Uα(s))−1 ◦ β(s) if s ∈ [sα − εα, sα + εα],
α(s) if s ∈ [0, sα − εα] or s ∈ [sα + εα, 1].

Then:

11. α mod ∈ C.
12. nα mod

(0, 1) ≤ nα(0, 1) − (♯α−1(im Γ f
α (s, ·) − 2).

13. Vα mod
has transversal elements only, i.e. α mod ∈ Cf .

14. 6 f ◦α mod ([sα−εα, sα+εα]) ⊂ [6 Γα(s, 1)−π/2, 6 Γα(s, 1)+π/2] mod
2π (i.e. the f -image of the modified part of α mod is contained in a half-cone).

P r o o f. Assertion 1 is already proven above.
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If the neighbourhood [sα−εα, sα +εα] is chosen to be small enough then
assertion 2 is true by continuity, assertion 3 follows from assertion 1 and
from the fact that β0 is locally injective and assertion 4 is valid since Vα and
Wα are finite sets.

Now using 2–3, it is easy to see that there are C1-curves β arbitrarily
close to β0 which satisfy 5–10. The precise construction is straightforward
and is left to the reader since it would cause unproportionally much notation
here.

11. Obviously, α mod is a C1-map and the properties (i) and (ii) required
of α mod to be contained in C are satisfied (see items 7 and 5). Moreover,
since β can be chosen to be arbitrarily close to β0 property (iv) is also
valid. It remains to prove that α mod is injective (property (iii)): In view of
assertion 8 the definition of α mod shows that we only have to prove that the
unchanged parts α mod |[0, sα−ε] and α mod |[sα+εα, 1], resp. cannot intersect
the modified part α mod |[sα − εα, sα + εα]. However, if this happened, then
sα would not be the first intersection of α with im Γ f

α (s, ·) or sα would not
be the last, resp. (Use assertion 5 and again the fact that β is arbitrarily
close to β0.)

12. Using 9–10 we conclude from Definition&Lemma 3 and 4 that

nα mod
(sα − εα, sα + εα) ≤ 1.

At the same time using Definition&Lemma 4 we conclude from our hypoth-
esis that

nα(sα, sα) ≥ ♯α−1(im Γ f
α (s, ·)) − 1.

Therefore, we may calculate

nα mod
(0, 1) = nα mod

(0, sα − εα) + nα mod
(sα − εα, sα + εα)

+ nα mod
(sα + εα, 1)

≤ nα mod
(0, sα − εα) + 1 + nα mod

(sα + εα, 1)

and

nα(0, 1) = nα(0, sα) + nα(sα, sα) + nα(sα, 1)

≥ nα(0, sα − εα) + ♯α−1(im Γ f
α (s, ·)) − 1 + nα(sα + εα, 1).

From the definition of α mod , assertion 12 follows.

Finally assertion 13 follows from 9, and 14 from 6.

Definition&Lemma 6 (See Figure 1). For every s ∈ ]0, 1[ and every
curve α ∈ Cf we define

µα(s) :=

{
2 if s ∈ ]0, 1[ ∩ Vα,
1 otherwise,

for all s ∈ Sα(s) := α−1(im Γ f
α (s, ·)). There exists a curve αD ∈ Cf such
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that ∑

s∈SαD
(s̄)

µαD
(s) ≤ 2

for all s ∈ ]0, 1[. (This means that the number of intersections of αD with
im Γ f

αD
(s, ·) is at most two. Interior intersections which are tangential at the

same time are counted twice.)

P r o o f. We construct the desired αD by a finite iteration of the modifi-
cation process of Definition&Lemma 5:

We start with an arbitrary α ∈ Cf . (By Definition&Lemma 3.2 this set
is non-empty.) If

∑
s∈Sα(s̄) µα(s) > 2 for some s ∈ ]0, 1[ and if ♯Sα(s) ≤ 2

there must be at least one s ∈ Sα(s) with µ(s) = 2, i.e. s ∈ ]0, 1[ ∩ Vα.
In other words, α intersects im Γ f

α (s, ·) at s tangentially and the function
Θα(·) mod π has a transversal zero at s (since s ∈ ]0, 1[ ∩ Vα and α ∈ Cf).
This implies that the tangential intersection of α with im Γ f

α (s, ·) at s is
non-transversal. Therefore we can slightly modify α in a neighbourhood of s
such that this intersection bifurcates into two intersections and such that Vα

and Wα (α ∈ Cf ⇒ s 6∈ Wα, see Definition&Lemma 3.3) remain unchanged.
Thus we may assume without loss of generality that ♯Sα(s) > 2. Now

an application of Definition&Lemma 5.12 yields an α mod ∈ Cf such that
nα mod

(0, 1) ≤ nα(0, 1) − 1.
Repeating this process if necessary we will finally arrive (since nα(0, 1)

cannot become negative) at an αD ∈ Cf such that the assertion is valid.

Now we define a map (Definition 3) which relates the remaining two
intersections of αD with a lifted ray if they exist. Lemma 5 summarizes the
most important properties of this map.

Definition 3. Set A := {s ∈ ]0, 1[ | ♯α−1
D (im Γ f

αD
(s, ·)) ≥ 2}. Since

always s ∈ α−1
D (im Γ f

αD
(s, ·)) and by Definition&Lemma 6 we may define

the following maps:

a : A → [0, 1], a(s) := α−1
D (im Γ f

αD
(s, ·))\{s}

(where we have identified one-element sets with their element) and b : A →
[0,∞[ with b(s) being the unique (since Γ f

αD
(s, ·) is injective) element of

ΩαD
(s) such that

αD(a(s)) = Γ f
αD

(s, b(s)).

Lemma 5. 1. a(A) ∩ VαD
∩ ]0, 1[ = ∅, A ∩ VαD

= ∅.
2. A is open and a, b are continuous. In particular , a−1(0), a−1(1) are

also open.

3. If a(s1) = a(s2) 6∈ {0, 1} then s1 = s2. Moreover , a is monotone on

every interval I ⊂ A and is strictly monotone if 0, 1 6∈ a(I). In addition,
b(s) 6= 1 everywhere.
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4. 6 f ◦ αD and 6 f ◦ αD ◦ a are monotone on every interval I ⊂ A.

5. For all i = 1, . . . , n − 1 there is an ε > 0 such that ]vi, vi + ε[ ⊂ A
(]vi+1 − ε, vi+1[ ⊂ A, resp.). Moreover ,

a(s) ≤ vi and either b(s) < 1 if ΘαD
(vi) = 0 mod 2π,

or b(s) > 1 if ΘαD
(vi) = π mod 2π

(or a(s) ≥ vi+1 and either b(s) < 1 if ΘαD
(vi+1) = π mod 2π,

or b(s) > 1 if ΘαD
(vi+1) = 0 mod 2π, resp.)

for all s ∈ ]vi, vi + ε[ (∈ ]vi+1 − ε, vi+1[, resp.). In addition,

lim
s→vi

a(s) = vi ( lim
s→vi+1

a(s) = vi+1, resp.).

6. Let I ⊂ A be an interval such that vi ∈ Ī for some i = 1, . . . , n. Then,
for all s ∈ I,

6 f ◦ αD ◦ a(s) ≤ (≥, resp.) 6 f ◦ αD(s)

if vi =inf I (vi =sup I, resp.) and 6 f ◦αD is increasing on I, or if vi =sup I
(vi = inf I, resp.) and 6 f ◦ αD is decreasing on I.

P r o o f. 1. If we assume that a(s) ∈ VαD
∩ ]0, 1[ then µαD

(s) = 2
and Definition&Lemma 6 shows that a(s) must be the only element of
α−1

D (im Γ f
αD

(s, ·)). However, s ∈ α−1
D (im Γ f

αD
(s, ·)) by definition—a contra-

diction.
If we assume that s ∈ VαD

then µαD
(s) = 2 or s ∈ {0, 1}. Therefore,

Definition&Lemma 6 shows again that either α−1
D (im Γ f

αD
(s, ·))\{s} = ∅ or

s ∈ {0, 1}. Both cases imply that s 6∈ A.
2. If αD(a(s)) = Γ f

αD
(s, b(s)) then assertion 1 shows that either a(s) ∈

{0, 1} or a(s) 6∈ VαD
. We recall that ΩαD

is open in ]0, 1[ × [0,∞[.
In the first case we take a(s′) := a(s) ∈ {0, 1} for all s ∈ [0, 1]. Then

the implicit function theorem yields a continuous extension of b to some
neighbourhood of s since (Γ f

αD
(s, ·))· 6= 0.

In the second case we directly apply the implicit function theorem and
obtain a continuous extension of a and b to some neighbourhood of s. This
is due to the fact that ȧ(s) and (Γ f

αD
(s, ·))· are not parallel if a(s) 6∈ VαD

.
3. Since a(s1) = a(s2) 6∈ {0, 1} we conclude that

Γ f
αD

(s1, b(s1)) = αD(a(s1)) = αD(a(s2)) = Γ f
αD

(s2, b(s2))

with b(s1), b(s2) 6= 0. Thus it is clear that im Γ f
αD

(s1, ·) = im Γ f
αD

(s2, ·).
Therefore, if s1 6= s2 then im Γ f

αD
(s1, ·) would contain three different points,

namely s1, s2 and a(s1) = a(s2). This contradicts Definition&Lemma 6.
Now, monotonicity is obvious if we also use the connectedness of I and

the continuity of a.
If b(s) = 1 then αD(a(s)) = Γ f

αD
(s, b(s)) = Γ f

αD
(s, 1) = αD(s). Since αD

is injective we conclude that a(s) = s, a contradiction.
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4. Assertion 1 implies that neither I nor a(I) contain an element of VαD

in their interior (in R). Therefore Lemma 2 shows that 6 f ◦αD is monotone
on I and on a(I). Since a is also monotone (see assertion 3) we are done.

5. Since the assertion is local and f is a local diffeomorphism we may
consider the f -images of αD and Γ f

αD
as well. Thus if vi+1 = 0 it is easy to

see that the assertion is true with a(s) = 0 and b(s) = 0 since f ◦ αD(0) =
ΓαD

(s, 0).

If vi+1 6= 0 then it is not difficult to see that the situation in a neigh-
bourhood of f ◦ αD(vi) is homeomorphic to the following one on ]0, 1[

2
:

Let

f ◦ αD(s) := ((s − 1/2)2, s − 1/2),

ΓαD
(s, t) := ((s − 1/2)2, (s − 1/2) + t − 1)

and vi+1 = 1/2 (case ΘαD
(vi+1) = 0 mod 2π). Then

f ◦ αD(a(s)) = ΓαD
(s, b(s))

with a(s) := 1 − s, b(s) := 2 − 2s. Now it is straightforward to verify the
assertion. (We have only treated the assertion at vi+1 with ΘαD

(vi+1) =
0 mod 2π. However, the other cases are completely analogous.)

6. I may always be partitioned into I = I0 ∪ I ′ ∪ I1 with

I0 := a−1(0) ∩ I, I ′ := a−1(]0, 1[) ∩ I, I1 := a−1(1) ∩ I.

However, since a is monotone on I we know that I0, I ′, I1 are intervals with

(4) sup I0 = inf I ′, sup I ′ = inf I1

if a is increasing, and

(5) sup I1 = inf I ′, sup I ′ = inf I0

if a is decreasing on I. In addition, at least one of the intervals I0, I1 is
always empty. Otherwise, using the intermediate value theorem we could
find an s ∈ I with s = a(s), a contradiction.

Our definitions show that

(6) 6 f ◦ αD ◦ a(s) =





6 f ◦ αD(0) if s ∈ I0,
6 f ◦ αD(s) mod 2π if s ∈ I ′,
6 f ◦ αD(1) if s ∈ I1.

We treat the case when vi = inf I and 6 f ◦ αD is increasing on I:

Assertion 5 (i.e. a(s) ≤ vi and lims→vi
a(s) = vi) shows that a is de-

creasing. Therefore, we know that either I = I1 ∪ I ′ or I = I ′ ∪ I0 with (5)
being satisfied.

If I = I1 ∪ I ′ (with I1 assumed to be non-empty) then

inf I = vi = lim
s→vi

a(s) = 1.
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At the same time I ⊂ ]0, 1[ by definition. Therefore, I must be empty—a
contradiction.

If I = I ′ ∪ I0 then assertion 5 shows that

lim
s→vi

6 f ◦ αD ◦ a(s) = lim
s→vi

6 f ◦ αD(s).

Therefore, (6) shows that

(7) 6 f ◦ αD ◦ a(s) = 6 f ◦ αD(s)

for all s ∈ I ′ by continuation.
If s ∈ I0 we calculate (using the fact that f ◦ αD is increasing):

6 f ◦ αD(s) ≥ 6 f ◦ αD(inf I0) = 6 f ◦ αD ◦ a(inf I0)

= 6 f ◦ αD(0) = 6 f ◦ αD ◦ a(s),

where the first equality follows from (7) by continuity. We also used (6).
The other three cases are completely analogous.

The following lemma shows that without loss of generality we may as-
sume that the remaining “oscillations” (i.e. the variation of 6 f ◦ αD) are
not too large in some sense.

Lemma 6. Without loss of generality we may assume that for all intervals

I ⊂ A such that vi ∈ I (closure of I in R) (for some i = 1, . . . , n) and for

all s ∈ I,

|6 f ◦ αD(s) − 6 f ◦ αD(vi)| ≤ π.

P r o o f. If the assertion is not true for a vi, an I and an s we use Defi-
nition&Lemma 5 in order to replace αD by its modification (αD) mod asso-
ciated with s. (This is possible since s ∈ I implies ♯α−1

D (im Γ f
αD

(s, ·)) = 2.)
Clearly, all properties of αD are conserved.

We show that this reduces

Var(αD) :=
n−1∑

k=1

|6 f ◦ αD(vk+1) − 6 f ◦ αD(vk)|

by π/2 at least. Since vi ∈ I we conclude from Lemma 5 that a(s) ∈ [vi−1, vi]
(or a(s) ∈ [vi, vi+1], resp.).

Without loss of generality we will consider only the first case further on.
Moreover, ♯α−1

D (im Γ f
αD

(s, ·)) = 2 shows that sα = s and sα = a(s) or vice
versa. Since (αD) mod equals αD except for all s ∈ ]sα − εα, sα + εα[ (with
sα = s and sα = a(s) or vice versa) only the (at most two) summands of
Var(αD) which contain vi are affected by the modification.

Thus we calculate (using the abbreviation š := 6 f ◦ αD(s) and recalling
that we have defined v0 := v1 = 0, vn+1 := vn = 1):

|6 f ◦ αD(vi) − 6 f ◦ αD(vi−1)| + |6 f ◦ αD(vi+1) − 6 f ◦ αD(vi)|



60 R. Feßler

(1)
= |v̌i − ǎ(s)| + |ǎ(s) − v̌i−1| + |v̌i+1 − š| + |š − v̌i|

(2)
> 0 + |ǎ(s) − v̌i−1| + |v̌i+1 − š| + π

(3)

≥ |ǎ(s) − v̌i−1| + |v̌i+1 − š| + 2|š − v̌i, mod | + π/2

(4)

≥ |v̌i, mod − ǎ(s)| + |ǎ(s) − v̌i−1| + |v̌i+1 − š| + |š − v̌i, mod | + π/2

(5)
= |v̌i, mod − v̌i−1| + |v̌i+1 − v̌i, mod | + π/2.

Here, vi, mod denotes the single element of VαD
which is affected by the

modification. Equation (1) holds since ǎ(s) ∈ [vi−1, vi] and s ∈ [vi, vi+1] and
since 6 f ◦ αD and 6 f ◦ αD ◦ a are monotone (see Lemma 5).

Inequality (2) follows from our assumption that the assertion is not true.
Inequality (3) uses Definition&Lemma 5.14, and inequality (4) is a con-

sequence of Lemma 5.6. Equation (5) is similar to equation (1).
Thus, our calculation shows that each time we apply this modification,

we reduce Var(αD) by π/2 at least. Since Var(αD) cannot become negative,
we will finally arrive at a curve which satisfies the assertion.

Now we aim at constructing an unbounded, injective curve γ such that
the tangent angle of its image f ◦γ rotates by an amount of 3π+ε (ε > 0) at
least if we follow the curve from a point close to the first “end” of γ to a point
close to the other “end” (see Definition&Lemma 8). To this end we isolate
an appropriate part of αD, namely αD|[a1, a2] (Definition 4, Lemma 8) and
hang on the lifted rays which pass through its ends (Definition&Lemma 7
and Lemma 9). Lemma 7 ensures that the above mentioned rotation is 3π
at least. Definition&Lemma 8 adds the ε-summand. This will be done by a
slight rotation of one of the added rays.

Lemma 7 (See Figure 1). There are successive vk, vk+1 ∈ VαD
with k ∈

{1, . . . , n − 1} such that ΘαD
(vk) mod 2π = 0 and either

ΘαD
(vk+1) = ΘαD

(vk) + π, 6 f ◦ αD(vk) < 6 f ◦ αD(vk+1)

or

ΘαD
(vk+1) = ΘαD

(vk) − π, 6 f ◦ αD(vk) > 6 f ◦ αD(vk+1).

Throughout the rest of this work we assume without loss of generality
that the first alternative holds. This can always be achieved by an orientation
reversing reparametrization if necessary. Moreover, k will be fixed from now
on according to this lemma.

P r o o f. From Definition&Lemma 2.2 we know that ΘαD
(0) mod 2π =

0. If vk, vk+1 ∈ VαD
are successive the continuity of ΘαD

implies that
|ΘαD

(vk+1) − ΘαD
(vk)| must either equal π or equal 0.
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If the latter were true for every successive pair vi, vi+1 ∈ VαD
we could

prove iteratively that ΘαD
(1) = ΘαD

(0) (remember that 0, 1 ∈ VαD
), which

contradicts Definition&Lemma 2.2. Therefore, there is a first successive pair
vi, vi+1 such that |ΘαD

(vi+1) − ΘαD
(vi)| = π. For this pair, the first two

parts of the assertion (i.e. those concerning ΘαD
) are obviously satisfied.

The last part of the assertion is now a direct consequence of Lemma 2.

Definition 4.

A1 := a−1([vk−1, vk]) ∩ ]vk, vk+1[, A2 := a−1([vk+1, vk+2]) ∩ ]vk, vk+1[.

(Notice that [vk−1, vk] = {0} if k = 1 as well as [vk+1, vk+2] = {1} if k+1 = n
since we have set v0 := v1, vn+1 := vn.)

Lemma 8. 1. A1 ∩ A2 = ∅.
2. A1, A2 6= ∅. In particular , there are ε1, ε2 > 0 such that ]vk, vk +ε1[ ⊂

A1 and ]vk+1 − ε2, vk+2[ ⊂ A2.

3. A1, A2 are open in ]vk, vk+1[.
4. There is an r ∈ ]vk, vk+1[ such that r 6∈ A1 ∪ A2.

P r o o f. 1. This is clear since [vk−1, vk] ∩ [vk+1, vk+2] = ∅.
2. This is obvious from Lemma 5.5.
3. Lemma 5.1 shows that

a−1([vk−1, vk]) =





a−1(]vk−1, vk[) if k > 2,
a−1([0, v2[) if k = 2,
a−1(0) if k = 1.

Now Lemma 5.2 implies that A1 is open. The proof for A2 is analogous.
4. Since ]vk, vk+1[ is connected, 1–3 show that ]vk, vk+1[\(A1 ∪A2) must

be non-empty.

Definition&Lemma 7 (See Figure 1). Let r1 be the smallest element
of ]vk, vk+1[\A1 and r2 be the greatest element of ]vk, vk+1[\A2. They exist
since these sets are left (right, resp.) closed (see Lemma 8.2, 3) and since
]vk, vk+1[\(A1 ∪ A2) 6= 0 (see Lemma 8.4). Moreover,

vk < r1 ≤ r ≤ r2 < vk+1.

Let rn
1 → r1 and rn

2 → r2 be sequences in A1, A2, resp. We define

a1 := lim
n→∞

a(rn
1 ) ∈ [vk−1, vk], b1 := lim

n→∞
b(rn

1 ),

a2 := lim
n→∞

a(rn
2 ) ∈ [vk+1, vk+2], b2 := lim

n→∞
b(rn

2 ).

(These limits exist for a suitable subsequence at least.) By continuity,

ΓαD
(r1, b1) = f ◦ αD(a1), ΓαD

(r2, b2) = f ◦ αD(a2).

Let Γ f,a1
αD

(r1, ·) (Γ f,a2
αD

(r2, ·), resp.) denote the lift of ΓαD
(r1, ·) (ΓαD

(r2, ·),
resp.) with respect to f such that ΓαD

(r1, b1) (ΓαD
(r2, b2), resp.) is lifted to
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αD(a1) (αD(a2), resp.). Moreover, let Ωa1
αD

(r1)=]c1, d1[ (Ωa2
αD

(r2) = ]c2, d2[,
resp.) denote the maximal interval of existence. (Of course b1 ∈ Ωa1

αD
(r1), b2

∈ Ωa2
αD

(r2).) Then:

1. αD([a1, a2]) ∩ Γ f,a1
αD

({r1} × [b1, d1[) = αD(a1),

αD([a1, a2]) ∩ Γ f,a2
αD

({r2} × [b2, d2[) = αD(a2).

2. Γ f,a1
αD

({r1} × [b1, d1[) ∩ Γ f,a2
αD

({r2} × [b2, d2[) = ∅.

3. b1 ≤ 1, b2 ≤ 1.

P r o o f. 1. We assume the contrary, i.e. there are an s∈ ]a1, a2] and a t∈
[b1,∞[ such that αD(s) = Γ f,a1

αD
(r1, t). Then this intersection is transversal:

Indeed, since already αD(a1) = Γ f,a1
αD

(r1, b1) we conclude from Defini-
tion&Lemma 6 that s 6∈ ]0, 1[ ∩ VαD

. Our assumption says that s 6= 0.
Assume s = 1. Then f ◦ αD(s) = 0, hence t = 0 and therefore b1 = 0.
However, the latter implies that a1 = 0 and we arrive at a contradiction to
Lemma 4.2 (with sα = a1, s

α = s).

Thus we see that s ∈ VαD
is impossible and therefore our intersection is

transversal as asserted. Therefore, using the fact that ΩαD
(see Definition

2) is open, we conclude that this intersection continues to the lifts of nearby

rays, i.e. to all lifted rays Γ
f,a(rn

1 )
αD

(rn
1 , ·) with n large enough.

Thus we deduce that αD intersects im Γ
f,a(rn

1 )
αD

(rn
1 , ·) for all large n not

only at rn
1 and at a(rn

1 ) but also at some sn with sn → s. We know that
rn
1 → r1 6= a1, a(rn

1 ) → a1, sn → s 6= a1. If we also assume that s 6= r1 for
the moment we deduce that rn

1 , a(rn
1 ), sn are pairwise different for all large

n. This yields a contradiction to Definition&Lemma 6.

Now we are left with proving that s 6= r1. From our assumption αD(s) ∈
im Γ f,a1

αD
(r1, ·) we conclude that im Γ f,a1

αD
(r1, ·) = im Γ f

αD
(s, ·). Therefore, if

s = r1 it would follow that

αD(a1) ∈ im Γ f,a1

αD
(r1, ·) = im Γ f

αD
(r1, ·),

i.e. r1 ∈ A1, which contradicts the definition of r1. The proof of the second
equation (with a2 and r2) is the same.

2. Being straight rays emanating from 0, the images of the curves
ΓαD

(r1, ·) and ΓαD
(r2, ·) are either identical or have only the point 0 in

common. Therefore, regarding their lifts we deduce that if Γ f,a1
αD

(r1, t1) =
Γ f,a2

αD
(r2, t2) and not t1 = t2 = 0 then im Γ f,a1

αD
(r1, ·) = im Γ f,a2

αD
(r2, ·).

Thus, if assertion 2 were not valid we could conclude (following the
curves backwards if necessary) that either αD(a1) ∈ Γ f,a2

αD
({r2}× [b2, d2[) or

αD(a2) ∈ Γ f,a1
αD

({r1}× [b1, d1[). However, this contradicts assertion 1, which
is already proven.

3. From Lemma 5.5 and 5.3 we conclude that b(s) < 1 for all s ∈ ]vk, r1[
(s ∈ ]r2, vk+1[, resp.) Now, the definition of b1, b2 implies the assertion.
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Definition 5 (See Figure 1). We define the curve γ0 ∈ C0(I0 ∪ [0, 1] ∪
I1, R

2) by

γ0(s) :=





Γ f,a1
αD

(r1, b1 − s) if s ∈ I1,
αD(a1(1 − s) + a2s) if s ∈ [0, 1],
Γ f,a2

αD
(r2, b2 + s − 1) if s ∈ I2.

Here, I1 and I2 denote the following intervals:

I1 := {s ∈ ]−∞, 0] | b1 − s ∈ Ωa1

αD
(r1)} = ]b1 − d1, 0],

I2 := {s ∈ [1,∞[ | b2 + s − 1 ∈ Ωa2

αD
(r2)} = [1, d2 − b2 + 1[.

Of course, the maximum of I1 is 0 and the minimum of I2 is 1.

Lemma 9. 1. γ0 is injective.

2. d1 ≤ 1, i.e. I1 ⊂ ]b1 − 1, 0], and d2 ≤ 1, i.e. I2 ⊂ [1, 2 − b2[. In

particular , b1, b2 < 1 (since b1 ∈ Ωa1
αD

(r1) and b2 ∈ Ωa2
αD

(r2)).

P r o o f. 1. This is a direct consequence of Definition&Lemma 7.1.

2. Assume that d1 > 1. Definition&Lemma 7.3 shows that b1 ≤ 1.
Therefore, Γ f,a1

αD
(r1, ·) is defined at 1 and Definition&Lemma 7.1 shows that

Γ f,a1
αD

(r1, 1) 6= αD(r1). By continuity we conclude that also Γ
f,a(rn

1 )
αD

(rn
1 , 1) 6=

αD(rn
1 ) for all large enough n.

At the same time we know that Γ f
αD

(rn
1 , ·) = Γ

f,a(rn

1 )
αD

(rn
1 , ·) since rn

1 ∈ A1.
However, this yields a contradiction since Γ f

αD
(rn

1 , 1) = αD(rn
1 ) by definition.

The proof for d2 is the same.

Fig. 2



64 R. Feßler

Definition&Lemma 8 (See Figure 2). If r1 < r2 we take γ := γ0. If
r1 = r2 we improve γ0 in the following way:

We set ω0 := d2−b2+1 (i.e. I2 =[1, ω0[) and c := (1+ω0)/2. Now we take
a C1-function Ψ : [1,∞[ → [0, 1] with Ψ−1(0) = [1, c/2] and Ψ−1(1) = [c,∞[.
For every η ∈ ]0,∞[ we define ̺η : [1,∞[ → R

2 by

̺η(s) := ΓαD
(r2, s + b2 − 1) + η(s + b2 − 2)Ψ(s)ΓαD

(r2, 1)
⊥,

where (x, y)⊥ := (−y, x). Let ̺f
η be the lift of ̺η with respect to f such that

̺f
η(1) = γ0(1) ∈ f−1(̺η(1)) and let [1, ωη[ denote the associated maximal

interval of existence. Now we define

γη(s) :=

{
γ0(s) if s ∈ I1 ∪ [0, 1],
̺f

η(s) if s ∈ [1, ωη[.

Then there is a η̄ > 0 such that the curve

γ :=

{
γ0 ◦ β if r1 < r2,
γη̄ ◦ β if r1 = r2,

where β : I1 ∪ [0, 1] ∪ [1, ωη̄[ → I1 ∪ [0, 1] ∪ I2 is an orientation preserving
and regular reparametrization with β(0) = 0, β(1) = c, has the following
properties:

1. γ is injective.
2. γ is proper and p.w. regular.
3. There is an ε > 0 such that

6 (f ◦ γ)·(s2) − 6 (f ◦ γ)·(s1) ≥ 3π + ε for all s2 ∈ I2\{1}, s1 ∈ I1\{0}.

P r o o f. 1. If r1 < r2 the assertion follows from Lemma 9.1. So let us
consider the case r1 = r2. Since ̺η is injective by definition we conclude
that γη|[1, ωη[ = ̺f

η is also injective. From Lemma 9.1 we know that so
is γη|I1 ∪ [0, c/2] = γ0|I1 ∪ [0, c/2]. Thus, in order to prove the injectivity
of γη for some η > 0 it remains to show that ̺f

η |]c/2, ωη [ cannot intersect
γ0|I1 ∪ [0, 1]:

The definition of ̺η shows that for all η > 0 the only intersection of
̺η|]c/2,∞[ and ΓαD

(r2, ·) = ΓαD
(r1, ·) is

̺η(2 − b2) = ΓαD
(r2, 1).

However, the point ΓαD
(r2, 1) is neither lifted to Γ f,a1

αD
(r1, ·) nor to

Γ f,a2
αD

(r2, ·) since 1 6∈ Ωa1
αD

(r1) and 1 6∈ Ωa2
αD

(r2) (see Lemma 9.2). Using
Definition 5 this shows that ̺f

η |]c/2, ωη[ cannot intersect γ0|I1 or γ0|I2. Thus

we are left with proving that ̺f
η |]c/2, ωη[ cannot intersect γ0|]0, 1[:

Let us assume the contrary and let ̺f
η(qη) = γ0(pη) denote the first

intersection. Then the injectivity of ̺f
η and γ0 implies that γη|[pη, qη] is a

closed Jordan curve dividing R
2 into two components. We conclude that the

bounded interior component Gc is on the right side of γη|[pη, qη]: Indeed,
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γ0|I2 branches off ̺f
η to the left side (see the definition of ̺f

η together with
Definition 5).

Since we already know that γ0|I2 and ̺f
η |]c/2, ωη [ cannot intersect and

since γ0 is injective we conclude that γ0 cannot cross ∂Gc = γ0([pη, c/2]) ∪
̺f

η([c/2, qη ]). Therefore, if Gc were on the left side of γη|[pη, qη] then γ0(I2)
would be contained in Gc, which is impossible since γ0 is proper and there-
fore γ0(I2) is unbounded.

Thus we conclude that γη|[pη, qη] is a right-oriented Jordan curve, which
implies that the total rotation of the tangent angle is −2π. Since f is orien-
tation preserving the same is true for f ◦ γη|[pη, qη]. (This can be shown by
shrinking the curve (apply an isotopy [0, 1]×R

2 → R
2) into a neighbourhood

of zero where f is a diffeomorphism.)
More precisely, this means that

6 (f ◦ γ0)
·(1) − 6 (f ◦ γ0)

·(pη) + ∆1
η

+ 6 (f ◦ ̺f
η)·(qη) − 6 (f ◦ ̺f

η)·(1) + ∆p,q
η = −2π

with ∆1
η, ∆p,q

η denoting the tangent angle jumps of the two edges at γη(1)
and γη(pη) = γη(qη). Therefore,

∆1
η,∆p,q

η ∈ [−π, π].

Thus we estimate

(8) 6 (f ◦ γ0)
·(1) − 6 (f ◦ γ0)

·(pη) ≤ 6 (f ◦ ̺f
η)·(qη) − 6 (f ◦ ̺f

η)·(1).

Now, we assume that assertion 1 is false. Then there is a sequence ηk → 0
such that pηk

, qηk
exist for all k ∈ N (i.e. ̺f

ηk
|]c/2, ωηk

[ intersects γ0|]0, 1[).
Since pηk

∈ ]0, 1[ we conclude that qηk
also remains bounded. Therefore,

passing to a subsequence if necessary, we may assume that pηk
→ p0 ∈ [0, 1]

and qηk
→ q0 ∈ [c/2,∞[. Clearly, the definition of ̺η shows that

(9) f ◦ γ0(p0) = f ◦ ̺f
0 (q0).

Since f ◦̺f
0 = ̺0|[1, ω0[ is injective and q0 6= 1 it follows that f ◦̺f

0 (q0) 6=

f ◦̺f
0 (1) = ̺0(1) = f ◦γ0(1) and thus we conclude that p0 6= 1, i.e. p0 ∈ [0, 1[.
Taking into account that f ◦ ̺f

η = ̺η it follows from the definition of ̺η

that the right-hand side of inequality (8) converges to 0 as η → 0. Thus we
conclude that

6 (f ◦ γ0)
·(1) − 6 (f ◦ γ0)

·(p0) ≤ 0.

By using Definition 5 this may be reformulated as

(10) 6 (f ◦ αD)·(a2) − 6 (f ◦ αD)·(p̃0) ≤ 0

with a p̃0 ∈ [a1, a2[. In the same way equation (9) translates to

f ◦ αD(p̃0) = ΓαD
(r2, q̃0)

with a q̃0 ∈ ]b2,∞[. Since q̃0 > 0 this implies that ΓαD
(r2, q̃0) 6= 0 and
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therefore that (we use Definition 2.4)

(11) 6 f ◦ αD(p̃0) = 6 ΓαD
(r2, q̃0) = 6 f ◦ αD(r2) mod 2π.

Now we have to distinguish three cases:

C a s e 1: p̃0 ∈ ]vk, vk+1[. Since γ0 is proper and injective it divides R
2

into two components, one being to the right of γ0 which we will call Gr

and the other, Gl, being to the left. As already previously used in this
proof, ̺f

ηk
branches off γ0 to the right side (obvious from the definition of

̺f
η together with Definition 5). Therefore, ̺f

ηk
(]c/2, qηk

[) ⊂ Gr and the first

intersection of ̺f
ηk
|]c/2, ωηk

[ with γ0 at qηk
must be from right to left. Since f

is orientation preserving we conclude that ∆p,q
ηk

∈ [−π, 0]. Using the fact that

clearly ∆p,q
ηk

= 6 (f ◦ γ0)
·(pηk

)− 6 (f ◦ ̺f
ηk

)·(qηk
) and also some redefinitions

(Definition&Lemma 2.2, Definition 2.4, Definition 5 and the definition of
̺η) it follows that ΘαD

(p̃0) mod 2π = limk→∞ ∆p,q
ηk

∈ [−π, 0] by continuity.
However, Lemma 7 together with Lemma 2 shows that ΘαD

(p̃0) mod 2π ∈
]0, π[, a contradiction.

Therefore, case 1 cannot occur.
In order to treat cases 2 and 3 we will frequently use the fact that

6 f ◦ αD is strictly decreasing on [a1, vk] and on [vk+1, a2] (DEC) and is
strictly increasing on [vk, vk+1] (INC) (Lemmas 7 and 2). In addition, we
need the following:

Lemma 5.6 shows that 6 f ◦αD ◦a(rn
1 ) ≤ 6 f ◦αD(rn

1 ) (6 f ◦αD ◦a(rn
2 ) ≥

6 f ◦αD(rn
2 ), resp.) for all n ∈ N. Thus, passing to the limit we deduce that

(12) 6 f ◦ αD(a1) ≤ 6 f ◦ αD(r1), 6 f ◦ αD(a2) ≥ 6 f ◦ αD(r2)

by continuity.

C a s e 2: p̃0 ∈ [vk+1, a2[. Lemma 6 shows that |6 f ◦ αD(rn
2 ) − 6 f ◦

αD(vk+1)| ≤ π for all n ∈ N. Thus, passing to the limit we conclude that

(13) |6 f ◦ αD(r2) − 6 f ◦ αD(vk+1)| ≤ π.

From (DEC) and inequality (12) it follows that 6 f ◦αD(p̃0) > 6 f ◦αD(a2) ≥
6 f ◦ αD(r2). Using equation (11) this implies that

6 f ◦ αD(p̃0) ≥ 6 f ◦ αD(r2) + 2π.

Since 6 f ◦ αD(vk+1) ≥ 6 f ◦ αD(p̃0) (DEC) this leads to

6 f ◦ αD(vk+1) ≥ 6 f ◦ αD(r2) + 2π,

which contradicts inequality (13). Therefore, case 2 cannot occur either.

C a s e 3: p̃0 ∈ [a1, vk]. From (DEC), (INC), inequality (12) and Defini-
tion&Lemma 7 it follows that

6 f ◦ αD(p̃0) ≤ 6 f ◦ αD(a1) ≤ 6 f ◦ αD(r1)(14)

≤ 6 f ◦ αD(r2) ≤ 6 f ◦ αD(a2).
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By Lemma 7 and since vk, vk+1 are transversal (see Definition&Lemma 3)
we may also estimate

(15) ΘαD
(a2) − ΘαD

(p̃0) ≥ ΘαD
(vk+1) − ΘαD

(vk) = π.

Thus, using the definition of ΘαD
(see Definition&Lemma 2) together with

(14) and (15) we calculate

6 (f ◦ αD)·(a2) − 6 (f ◦ αD)·(p̃0)

= 6 f ◦ αD(a2) − 6 f ◦ αD(p̃0) + ΘαD
(a2) − ΘαD

(p̃0) ≥ π,

which contradicts inequality (10).
This shows that case 3 is also impossible.
Therefore, there is an η0 > 0 such that γη is injective for all η with

0 < η ≤ η0.
However, in order to make it possible to prove assertion 3 we still have

to improve this η:
Since f ◦γ0|I2 is injective, so is the restriction f |γ0([1, c]). Now, the same

argument as in Lemma 4.3 shows that this injectivity of f even extends to
a neighbourhood U of γ0([1, c]), i.e. f |U : U → f(U) is a diffeomorphism.
Clearly f(U) is a neighbourhood of f ◦ γ0([1, c]).

Since f ◦ γη|[1, c] → f ◦ γ0|[1, c] uniformly as η → 0, we can choose an η̄
such that f ◦γη̄([1, c]) ⊂ f(U) and 0 < η̄ ≤ η0. Since γη̄(1) = γ0(1) ∈ U this
ensures that

(16) ωη̄ > c.

2. Obvious.
3. A straightforward calculation using Lemma 7 shows that

6 (f ◦ γ0)
·(s2) − 6 (f ◦ γ0)

·(s1) = 3π + f ◦ αD(r2) − f ◦ αD(r1)

for all s2 ∈ I2\{1}, s1 ∈ I1\{0}. From Lemmas 2 and 7 we know that
ε := f ◦ αD(r2) − f ◦ αD(r1) > 0 if r2 > r1, which proves the assertion in
this case.

If r1 = r2 we calculate for all s ∈ [c, ωη̄[ 6= ∅ (see (16)) that

6 (f ◦ γη̄)·(s) = 6 ˙̺η̄(s) = f ◦ αD(r2) + ηf ◦ αD(r2)
⊥

= 6 (f ◦ γ0)
·(s) + arctan η.

This proves the assertion in the case r1 = r2 with ε := arctan η.

In order to make use of hypothesis 2 of Theorem 1 we now shift our curve
γ completely into the region where hypothesis 2 holds, i.e. into R

2\K. More
precisely, we have the following

Lemma 10. There is a curve γ ∈ C0(I1∪ [0, 1]∪I2, R
2) with the following

properties:

1. im γ ⊂ R
2\K.
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2. γ is injective, proper and p.w. regular.

3. There is an ε > 0 such that

6 (f ◦ γ)·(s2) − 6 (f ◦ γ)·(s1) ≥ 3π + ε

for all s2 ∈ I2\{1}, s1 ∈ I1\{0} with I1 := I1 ∩ ]−∞, s1] and I2 := I2 ∩
[s2,∞[ for some s1 ∈ I1 and s2 ∈ I2.

P r o o f. In order to shift γ out of K we first construct a suitable dif-
feotopy:

Since K is compact and γ is proper and injective we find a p ∈ R
2\ im γ

such that

c := min{‖γ(s) − p‖2 | s ∈ I1 ∪ [0, 1] ∪ I2}

and

d := 2max{‖x − p‖2 | x ∈ K}

exist. Of course, c > 0.

Now we choose an auxiliary function ̺ ∈ C1([0,∞[, [0,∞[) with ̺′(s) > 0
everywhere, ̺(c) = d and ̺(s) = s if s ≥ 2d or s = 0. (It is easy to
see that such functions exist.) This enables us to define the diffeotopy h∈
C1([0, 1] × R

2, R2) by

h(t, x) :=





((1 − t)‖x − p‖2 + t̺(‖x − p‖2))(x − p)

‖x − p‖2
+ p if x 6= p,

p if x = p.

Obviously, h inherits from ̺ the following properties:

(i) Dxh is invertible everywhere and h(t, ·) is a diffeomorphism for every
t ∈ [0, 1].

(ii) ‖h(1, x) − p‖2 ≥ d if ‖x − p‖2 ≥ c,

(iii) h(t, x) = x if t = 0 or ‖x − p‖2 ≥ 2d or x = p.

Now we define γ(s) := h(1, γ(s)). Then assertion 1 is obvious from (ii).
Assertion 2 follows from (i), (iii) and (i), resp. together with Definition
&Lemma 8.1, 2.

Assertion 3: Since γ is proper,

s1 := max{s ∈ I1 | ‖γ(s′) − p‖2 ≥ 2d for all s′ ∈ I1, s′ ≤ s},

s2 := min{s ∈ I2 | ‖γ(s′) − p‖2 ≥ 2d for all s′ ∈ I2, s′ ≥ s}

exist and we define I1 := I1 ∩ ]−∞, s1] and I2 := I2 ∩ [s2,∞[. Then (iii)
shows that for all s1 ∈ I1\{0}, s2 ∈ I2\{1} and t ∈ [0, 1],

6 (f ◦ h(t, γ(·)))·(s1) mod 2π = 6 (f ◦ γ)·(s1) mod 2π,

6 (f ◦ h(t, γ(·)))·(s2) mod 2π = 6 (f ◦ γ)·(s2) mod 2π
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since γ|I1 = γ|I1 and γ|I2 = γ|I2. Moreover, the angle 6 (f ◦h(t, γ(·)))·(s) is
defined everywhere (by (i)) and it is a continuous function of t and s. There-
fore the two equations remain valid even if the mod2π term is dropped and
the assertion follows from Definition&Lemma 8.3.

Since Lemma 10 is a central result about self-immersions of the plane we
restate it as a theorem using an obvious reparametrization and a smoothing
of the two edges of the curve:

Theorem 2. Let f ∈ C1(R2, R2) be not injective and such that

detDf(x) > 0 for all x ∈ R
2. Then for every compact set K there is a

curve γ ∈ C1(R, R2\K) with the following properties:

1. γ is injective, proper and regular.

2. There is an ε > 0 such that for every s1 ≤ 0 and s2 ≥ 1 the rotation

of (f ◦ γ)· from s1 to s2 is at least 3π + ε.

Next, we will prove a general property of certain curves in the plane.
This result is completely independent of the map f .

Theorem 3. Let γ ∈ C1(R, R2) be injective, proper and regular. Then

for every ε > 0 there are s1 ≤ 0 and s2 ≥ 1 such that the rotation of γ̇(s)
from s1 to s2 is less than π + ε.

Fig. 3

P r o o f (See Figure 3). We assume the contrary, i.e. there is an ε > 0
such that

(17) 6 γ̇(s2) − 6 γ̇(s1) ≥ π + ε for all s1 ≤ 0, s2 ≥ 1.

Let R := max γ([0, 1]) + 1. Then, for every r ≥ R we define the last inter-
section σ1(r) of γ|]−∞, 0] with the circle {x ∈ R

2 | ‖x‖2 = r} by

σ1(r) := max{s ∈ ]−∞, 0] | ‖γ(s)‖2 = r}

and also the first intersection σ2(r) of γ|[0,∞[ with the same circle by

σ2(r) := min{s ∈ [0,∞[ | ‖γ(s)‖2 = r}.
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(Notice that σ1(r), σ2(r) always exist since γ is proper.)
For every r ≥ R let ζr be a regular left-oriented (i.e. such that the

interior is to the left) parametrization of the circle {x ∈ R
2 | ‖x‖2 = r}

over [σ2(r), σ2(r) + 2π] such that ζr(σ2(r)) = γ(σ2(r)) and ζr(σ2(r) + 1) =
γ(σ1(r)).

Let ιr : [σ1(r), σ2(r) + 1] → R
2 be the p.w. regular closed Jordan curve

(γ is injective!)

ιr(s) :=

{
γ(s) if s ∈ [σ1(r), σ2(r)],
ζr(s) if s ∈ [σ2(r), σ2(r) + 1],

and let Ωr denote its open interior region.

We also need the rotation of the tangent angle at the two “edges” of ιr:

ϕ1(r) := (6 γ̇(σ1(r)) − 6 ζ̇r(σ2(r) + 1)) mod 2π ∈ [0, 2π[,

ϕ2(r) := (6 ζ̇r(σ2(r)) − 6 γ̇(σ2(r))) mod 2π ∈ [0, 2π[.

Moreover, we use the abbreviations

ϕγ(r) := 6 γ̇(σ2(r)) − 6 γ̇(σ1(r)),

ϕζ(r) := 6 ζ̇r(σ2(r) + 1) − 6 ζ̇r(σ2(r)).

Our assumption (17) shows that

(18) ϕγ(r) ≥ π + ε

and since ζr is left-oriented it follows that

(19) 0 < ϕζ(r) < 2π.

Observing that γ enters Ωr at σ1(r) and leaves Ωr at σ2(r) it is clear that

(20) 0 ≤ ϕi(r) ≤ π (i = 1, 2).

Since ιr is a closed Jordan curve the total rotation of its tangent angle must
be either 2π or −2π, i.e.

(21) ϕγ(r) + ϕ2(r) + ϕζ(r) + ϕ1(r) = ±2π.

An easy calculation using the statements (18)–(21) yields

ϕγ(r) + ϕ2(r) + ϕζ(r) + ϕ1(r) = 2π,(22)

0 ≤ ϕi(r) < π − ε (i = 1, 2),(23)

0 < ϕζ(r) ≤ π − ε.(24)

In addition equation (22) shows that Ωr has to be to the left of ιr. Since
our assumption (17) shows that 6 γ̇(σ2(r)) ≥ 6 γ̇(σ1(R))+π+ε for all r ≥ R
we conclude that ϕ := infr≥R

6 γ̇(σ2(r)) exists. Moreover, we find an r0 ≥ R
such that

(25) 6 γ̇(σ2(r0)) ≤ ϕ + ε/8.
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We also define

Φ1 := ϕ − (π + ε) + ε/4,(26)

Φ2 := ϕ − ε/4.(27)

Now, we will prove the following three statements:

Φ2 − Φ1 = π + ε/2,(28)

Φ2 < 6 γ̇(σ2(r)) < Φ2 + π if r ≥ r0,(29)

Φ1 − π < 6 γ̇(σ1(r)) < Φ1 if r ≥ r0.(30)

Equation (28) is obvious from (26) and (27).
Using the definition of ϕ and definition (27) the left inequality in (29)

follows. The right inequality in (30) follows from our assumption (17), from
(25) and from definition (26).

In order to prove the right inequality in (29) we assume the contrary,
namely

6 γ̇(σ2(r)) ≥ Φ2 + π.

From this we conclude that (using in addition (22)–(24))

6 γ̇(σ1(r)) = 6 γ̇(σ2(r)) − ϕγ(r)

= 6 γ̇(σ2(r)) − 2π + ϕζ(r) + ϕ1(r) + ϕ2(r) > Φ2 − π.

However, using also (25) and (27) this would imply that

6 γ̇(σ2(r0)) − 6 γ̇(σ1(r)) < ϕ + ε/8 − (Φ2 − π) < π + ε,

which contradicts our assumption (17). Thus (29) is proven.
Similarly, we now assume that 6 γ̇(σ1(r)) ≤ Φ1 − π in order to prove the

left inequality in (30). Using (22)–(24) and (28) again this would imply that

6 γ̇(σ2(r)) = 6 γ̇(σ1(r)) + ϕγ(r) < Φ2,

which contradicts the left inequality in (29).
Now, we define an auxiliary curve γaux which equals γ in some middle

part but has ends which are straight lines with the angles Φ1 and Φ2, resp.:

γaux(s) :=





γ(σ2(r0)) + (s − σ2(r0))v2 if s ∈ [σ2(r0),∞[,
γ(s) if s ∈ [σ1(r0), σ2(r0)],
γ(σ1(r0)) + (s − σ1(r0))v1 if s ∈ ]−∞, σ1(r0)].

Here, v1, v2 ∈ R
2 are taken such that

6 vi = Φi mod 2π, i = 1, 2.

Equation (28) shows that the two “ends” of γaux intersect, i.e. γaux(c1) =
γaux(c2) with a c1 < σ1(r0) and a c2 > σ2(r0). Then γaux|[c1, c2] is clearly
a left-oriented closed Jordan curve. Let Ωaux denote its open interior region
and let rc := ‖γaux(c1)‖2.
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Now we prove the following auxiliary assertion: if

(31) r ∈ [r0, rc[ and γ([σ1(r), σ2(r)]) ⊂ Ωaux

then

(32) ζr(]σ2(r), σ2(r) + 1[) ⊂ Ωaux

and

(33) Ωr ⊂ Ωaux.

First, we need the following two facts:

(i) It is clear from our definitions that ζr has exactly two transversal
intersections with ∂Ωaux for every r ∈ [r0, rc[. One intersection, say at t1, is
with γaux|[c1, σ1(r0)] ⊂ ∂Ωaux where ζr leaves Ωaux (since this intersection
is from left to right) and the other, say at t2, is with γaux|[σ2(r0), c2] where
ζr enters Ωaux again (from right to left). (Remember that Ωaux is to the left
of γaux.)

(ii) If (32) were not true, then (31) shows that ζr|[σ2(r), σ2(r)+1] would
intersect ∂Ωaux, since ζr(σ2(r)) = γ(σ2(r)) and ζr(σ2(r) + 1) = γ(σ1(r)).

Altogether, (i) and (ii) show that if (32) were not true, then ζr([σ2(r),
σ2(r)+1]) would even contain the whole arc ζr([t1, t2]). However, it is easy to
see from our definitions that ζr([t1, t2]) and therefore that ζr([σ2(r), σ2(r)+
1]) is more than a half-circle, which contradicts inequality (24). Therefore
(32) must be true. Since (31) and (32) show that ∂Ωr ⊂ Ωaux the Jordan
curve theorem implies (33).

Let [r0, r][ be the maximal interval such that

(34) γ([σ1(r), σ2(r)]) ⊂ Ωaux for all r ∈ [r0, r][.

(iii) [r0, r][ contains r0. This is obvious from the definition of Ωaux.
(iv) [r0, r][ is closed . It is obvious from the definition that σ1 and σ2 are

decreasing and increasing, resp. Now, a straightforward proof shows that σ1

and σ2 are left-continuous, i.e. σi(rn) → σi(r) for every sequence rn ր r.
This implies the assertion at once.

(v) [r0, r][ is right-open in [r0, rc]. Let rn ց r ∈ [r0, r][ be any sequence
in [r0, rc]. If r = rc we are done. So let us assume r < rc. The definition of
σi (i = 1, 2) shows that

σ1(rn) ր σ1 ≤ σ1(r) and σ2(rn) ց σ2 ≥ σ2(r).

If σi = σi(r) for i = 1 or 2 then inequality (30) (i = 1) or (29) (i = 2), resp.
shows that γ̇(σi) points outside or inside Ωaux, resp. Hence, γ(σi(rn))∈Ωaux

(i = 1 or 2, resp.) for almost all n.
If σ2 > σ2(r) then the definition of σ2 shows that γ̇(σ2(r)) must be

parallel to the tangent of the circle im ζr at γ(σ2(r)), i.e. either ϕ2(r) = 0 or
ϕ2(r) = π. However, inequality (23) shows that only ϕ2(r) = 0 is possible.
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This implies that γ enters Ωr ∪ζr(]σ2(r), σ2(r)+1[) at γ(σ2(r)) and we may
even conclude that

γ(]σ2(r), σ2]) ⊂ Ωr ∪ ζr(]σ2(r), σ2(r) + 1[).

Indeed, ∂Ωr = γ([σ1(r), σ2(r)])∪ ζr(]σ2(r), σ2(r) + 1[) by definition. There-
fore, γ|]σ2(r), σ2] could leave Ωr only at some point of ζr(]σ2(r), σ2(r) + 1[)
since γ is injective (see Lemma 10). However, this is impossible since the
definition of σ2 implies that ‖γ(s)‖2 ≤ r for all s ∈ ]σ(r), σ2].

A completely analogous proof shows that

γ([σ1, σ1(r)[) ⊂ Ωr ∪ ζr(]σ2(r), σ2(r) + 1[) if σ1 < σ1(r).

Now the auxiliary assertion shows that γ([σ1, σ1(r)[) and γ(]σ2(r), σ2]) are
contained in Ωaux. Therefore, γ(σi(rn)) ∈ Ωaux (i = 1, 2) for almost all n.

Finally, we conclude from (iii)–(v) that [r0, r][ = [r0, rc], i.e.

γ([σ1(r), σ2(r)]) ⊂ Ωaux for all r ∈ [r0, rc].

Since in addition γ(σi(rc)) ∈ im ζrc
(i = 1, 2) and since im ζrc

∩ Ωaux =
{γaux(c1)} (i.e. it contains exactly one element) we conclude that

γ(σ1(rc)) = γ(σ2(rc)).

This means that γ is not injective—a contradiction to our hypothesis which
finally proves the Theorem.

P r o o f o f T h e o r e m 1 (continuation). If f were not injective, Theo-
rem 2 would apply: We take the curve γ and the ε > 0 as in Theorem 2 and
the s1, s2 according to Theorem 3. This yields the estimate

(6 γ̇(s2) − 6 (f ◦ γ)·(s2)) − (6 γ̇(s1) − 6 (f ◦ γ)·(s1))

= 6 γ̇(s2) − 6 γ̇(s1) − (6 (f ◦ γ)·(s2) − 6 (f ◦ γ)·(s1))

< π + ε − (3π + ε) = −2π.

Hypothesis 2 of our Theorem 1 shows that

(f ◦ γ)· = Df(γ(s)) ◦ γ̇(s) 6= λγ̇(s) for all λ > 0.

This means that (f ◦ γ)·(s) and γ̇(s) never point in the same direction.
Therefore, there must be an open interval of length 2π, say ]Ψ, Ψ +2π[, such
that 6 γ̇(s) − 6 (f ◦ γ)·(s) ∈ ]Ψ, Ψ + 2π[ for all s. However, this obviously
contradicts our estimate above. Thus, f must be injective.
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