Injective hyperbolicity of domains

by Marius Overholt (Tromsoe)

Abstract

The pseudometric of Hahn is identical to the Kobayashi-Royden pseudometric on domains of dimension greater than two. Thus injective hyperbolicity coincides with ordinary hyperbolicity in this case.

1. Introduction. The Kobayashi pseudodistance d_{M} and KobayashiRoyden pseudodifferential metric K_{M} of a complex manifold M are defined by means of extremal problems for holomorphic mappings of the unit disk \mathbb{D} into M. By restricting to injective holomorphic mappings in these extremal problems, one arrives at a pseudodistance τ_{M} and a pseudodifferential metric S_{M} respectively. These were considered first on plane domains by Siu [4], and in general by Hahn [1]. In the literature, they go under the names of S-metric or Hahn metric. If the pseudodifferential metric S_{M} satisfies an inequality

$$
S_{M}(z, \xi) \geq c\|\xi\|, \quad c>0
$$

at each point of M, then M is said to be S-hyperbolic (alternatively Hahn hyperbolic or injective hyperbolic). In this note we consider S_{M} and its relationship to K_{M}.

From the work of Siu [4] and Minda [3] it is known that if M is a Riemann surface, then it is S-hyperbolic unless it is the plane or the extended plane, and Minda also proved that S_{M} and K_{M} are distinct unless M is simply connected. For domains of higher dimension there are results on S-hyperbolicity due to Zhang [7], Vesentini [5] and Vigué [6]. Zhang proved that if S_{M} is a complete metric, then M is a domain of holomorphy, and observed that the converse does not hold. Vesentini showed that a domain of the form $\mathbb{C}^{*} \times \Omega$ is not S-hyperbolic if Ω is a domain of dimension two or larger, thus disproving the claim by Hahn that $\left(\mathbb{C}^{*}\right)^{n}$ is S-hyperbolic for

[^0]any positive integer n. Vigué generalized the result of Vesentini by showing that a product of two domains is S-hyperbolic only if it is hyperbolic.

The present research was done while the author was on sabbatical at Stanford University, whose hospitality is gratefully acknowledged.

2. Domains in high dimensions

THEOREM 1. If $\Omega \subseteq \mathbb{C}^{n}, n \geq 3$, is a domain, then $S_{\Omega} \equiv K_{\Omega}$.
Proof. Let $a \in \Omega, \eta \in \mathbb{C}^{n}$ with $\eta \neq 0$ be given. It is enough to show that $S_{\Omega}(a, \eta) \leq K_{\Omega}(a, \eta)$. By a translation of Ω we may assume that $a=0$, and by a rotation, we may assume that $\eta_{1} \ldots \eta_{n} \neq 0$. Let $\varepsilon>0$ be arbitrary.

Choose a holomorphic mapping $f: \mathbb{D} \rightarrow \Omega$ with $f(0)=0$ and

$$
f_{*}(0) \nu=\eta, \quad|\nu| \leq K_{\Omega}(0, \eta)+\varepsilon / 2
$$

for some $\nu \in \mathbb{C}$. Define $f_{1}: \mathbb{D} \rightarrow \Omega$ by $f_{1}(z)=f((1-\delta) z)$ for a suitably small $\delta>0$; then $f_{1}(0)=0$ and

$$
\left(f_{1}\right)_{*}(0) \frac{\nu}{1-\delta}=\eta, \quad\left|\frac{\nu}{1-\delta}\right| \leq K_{\Omega}(0, \eta)+\varepsilon
$$

say. Since f_{1} is holomorphic on $\overline{\mathbb{D}}$ and $\operatorname{dist}\left(f_{1}(\overline{\mathbb{D}}), \partial \Omega\right)>0$, there exists a polynomial mapping $f_{2}: \overline{\mathbb{D}} \rightarrow \Omega$ with $f_{2}(0)=0$ and $\left(f_{2}\right)_{*}(0)=\left(f_{1}\right)_{*}(0)$. We write out f_{2} explicitly:

$$
f_{2}(z)=\left(\ldots, \sum_{k=1}^{m} A_{j k} z^{k}, \ldots\right), \quad 1 \leq j \leq n
$$

We shall show that there exist slight perturbations $\widetilde{A}_{j k}$ of the coefficients $A_{j k}, 1 \leq j \leq n, 2 \leq k \leq n$, such that

$$
f_{3}(z)=\left(\ldots, \sum_{k=1}^{m} \tilde{A}_{j k} z^{k}, \ldots\right), \quad 1 \leq j \leq n
$$

with $\widetilde{A}_{j 1}=A_{j 1}$, is an injective mapping $f_{3}: \mathbb{D} \rightarrow \Omega$. Since $f_{3}(0)=0$ and

$$
\left(f_{3}\right)_{*}(0)=\left(\ldots, \widetilde{A}_{j 1}, \ldots\right)=\left(\ldots, A_{j 1}, \ldots\right)=\left(f_{2}\right)_{*}(0)=\left(f_{1}\right)_{*}(0)
$$

the mapping f_{3} is a competitor in the extremal problem that defines $S_{\Omega}(0, \eta)$, so

$$
S_{\Omega}(0, \eta) \leq\left|\frac{\nu}{1-\delta}\right| \leq K_{\Omega}(0, \eta)+\varepsilon
$$

Letting $\varepsilon \rightarrow 0, S_{\Omega} \leq K_{\Omega}$ follows.

It remains to establish that it is possible to choose f_{3} as required. Assume $f_{3}(z)=f_{3}(w)$ for some $z, w \in \mathbb{C}$ with $z \neq w$, thus

$$
\begin{aligned}
& \widetilde{A}_{11} z+\ldots+\widetilde{A}_{1 m} z^{m}=\widetilde{A}_{11} w+\ldots+\widetilde{A}_{1 m} w^{m} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\widetilde{A}_{n m} z^{m}=\widetilde{A}_{n 1} w+\ldots+\widetilde{A}_{n m} w^{m} \\
& \widetilde{A}_{n 1} z+\ldots+\ldots+\ldots+\ldots
\end{aligned}
$$

Rearranging and dividing by $z-w$, we obtain

$$
\begin{aligned}
& \widetilde{A}_{12}(z+w)+\widetilde{A}_{13}\left(z^{2}+z w+w^{2}\right)+\ldots=-\widetilde{A}_{11} \\
& \cdots \widetilde{A}_{n 3}\left(z^{2}+z w+w^{2}\right)+\ldots=-\widetilde{A}_{n 1} \\
& \widetilde{A}_{n 2}(z+w)+\widetilde{W}_{n}
\end{aligned}
$$

The image of \mathbb{C}^{2} under the mapping given by

$$
\begin{aligned}
& X_{1}=z+w \\
& X_{2}=z^{2}+z w+w^{2} \\
& \ldots \ldots \cdots \cdots \cdots \cdots \cdots \cdots \\
& X_{m-1}=z^{m-1}+\ldots+w^{m-1}
\end{aligned}
$$

lies on a projective surface V, while the equations

$$
\begin{gathered}
B_{12} X_{1}+\ldots+B_{1 m} X_{m-1}=1 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
B_{n 2} X_{1}+\ldots+B_{n m} X_{m-1}=1
\end{gathered}
$$

where $B_{j k}=\widetilde{A}_{j k} /\left(-\widetilde{A}_{j 1}\right)$, define a linear subspace L of the projective space $P_{m-1}(\mathbb{C})$ which is generically of dimension $m-1-n$. Thus $V \cap L=\emptyset$ generically since $\operatorname{dim}(V)+\operatorname{dim}(L)=2+m-1-n=(m-1)-(n-2)<m-1$ when $n \geq 3$. In particular, the set of $B_{j k}$ for which $V \cap L=\emptyset$ is dense in $\mathbb{C}^{n(m-1)}$, and so the set of $\widetilde{A}_{j k}$ for which f_{3} is injective on \mathbb{C} is dense in $\mathbb{C}^{n(m-1)}$. Since $\operatorname{dist}\left(f_{2}(\overline{\mathbb{D}}), \partial \Omega\right)>0$, we can choose the $\widetilde{A}_{j k}$ close enough to the $A_{j k}$ so that $\operatorname{dist}\left(f_{3}(\overline{\mathbb{D}}), \partial \Omega\right)>0$ while keeping f_{3} injective.

This theorem has some of the results of Zhang, Vesentini and Vigué as corollaries in dimension greater than two. From [2] it is known that a domain which is complete hyperbolic is a domain of holomorphy, thus the theorem of Zhang follows for domains of dimension greater than two. Theorem III of [5] follows directly, as does Corollaire 3.2 of [6] in dimension greater than two.

References

[1] K. T. Hahn, Some remarks on a new pseudo-differential metric, Ann. Polon. Math. 39 (1981), 71-81.
[2] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970, p. 77.
[3] C. D. Minda, The Hahn metric on Riemann surfaces, Kodai Math. J. 6 (1983), 57-69.
[4] Y.-T. Siu, All plane domains are Banach-Stein, Manuscripta Math. 14 (1974), 101105.
[5] E. Vesentini, Injective hyperbolicity, Ricerche Mat., Suppl. Vol. 36 (1987), 99-109.
[6] J.-P. Vigué, Une remarque sur l'hyperbolicité injective, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 57-61.
[7] J. Zhang, Metric S on holomorphy domain, Kexue Tongbao 33 (5) (1988), 353-356.

IMR UNIVERSITY OF TROMSOE
N-9037 TROMSOE, NORWAY
E-mail: MARIUS@MATH.UIT.NO

[^0]: 1991 Mathematics Subject Classification: Primary 32H15.
 Key words and phrases: invariant metric, Kobayashi-Royden metric, Hahn metric, S-metric.

