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Sufficient conditions for multivalent starlikeness

by Shigeyoshi Owa (Osaka), Mamoru Nunokawa (Gunma)
and Hitoshi Saitoh (Gunma)

Abstract. Let S∗(p) be the class of functions f(z) which are p-valently starlike in the
open unit disk U. Two sufficient conditions for a function f(z) to be in the class S∗(p) are
shown.

1. Introduction. Let A(p) be the class of functions of the form

(1.1) f(z) = zp +
∞∑

k=p+1

akz
k (p ∈ N = {1, 2, 3, . . .})

which are analytic in the open unit disk U = {z : |z| < 1}. A function f(z)
belonging to A(p) is said to be p-valently starlike in U if it satisfies

(1.2) Re
{
zf ′(z)
f(z)

}
> 0 (z ∈ U).

We denote by S∗(p) the subclass of A(p) consisting of functions f(z) which
are p-valently starlike in U. Also, we write S∗(1) ≡ S∗.

Let Q denote the class of all analytic functions q(z) in U which are
normalized by q(0)=1. Using Jack’s lemma (see [1], also [2]), Nunokawa [3]
has shown that

Lemma 1. Let q(z) ∈ Q and suppose that there exists a point z0 ∈ U
such that Re(q(z)) > 0 (|z| < |z0|), Re(q(z0)) = 0 and q(z0) 6= 0. Then

(1.3)
z0q
′(z0)

q(z0)
= ik,

where k is real and |k| ≥ 1.
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Lemma 1 yields

Lemma 2. Let q(z) ∈ Q and suppose that there exists a point z0 ∈ U
such that Re(q(z)) > 0 (|z| < |z0|), Re(q(z0)) = 0 and q(z0) 6= 0. Then

(1.4)
z0q
′(z0)

q(z0)
=
k

2

(
a+

1
a

)
i,

where q(z0) = ia, k is real and k ≥ 1.

More recently, Owa, Nunokawa and Fukui [4] have given

Theorem A. If f(z) ∈ A(p) satisfies f(z) 6= 0 (0 < |z| < 1) and

(1.5)
∣∣∣∣ arg

{
f(z)
zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
−
(

1 +
1
4p

)}∣∣∣∣ > 0 (z ∈ U),

then f(z) ∈ S∗(p) and

(1.6)
∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣ < p (z ∈ U).

In the present paper, we give an improvement of Theorem A.

2. Main results. An application of Lemma 2 gives us the following
condition for f(z) ∈ S∗(p).

Theorem 1. If f(z) ∈ A(p) satisfies f(z) 6= 0 (0 < |z| < 1) and

(2.1)
∣∣∣∣ arg

{
f(z)
zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
−
(

1 +
1
2p

)}∣∣∣∣ > 0 (z ∈ U),

then f(z) ∈ S∗(p).

P r o o f. For f(z) ∈ A(p) satisfying the condition of the theorem, we
define the function q(z) by

(2.2) q(z) =
zf ′(z)
pf(z)

.

Then, since q(z) is analytic in U and q(0) = 1, we have q(z) ∈ Q. Note that

(2.3) 1 +
zf ′′(z)
f ′(z)

= pq(z) +
zq′(z)
q(z)

.

Therefore, our condition (2.1) implies that

(2.4)
f(z)
zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
= 1 +

zq′(z)
pq(z)2

6= α (z ∈ U),

where α ≥ 1 + 1/(2p).



Multivalent starlikeness 77

Suppose that there exists a point z0 ∈ U such that Re(q(z)) > 0 (|z| <
|z0|), Re(q(z0)) = 0 and q(z0) 6= 0. Then, applying Lemma 2, we see that

f(z0)
z0f ′(z0)

(
1 +

z0f
′′(z0)

f ′(z0)

)
= 1 +

z0q
′(z0)

pq(z0)2
(2.5)

= 1 +
k

2ap

(
a+

1
a

)
= 1 +

k

2p

(
1 +

1
a2

)
≥ 1 +

k

2p
≥ 1 +

1
2p
,

which contradicts (2.4). Thus Re(q(z)) > 0 (z ∈ U), that is, f(z) ∈ S∗(p).
This proves the assertion of our theorem.

R e m a r k. The condition for f(z) to be in the class S∗(p) in Theorem 1
is an improvement of Theorem A due to Owa, Nunokawa and Fukui [4].

Letting p = 1 in Theorem 1, we have

Corollary 1. If f(z) ∈ A(1) satisfies f(z) 6= 0 (0 < |z| < 1) and

(2.6)
∣∣∣∣ arg

{
f(z)
zf ′(z)

(
1 +

zf ′′(z)
f ′(z)

)
− 3

2

}∣∣∣∣ > 0 (z ∈ U),

then f(z) ∈ S∗.

Next, we derive

Theorem 2. If f(z) ∈ A(p) satisfies f(z) 6= 0 (0 < |z| < 1) and

(2.7)
∣∣∣∣ arg

{
zf ′(z)
f(z)

(
1 +

zf ′′(z)
f ′(z)

)
+
p

2

}∣∣∣∣ < π (z ∈ U),

then f(z) ∈ S∗(p).

P r o o f. Define the function q(z) by (2.2). Then q(z) ∈ Q and

(2.8)
zf ′(z)
f(z)

(
1 +

zf ′′(z)
f ′(z)

)
= p2q(z)2 + pzq′(z) 6= α (z ∈ U),

where α ≤ −p/2. If there exists a point z0 ∈ U such that Re(q(z)) > 0 (|z| <
|z0|), Re(q(z0)) = 0 and q(z0) 6= 0, then Lemma 2 leads us to

z0f
′(z0)

f(z0)

(
1 +

z0f
′′(z0)

f ′(z0)

)
= p2q(z0)2 + pz0q

′(z0)(2.9)

= − p2a2 − pk

2
(1 + a2) ≤ −pk

2
≤ −p

2
,

which contradicts (2.8). Consequently, f(z) ∈ S∗(p).
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Setting p = 1 in Theorem 2, we have

Corollary 2. If f(z) ∈ A(1) satisfies f(z) 6= 0 (0 < |z| < 1) and

(2.10)
∣∣∣∣ arg

{
zf ′(z)
f(z)

(
1 +

zf ′′(z)
f ′(z)

)
+

1
2

}∣∣∣∣ < π (z ∈ U),

then f(z) ∈ S∗.
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