Sufficient conditions for multivalent starlikeness

by Shigeyoshi Owa (Osaka), Mamoru Nunokawa (Gunma) and Hitoshi Saitoh (Gunma)

Abstract

Let $\mathbb{S}^{*}(p)$ be the class of functions $f(z)$ which are p-valently starlike in the open unit disk \mathbb{U}. Two sufficient conditions for a function $f(z)$ to be in the class $\mathbb{S}^{*}(p)$ are shown.

1. Introduction. Let $\mathbb{A}(p)$ be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. A function $f(z)$ belonging to $\mathbb{A}(p)$ is said to be p-valently starlike in \mathbb{U} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

We denote by $\mathbb{S}^{*}(p)$ the subclass of $\mathbb{A}(p)$ consisting of functions $f(z)$ which are p-valently starlike in \mathbb{U}. Also, we write $\mathbb{S}^{*}(1) \equiv \mathbb{S}^{*}$.

Let \mathbb{Q} denote the class of all analytic functions $q(z)$ in \mathbb{U} which are normalized by $q(0)=1$. Using Jack's lemma (see [1], also [2]), Nunokawa [3] has shown that

Lemma 1. Let $q(z) \in \mathbb{Q}$ and suppose that there exists a point $z_{0} \in \mathbb{U}$ such that $\operatorname{Re}(q(z))>0\left(|z|<\left|z_{0}\right|\right), \operatorname{Re}\left(q\left(z_{0}\right)\right)=0$ and $q\left(z_{0}\right) \neq 0$. Then

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=i k \tag{1.3}
\end{equation*}
$$

where k is real and $|k| \geq 1$.

[^0]Lemma 1 yields
Lemma 2. Let $q(z) \in \mathbb{Q}$ and suppose that there exists a point $z_{0} \in \mathbb{U}$ such that $\operatorname{Re}(q(z))>0\left(|z|<\left|z_{0}\right|\right), \operatorname{Re}\left(q\left(z_{0}\right)\right)=0$ and $q\left(z_{0}\right) \neq 0$. Then

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=\frac{k}{2}\left(a+\frac{1}{a}\right) i \tag{1.4}
\end{equation*}
$$

where $q\left(z_{0}\right)=i a, k$ is real and $k \geq 1$.
More recently, Owa, Nunokawa and Fukui [4] have given
Theorem A. If $f(z) \in \mathbb{A}(p)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left\{\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\left(1+\frac{1}{4 p}\right)\right\}\right|>0 \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

then $f(z) \in \mathbb{S}^{*}(p)$ and

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|<p \quad(z \in \mathbb{U}) . \tag{1.6}
\end{equation*}
$$

In the present paper, we give an improvement of Theorem A.
2. Main results. An application of Lemma 2 gives us the following condition for $f(z) \in \mathbb{S}^{*}(p)$.

Theorem 1. If $f(z) \in \mathbb{A}(p)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left\{\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\left(1+\frac{1}{2 p}\right)\right\}\right|>0 \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

then $f(z) \in \mathbb{S}^{*}(p)$.
Proof. For $f(z) \in \mathbb{A}(p)$ satisfying the condition of the theorem, we define the function $q(z)$ by

$$
\begin{equation*}
q(z)=\frac{z f^{\prime}(z)}{p f(z)} \tag{2.2}
\end{equation*}
$$

Then, since $q(z)$ is analytic in \mathbb{U} and $q(0)=1$, we have $q(z) \in \mathbb{Q}$. Note that

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=p q(z)+\frac{z q^{\prime}(z)}{q(z)} \tag{2.3}
\end{equation*}
$$

Therefore, our condition (2.1) implies that

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=1+\frac{z q^{\prime}(z)}{p q(z)^{2}} \neq \alpha \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

where $\alpha \geq 1+1 /(2 p)$.

Suppose that there exists a point $z_{0} \in \mathbb{U}$ such that $\operatorname{Re}(q(z))>0(|z|<$ $\left.\left|z_{0}\right|\right), \operatorname{Re}\left(q\left(z_{0}\right)\right)=0$ and $q\left(z_{0}\right) \neq 0$. Then, applying Lemma 2 , we see that

$$
\begin{align*}
\frac{f\left(z_{0}\right)}{z_{0} f^{\prime}\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & =1+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{p q\left(z_{0}\right)^{2}} \tag{2.5}\\
& =1+\frac{k}{2 a p}\left(a+\frac{1}{a}\right) \\
& =1+\frac{k}{2 p}\left(1+\frac{1}{a^{2}}\right) \\
& \geq 1+\frac{k}{2 p} \geq 1+\frac{1}{2 p}
\end{align*}
$$

which contradicts (2.4). Thus $\operatorname{Re}(q(z))>0(z \in \mathbb{U})$, that is, $f(z) \in \mathbb{S}^{*}(p)$. This proves the assertion of our theorem.

Remark. The condition for $f(z)$ to be in the class $\mathbb{S}^{*}(p)$ in Theorem 1 is an improvement of Theorem A due to Owa, Nunokawa and Fukui [4].

Letting $p=1$ in Theorem 1, we have
Corollary 1. If $f(z) \in \mathbb{A}(1)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left\{\frac{f(z)}{z f^{\prime}(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\frac{3}{2}\right\}\right|>0 \quad(z \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

then $f(z) \in \mathbb{S}^{*}$.
Next, we derive
Theorem 2. If $f(z) \in \mathbb{A}(p)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\frac{p}{2}\right\}\right|<\pi \quad(z \in \mathbb{U}) \tag{2.7}
\end{equation*}
$$

then $f(z) \in \mathbb{S}^{*}(p)$.
Proof. Define the function $q(z)$ by (2.2). Then $q(z) \in \mathbb{Q}$ and

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=p^{2} q(z)^{2}+p z q^{\prime}(z) \neq \alpha \quad(z \in \mathbb{U}) \tag{2.8}
\end{equation*}
$$

where $\alpha \leq-p / 2$. If there exists a point $z_{0} \in \mathbb{U}$ such that $\operatorname{Re}(q(z))>0(|z|<$ $\left.\left|z_{0}\right|\right), \operatorname{Re}\left(q\left(z_{0}\right)\right)=0$ and $q\left(z_{0}\right) \neq 0$, then Lemma 2 leads us to

$$
\begin{align*}
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & =p^{2} q\left(z_{0}\right)^{2}+p z_{0} q^{\prime}\left(z_{0}\right) \tag{2.9}\\
& =-p^{2} a^{2}-\frac{p k}{2}\left(1+a^{2}\right) \leq-\frac{p k}{2} \leq-\frac{p}{2}
\end{align*}
$$

which contradicts (2.8). Consequently, $f(z) \in \mathbb{S}^{*}(p)$.

Setting $p=1$ in Theorem 2, we have
Corollary 2. If $f(z) \in \mathbb{A}(1)$ satisfies $f(z) \neq 0(0<|z|<1)$ and

$$
\begin{equation*}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\frac{1}{2}\right\}\right|<\pi \quad(z \in \mathbb{U}) \tag{2.10}
\end{equation*}
$$

then $f(z) \in \mathbb{S}^{*}$.

References

[1] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
[2] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
[3] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad. 68 (1992), 152-153.
[4] S. Owa, M. Nunokawa and S. Fukui, A criterion for p-valently starlike functions, Internat. J. Math. and Math. Sci., to appear.
S. Owa

DEPARTMENT OF MATHEMATICS
KINKI UNIVERSITY
HIGASHI-OSAKA
OSAKA 577, JAPAN
H. Saitoh

DEPARTMENT OF MATHEMATICS
GUNMA COLLEGE OF TECHNOLOGY
TORIBA
MAEBASHI
GUNMA 371, JAPAN
M. Nunokawa DEPARTMENT OF MATHEMATICS GUNMA UNIVERSITY MAEBASHI GUNMA 371, JAPAN

[^0]: 1991 Mathematics Subject Classification: Primary 30C45.
 Key words and phrases: analytic, open unit disk, p-valently starlike, Jack's lemma.
 Research of the first author was supported, in part, by the Japanese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific Research (No. 046204).

