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differential equations on the halfline

by Svatoslav Staněk (Olomouc)

Abstract. The differential equation of the form (q(t)k(u)(u′)a)′ = f(t)h(u)u′, a ∈
(0,∞), is considered and solutions u with u(0) = 0 and (u(t))2 +(u′(t))2 > 0 on (0,∞) are
studied. Theorems about existence, uniqueness, boundedness and dependence of solutions
on a parameter are given.

1. Introduction. In [9] the differential equation (q(t)k(u)u′)′=F (t, u)u′

was considered and the author gave sufficient conditions for the existence
and uniqueness of solutions u such that u(0) = 0 and (u(t))2 +(u′(t))2 > 0
for t ∈ (0,∞). This problem is connected with the description of the math-
ematical model of infiltration of water. For more details see e.g. [3], [4] and
[6]. Naturally, a question arises of what are the properties of solutions of
the differential equation (q(t)k(u)(u′)a)′ = F (t, u)u′, where a is a positive
constant. For the sake of simplicity of our assumptions, results and proofs
we will consider the differential equations of the type

(1) (q(t)k(u)(u′)a)′ = f(t)h(u)u′, a ∈ (0,∞).

We also study the qualitative dependence of solutions of (1) on the parame-
ter a. As special cases we obtain results of [9] (with F (t, u) = f(t)h(u) and
a = 1), of [8] (where a = 1, f ∈ C1(R+), R+ = [0,∞)) and of [7] (where
a = 1, q(t) ≡ 1, h(u) ≡ 1). We observe that special cases of (1) (with a = 1)
were also considered in [1], [2], [4] and [6].

2. Notations and lemmas. We consider equation (1) in which the
functions q, k, f and h satisfy the following assumptions:
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(H1) q ∈ C0(R+), q(t) > 0 for t > 0 and
∫

0
(1/q(s))1/a ds <∞;

(H2) k ∈ C0(R+), k(0) = 0, k(u) > 0 for u > 0 and
∫

0
(k(s))1/a ds < ∞,∫∞(k(s))1/a ds =∞;

(H3) f ∈ C0(R+), f(t) > 0 for t ∈ R+ and f is decreasing on R+;
(H4) h ∈ C0(R+), h(u) ≥ 0 for u ∈ R+ and H(u) =

∫ u
0
h(s) ds is strictly

increasing on R+;
(H5)

∫
0
(k(s)/H(s))1/a ds <∞,

∫∞(k(s)/H(s))1/a ds =∞.

We say that u is a solution of (1) if u ∈ C0(R+) ∩C1((0,∞)), u(0) = 0,
u(t) ≥ 0 on R+, (u(t))2 + (u′(t))2 > 0 for t ∈ (0,∞), q(t)k(u(t))(u′(t))a

is continuously differentiable on (0,∞), limt→0+ q(t)k(u(t))(u′(t))a = 0 and
(1) is satisfied on (0,∞).

Let p ∈ C0(R), p(0) = 0. We say that u is a solution of the differential
equation

(2) (q(t)k(u)p(u′))′ = f(t)h(u)u′

if u ∈ C0(R+)∩C1((0,∞)), u(0) = 0, u(t) ≥ 0 on R+, (u(t))2 + (u′(t))2 > 0
for t ∈ (0,∞), q(t)k(u(t))p(u′(t)) is continuously differentiable on (0,∞),
limt→0+ q(t)k(u(t))p(u′(t)) = 0 and (2) is satisfied on (0,∞).

Lemma 1. Let u(t) be a solution of (2). Then u′(t) > 0 for t ∈ (0,∞).

P r o o f. We see that

(3) q(t)k(u(t))p(u′(t)) =
t∫

0

f(s)h(u(s))u′(s) ds for t > 0.

Suppose that there exist 0 < t1 < t2 such that u′(t1) = u′(t2) = 0 and
u′(t) > 0 (resp. u′(t) < 0) on (t1, t2). Then u(t) > 0 for t ∈ [t1, t2] and (3)
implies

0 = q(t2)k(u(t2))p(u′(t2))− q(t1)k(u(t1))p(u′(t1)) =
t2∫
t1

f(s)h(u(s))u′(s) ds,

which contradicts
t2∫
t1

f(s)h(u(s))u′(s) ds ≥ f(t2)
u(t2)∫
u(t1)

h(s) ds > 0

(
resp.

t2∫
t1

f(s)h(u(s))u′(s) ds ≤ f(t2)
u(t2)∫
u(t1)

h(s) ds < 0
)
.

Assume u′(τ) = 0 for a τ ∈ (0,∞) and u′(t) 6= 0 on (0, τ). Then necessarily
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u′(t) > 0 on (0, τ) since u(t) ≥ 0 for t ∈ R+, and (cf. (3))

0 = q(τ)k(u(τ))p(u′(τ)) =
τ∫

0

f(s)h(u(s))u′(s) ds,

which contradicts
τ∫

0

f(s)h(u(s))u′(s) ds ≥ f(τ)
u(τ)∫
0

h(s) ds > 0.

Therefore by virtue of (u(t))2 +(u′(t))2 > 0 on (0,∞) we conclude u′(t) > 0
for t ∈ (0,∞).

Corollary 1. Let u(t) be a solution of (1). Then u′(t) > 0 for t ∈
(0,∞).

P r o o f. If a = m/n, where m,n ∈ N and n is odd, then the function
va is defined for all v ∈ R and Corollary 1 follows from Lemma 1. Assume
a = m/n, where m,n ∈ N and n is even or a is an irrational number. Then
the function va is defined for all v ∈ R+, and for every p1 ∈ C0((−∞, 0])
with p1(0) = 0, the function p : R→ R defined by p(v) = va for v ∈ R+ and
p(v) = p1(v) for v ∈ (−∞, 0) is continuous on R, p(0) = 0 and, moreover,
u(t) is a solution of (2). Hence u′(t) > 0 on (0,∞) by Lemma 1.

R e m a r k 1. It follows from Corollary 1 that u ∈ A for any solution u
of (1), where

A = {u ∈ C0(R+) : u(0) = 0, u is strictly increasing on R+}.
Set

k1(u) = (k(u))1/a, K1(u) =
u∫

0

k1(s) ds, P (u) =
u∫

0

(
k(s)
H(s)

)1/a

ds

for u ∈ R+. Obviously, k1 ∈ C0(R+), K1 ∈ C1(R+), P ∈ C0(R+) ∩
C1((0,∞)), K1 and P are strictly increasing on R+, limu→∞K1(u) =∞ by
(H2) and limu→∞ P (u) =∞ by (H5).

Lemma 2. If u(t) is a solution of (1), then

(4) u(t) = K−1
1

( t∫
0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds

)
, t ∈ R+,

where K−1
1 and u−1 denote the inverse functions to K1 and u, respectively.

Conversely , if u ∈ A is a solution of (4), then u(t) is a solution of (1).

P r o o f. Let u be a solution of (1). Then u ∈ A (cf. Remark 1) and

(k1(u(t))u′(t))a =
1
q(t)

t∫
0

f(s)h(u(s))u′(s) ds, t > 0.
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Hence

(5) (K1(u(t)))′ =
(

1
q(t)

u(t)∫
0

f(u−1(s))h(s) ds
)1/a

, t > 0,

and integrating (5) from 0 to t, we obtain

K1(u(t)) =
t∫

0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds, t ∈ R+,

and consequently, equality (4) is satisfied.
Conversely, let u ∈ A be a solution of (4). Then u ∈ C1((0,∞)),

lim
t→0+

q(t)k(u(t))(u′(t))a = lim
t→0+

u(t)∫
0

f(u−1(s))h(s) ds = 0

and (q(t)k(u(t))(u′(t))a)′ = f(t)h(u(t))u′(t) for t ∈ (0,∞). Hence u is a
solution of (1).

Define ϕ,ϕ : R+ → R+ by

ϕ(t) = P−1

( t∫
0

(
f(s)
q(s)

)1/a

ds

)
, ϕ(t) = P−1

( t∫
0

(
f(0)
q(s)

)1/a

ds

)
,

where P−1 : R+→ R+ denotes the inverse function to P . Obviously, ϕ(t)≤
ϕ(t) on R+ by (H3).

Lemma 3. Let u(t) be a solution of (1). Then

(6) ϕ(t) ≤ u(t) ≤ ϕ(t) for t ∈ R+.

P r o o f. Since

f(t)H(u(t)) = f(t)
u(t)∫
0

h(s) ds ≤
t∫

0

f(s)h(u(s))u′(s) ds

≤ f(0)
u(t)∫
0

h(s) ds = f(0)H(u(t)),

we have

f(t)H(u(t)) ≤ q(t)(k1(u(t))u′(t))a ≤ f(0)H(u(t)), t ∈ (0,∞).

Thus (
f(t)
q(t)

H(u(t))
)1/a

≤ k1(u(t))u′(t) ≤
(
f(0)
q(t)

H(u(t))
)1/a

and
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(7)
(
f(t)
q(t)

)1/a

≤
(
k(u(t))
H(u(t))

)1/a

u′(t) (= (P (u(t)))′) ≤
(
f(0)
q(t)

)1/a

,

t ∈ (0,∞).

Integrating (7) from 0 to t we obtain
t∫

0

(
f(s)
q(s)

)1/a

ds ≤ P (u(t)) ≤
t∫

0

(
f(0)
q(s)

)1/a

ds, t ∈ R+,

and (6) holds.

Set

K = {u ∈ A : ϕ(t) ≤ u(t) ≤ ϕ(t) for t ∈ R+ and

u(t2)− u(t1) ≥ (f(t2)H(ϕ(t1)))1/a
t2∫
t1

(1/q(s))1/a ds

× [max{k1(u) : ϕ(t1) ≤ u ≤ ϕ(t2)}]−1 for 0<t1<t2}.

R e m a r k 2. We now verify that ϕ ∈ K and thus K is a nonempty
subset of A. Fix 0 < t1 < t2. Then

P (ϕ(t2))− P (ϕ(t1)) =
t2∫
t1

(
f(s)
q(s)

)1/a

ds

and, by the Taylor formula, there exists ξ ∈ (ϕ(t1), ϕ(t2)) ⊂ (ϕ(t1), ϕ(t2))
such that

P ′(ξ)(ϕ(t2)− ϕ(t1)) ≥ (f(t2))1/a
t2∫
t1

(
1
q(s)

)1/a

ds.

Since

P ′(ξ) =
k1(ξ)

(H(ξ))1/a
≤ max{k1(u) : ϕ(t1) ≤ u ≤ ϕ(t2)}

(
1

H(ϕ(t1))

)1/a

,

we get

ϕ(t2)− ϕ(t1) ≥ 1
P ′(ξ)

(f(t2))1/a
t2∫
t1

(
1
q(s)

)1/a

ds

≥ (f(t2)H(ϕ(t1)))1/a
t2∫
t1

(
1
q(s)

)1/a

ds

× [max{k1(u) : ϕ(t1) ≤ u ≤ ϕ(t2)}]−1

and therefore ϕ ∈ K. Analogously we can show that ϕ ∈ K as well.
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Define the operator T : K → C0(R+) by

(Tu)(t) = K−1
1

( t∫
0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds

)
, t ∈ R+.

Lemma 4. T : K → K.

P r o o f. Let u ∈ K. Set

γ(t) =
t∫

0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds,

α(t) = γ(t)−K1(ϕ(t)), β(t) = γ(t)−K1(ϕ(t))

for t ∈ R+. Then

α′(t) =
(

1
q(t)

u(t)∫
0

f(u−1(s))h(s) ds
)1/a

−
k1(ϕ(t))
P ′(ϕ(t))

(
f(t)
q(t)

)1/a

≥
(
f(t)
q(t)

H(u(t))
)1/a

−
k1(ϕ(t))
k1(ϕ(t))

(
f(t)
q(t)

H(ϕ(t))
)1/a

≥ 0,

β′(t) =
(

1
q(t)

u(t)∫
0

f(u−1(s))h(s) ds
)1/a

− k1(ϕ(t))
P ′(ϕ(t))

(
f(0)
q(t)

)1/a

≤
(
f(0)
q(t)

H(u(t))
)1/a

− k1(ϕ(t))
k1(ϕ(t))

(
f(0)
q(t)

H(ϕ(t))
)1/a

≤ 0

for t ∈ (0,∞). Since α(0) = β(0) = 0 and α′(t) ≥ 0, β′(t) ≤ 0 on (0,∞), we
see that α(t) ≥ 0, β(t) ≤ 0 for t ∈ R+, and consequently,

(8) ϕ(t) ≤ K−1
1 (γ(t)) = (Tu)(t) ≤ ϕ(t) for t ∈ R+.

Let 0 < t1 < t2. Then

K1((Tu)(t2))−K1((Tu)(t1)) =
t2∫
t1

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds

≥
t2∫
t1

(
f(s)
q(s)

H(u(s))
)1/a

ds

≥ (H(ϕ(t1))f(t2))1/a
t2∫
t1

(
1
q(s)

)1/a

ds

and
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K1((Tu)(t2))−K1((Tu)(t1))
= k1(ξ)[(Tu)(t2)− (Tu)(t1)]

≤ max{k1(u) : ϕ(t1) ≤ u ≤ ϕ(t2)}[(Tu)(t2)− (Tu)(t1)]

by the Taylor formula (here ξ∈((Tu)(t1), (Tu)(t2))⊂(ϕ(t1), ϕ(t2))). Hence
(with A = [max{k1(u) : ϕ(t1) ≤ u ≤ ϕ(t2)}]−1)

(Tu)(t2)− (Tu)(t1) ≥ A[K1((Tu)(t2))−K1((Tu)(t1))](9)

≥ A(H(ϕ(t1))f(t2))1/a
t2∫
t1

(
1
q(s)

)1/a

ds.

From (8) and (9) it follows that Tu ∈ K for each u ∈ K, and consequently,
T : K → K.

3. Existence theorem

Theorem 1. Let assumptions (H1)–(H5) be satisfied. Then there exists
a solution of (1).

P r o o f. By Lemma 2 and Corollary 1, u ∈ A is a solution of (1) if and
only if u is a solution of (4). Therefore in order to prove Theorem 1 it is
enough to show that the operator T has a fixed point.

Let X be the Fréchet space of C0-functions on R+ with the topology of
uniform convergence on compact subintervals of R+. Then K is a bounded
closed convex subset of X and T : K → K (by Lemma 4). Let {un} ⊂ K
be a convergent sequence, limn→∞ un = u (∈ K). Then limn→∞ u−1

n =
u−1 (u−1

n and u−1 denote the inverse functions to un and u, respectively)
and consequently, limn→∞ Tun = Tu. This proves that T is a continuous
operator.

It follows from the inequalities (0 ≤ t1 < t2 ≤ t3, u ∈ K)

(0 ≤) K1((Tu)(t2))−K1((Tu)(t1))

=
t2∫
t1

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds

≤
t2∫
t1

(
f(0)
q(s)

H(u(s))
)1/a

ds

≤ (f(0)H(ϕ(t3)))1/a
t2∫
t1

(
1
q(s)

)1/a

ds

and from the Arzelà–Ascoli theorem that T(K) is a relatively compact subset
of K. By the Tikhonov–Schauder fixed point theorem, there exists a fixed
point of T. Hence Theorem 1 is proved.
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Theorem 2. Let assumptions (H1)–(H5) be satisfied. If there exist two
different solutions u(t) and v(t) of (1) then

u(t) 6= v(t) for t ∈ (0,∞).

P r o o f. Assume u, v are different solutions of (1). Assume there exists a
t1 > 0 such that u(t1) = v(t1) and u(t) 6= v(t) on (0, t1), say u(t) < v(t) for
t ∈ (0, t1). Then

0 = v(t1)− u(t1) = K1((Tv)(t1))−K1((Tu)(t1))

=
t1∫

0

(
1
q(s)

v(s)∫
0

f(v−1(τ))h(τ) dτ
)1/a

ds

−
t1∫

0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds,

which contradicts
t1∫

0

(
1
q(s)

v(s)∫
0

f(v−1(τ))h(τ) dτ
)1/a

ds

>
t1∫

0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds.

Let 0 < t1 < t2 be such that u(t1) = v(t1), u(t2) = v(t2), u(t) 6= v(t) on
(t1, t2), say u(t) > v(t) for t ∈ (t1, t2). Then u′(t1) ≥ v′(t1), u′(t2) ≤ v′(t2)
and

0 ≤ q(t1)k(u(t1))((u′(t1))a − (v′(t1))a)(10)

− q(t2)k(u(t2))((u′(t2))a − (v′(t2))a)

=
t1∫
t2

f(s)h(u(s))u′(s) ds−
t1∫
t2

f(s)h(v(s))v′(s) ds

=
u(t1)∫
u(t2)

[f(u−1(s))− f(v−1(s))]h(s) ds.

On the other hand, since u(t2) > u(t1) and f(u−1(t)) − f(v−1(t)) ≥ 0 on
[u(t1), u(t2)],

u(t1)∫
u(t2)

[f(u−1(s))− f(v−1(s))]h(s) ds ≤ 0.

Thus by (10), u′(t1) = v′(t1), u′(t2) = v′(t2) and f(u−1(t)) = f(v−1(t)) for
t ∈ [u(t1), u(t2)]. Since
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q(t)((K1(u(t)))′)a − q(t1)k(u(t1))(u′(t1))a =
u(t)∫

u(t1)

f(u−1(s))h(s) ds,

q(t)((K1(v(t)))′)a − q(t1)k(v(t1))(v′(t1))a =
v(t)∫

u(t1)

f(v−1(s))h(s) ds

on (0,∞), q(t1)k(u(t1))(u′(t1))a = q(t1)k(v(t1))(v′(t1))a, 0 < f(u−1(s)) =
f(v−1(s)) for s ∈ [u(t1), u(t2)] and u(t) > v(t) on (t1, t2), we obtain

((K1(u(t)))′)a − ((K1(v(t)))′)a

=
1
q(t)

u(t)∫
v(t)

f(u−1(s))h(s) ds > 0, t ∈ (t1, t2).

Thus

(11) (K1(u(t)))′ > (K1(v(t)))′ for t ∈ (t1, t2),

and consequently, K1(u(t2)) − K1(u(t1)) > K1(v(t2)) − K1(v(t1)), which
contradicts u(t1) = v(t1), u(t2) = v(t2). So either u(t) 6= v(t) on (0,∞) or
there exists a t0 ∈ (0,∞) such that u(t) = v(t) for t ∈ [0, t0] and u(t) 6= v(t)
on (t0,∞), say for example u(t) > v(t) for t ∈ (t0,∞). Assume that the
second case occurs. Then, by the Bonnet mean value theorem, there exists
a ξ ∈ [t0, t] such that

(12) ((K1(u(t)))′)a − ((K1(v(t)))′)a

=
1
q(t)

t∫
t0

f(s)[h(u(s))u′(s)− h(v(s))v′(s)] ds

=
1
q(t)

[
f(t0)

ξ∫
t0

(h(u(s))u′(s)− h(v(s))v′(s)) ds

+ f(t)
t∫
ξ

(h(u(s))u′(s)− h(v(s))v′(s)) ds
]

=
1
q(t)

[(f(t0)− f(t))(H(u(ξ))−H(v(ξ)))

+ f(t)(H(u(t))−H(v(t)))], t ≥ t0.
Set
M = amin{q(t) : t0 ≤ t ≤ t0 + 1} ·min{(k1(z))a−1 : u(t0) ≤ z ≤ u(t0 + 1)}

×min{min{(u′(t))a−1, (v′(t))a−1} : t0 ≤ t ≤ t0 + 1} (> 0),
M1 = min{k1(z) : u(t0) ≤ z ≤ u(t0 + 1)} (> 0),
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L = max{h(z) : u(t0) ≤ z ≤ u(t0 + 1)} (> 0),

V (t) = max{u(s)− v(s) : t0 ≤ s ≤ t} for t ∈ [t0, t0 + 1].

Obviously, V (t0) = 0 and V is continuous nondecreasing on [t0, t0 + 1].
By the Taylor formula, there exists a B (= B(t)) in the interval with

end points (K1(u(t)))′ and (K1(v(t)))′ such that

((K1(u(t)))′)a − ((K1(v(t)))′)a = aBa−1(K1(u(t))−K1(v(t)))′,
t ∈ [t0, t0 + 1],

and therefore (cf. (12))

(K1(u(t))−K1(v(t)))′

≤ 1
M

[(f(t0)− f(t))(H(u(ξ))−H(v(ξ)))

+ f(t)(H(u(t))−H(v(t)))]

≤ f(t0)
M

[(H(u(ξ))−H(v(ξ))) + (H(u(t))−H(v(t)))]

≤ 2
M
Lf(t0)V (t), t ∈ [t0, t0 + 1].

Then

K1(u(t))−K1(v(t)) ≤ 2
M
Lf(t0)

t∫
t0

V (s) ds,

and consequently,

u(t)− v(t) ≤ 2Lf(t0)
Mk1(ε)

t∫
t0

V (s) ds ≤ 2Lf(t0)
MM1

t∫
t0

V (s) ds, t ∈ [t0, t0 + 1],

where ε ∈ [v(t), u(t)] by the Taylor formula. Hence

V (t) ≤ 2Lf(t0)
MM1

t∫
t0

V (s) ds ≤ 2Lf(t0)
MM1

V (t)
t∫

t0

ds(13)

=
2Lf(t0)
MM1

V (t)(t− t0), t ∈ [t0, t0 + 1].

Since V (t) > 0 for t ∈ (t0, t0 + 1], we obtain (cf. (13))

1 ≤ 2Lf(t0)
MM1

(t− t0) for t ∈ (t0, t0 + 1],

a contradiction.
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Theorem 3. Let assumptions (H1)–(H5) be satisfied. Then there exist
solutions u(t) and u(t) of (1) such that

ϕ(t) ≤ u(t) ≤ u(t) ≤ u(t) ≤ ϕ(t), t ∈ R+,

for any solution u(t) of (1).

P r o o f. Denote by B the set of all solutions of (1). By Theorem 1, B is a
nonempty set. If B is a finite set, then Theorem 3 follows from Theorem 2.
Assume B is an infinite set. Set

u(t) = inf{u(t) : u ∈ B}, u(t) = sup{u(t) : u ∈ B} for t ∈ R+.

Then ϕ(t) ≤ u(t) ≤ u(t) ≤ ϕ(t) on R+ and to prove Theorem 3 it is enough
to show that u and u are solutions of (1). By Theorem 2, there exists a
sequence {un} ⊂ B, u1(t) < . . . < un(t) < . . . < u(t), t ∈ (0,∞), such that
u(t) = limn→∞ un(t) for t ∈ R+. Now we prove that limn→∞ u′n(t) =: b(t)
exists for all t ∈ (0,∞) and b = u′. Evidently,

(K1(un+1(t)))′ − (K1(un(t)))′

=
(

1
q(t)

un+1(t)∫
0

f(u−1
n+1(s))h(s) ds

)1/a

−
(

1
q(t)

un(t)∫
0

f(u−1
n (s))h(s) ds

)1/a

>

(
1
q(t)

un(t)∫
0

f(u−1
n (s))h(s) ds

)1/a

−
(

1
q(t)

un(t)∫
0

f(u−1
n (s))h(s) ds

)1/a

= 0

for t ∈ (0,∞) and n ∈ N. Therefore the sequence {k1(un(t))u′n(t)} is strictly
increasing for each t ∈ (0,∞). Setting α(t) = limn→∞ k1(un(t))u′n(t), t ∈
(0,∞), we see that

lim
n→∞

u′n(t) = lim
n→∞

k1(un(t))u′n(t)
k1(un(t))

=
α(t)

k1(u(t))
=: β(t), t ∈ (0,∞),

and using the Lebesgue dominated convergence theorem in the equalities

un(t) =
t∫

0

u′n(s) ds, t ∈ R+, n ∈ N,

we get u(t) =
∫ t

0
β(s) ds on R+; hence β(t) = u′(t) for t ∈ (0,∞). Applying

again the Lebesgue theorem to the equalities

k1(un(t))u′n(t) =
(

1
q(t)

t∫
0

f(s)h(un(s))u′n(s) ds
)1/a

, t ∈ (0,∞), n ∈ N,

we obtain

k1(u(t))u′(t) =
(

1
q(t)

t∫
0

f(s)h(u(s))u′(s) ds
)1/a

, t ∈ (0,∞),
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and consequently, u is a solution of (1). Analogously we can prove that u is
a solution of (1).

4. Bounded and unbounded solutions

Theorem 4. Let assumptions (H1)–(H5) be satisfied. Then

(i) some (and then any) solution of (1) is bounded if and only if

∞∫
0

(
1
q(t)

)1/a

dt <∞,

(ii) some (and then any) solution of (1) is unbounded if and only if

∞∫
0

(
1
q(t)

)1/a

dt =∞.

P r o o f. First note that either
∫∞

0
(1/q(t))1/a dt <∞ or

∫∞
0

(1/q(t))1/a dt
=∞. In the first case, by Lemma 3, any solution u of (1) is bounded. Now
assume

∫∞
0

(1/q(t))1/a dt =∞ and u is a solution of (1). Then

lim
t→∞

t∫
0

( 1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds

t∫
0

(
1
q(s)

)1/a

ds

= lim
t→∞

( u(t)∫
0

f(u−1(s))h(s) ds
)1/a

= lim
t→∞

( t∫
0

f(s)h(u(s))u′(s) ds
)1/a

> 0,

and consequently,

lim
t→∞

K1(u(t)) = lim
t→∞

t∫
0

(
1
q(s)

u(s)∫
0

f(u−1(τ))h(τ) dτ
)1/a

ds =∞.

Hence limt→∞ u(t) =∞ and u is unbounded.
Let u be a solution of (1). If u is bounded, then

∫∞
0

(1/q(t))1/a dt < ∞
since in the opposite case u is unbounded by the first part of the proof.
Analogously, u unbounded implies

∫∞
0

(1/q(t))1/a dt =∞.
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5. Uniqueness theorem

Theorem 5. Let assumptions (H1)–(H5) be satisfied. Moreover , assume
that

(H6) There exist positive numbers ε and L such that

(i) |f(t1)− f(t2)| ≤ L|t1 − t2| for all t1, t2 ∈ [0, ε],
(ii) the modulus of continuity γ(t) (= sup{|(q(t1))1/a − (q(t2))1/a| :

t1, t2 ∈ [0, ε], |t1 − t2| ≤ t}) of (q(t))1/a on [0, ε] satisfies

lim sup
t→0+

γ(t)
t

<∞.

Then (1) admits a unique solution.

P r o o f. By Theorem 1, there exists at least one solution of (1). Let u1,
u2 be different solutions of (1), say u1(t) < u2(t) on (0,∞) (see Theorem 2).
According to the last part of the proof of Theorem 2 it is enough to show that
u1(t) = u2(t) on [0, t0] for a positive number t0. Setting Ai = limt→∞ ui(t)
and wi = u−1

i (i = 1, 2), we see that 0 < A1 ≤ A2 ≤ ∞, wi : [0, Ai) → R+

are continuous strictly increasing functions and

wi(t) =
t∫

0

k1(s)
(

1
q(wi(s))

s∫
0

f(wi(τ))h(τ) dτ
)−1/a

ds,

t ∈ [0, Ai), i = 1, 2.

Then (for t ∈ [0, A1))

(14) (0 ≤) w1(t)− w2(t)

=
t∫

0

k1(s)[(q(w1(s)))1/a − (q(w2(s)))1/a]
( s∫

0

f(w2(τ))h(τ) dτ
)−1/a

ds

+
t∫

0

k1(s)(q(w1(s)))1/a

(
∫ s

0
f(w1(τ))h(τ) dτ

∫ s
0
f(w2(τ))h(τ) dτ)1/a

×
[( s∫

0

f(w2(τ))h(τ) dτ
)1/a

−
( s∫

0

f(w1(τ))h(τ) dτ
)1/a]

ds.

Let ε > 0 be as in assumption (H6) and set b = min{u1(ε), ε}, A =
max{(q(t))1/a : 0 ≤ t ≤ ε} and X(t) = max{w1(s) − w2(s) : 0 ≤ s ≤ t}
for t ∈ (0, b]. Then X is continuous nondecreasing, X(0) = 0, X(t) > 0 for
t ∈ (0, b] and (cf. (H6))

|(q(w1(t)))1/a − (q(w2(t)))1/a| ≤ γ(X(t)) for t ∈ [0, b].
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1. Let a = 1. Then (cf. (14))

w1(t)− w2(t) ≤ 1
f(ε)

t∫
0

k(s)γ(X(s))(H(s))−1ds

+
L

(f(ε))2

t∫
0

k(s)q(w1(s))
(H(s))2

s∫
0

h(τ)(w1(τ)− w2(τ)) dτ ds

≤ 1
f(ε)

γ(X(t))P (t) +
LA

(f(ε))2
X(t)P (t), t ∈ [0, b].

Hence

X(t) ≤ 1
f(ε)

γ(X(t))P (t) +
LA

(f(ε))2
X(t)P (t), t ∈ [0, b],

and

(15) 1 ≤ γ(X(t))
f(ε)X(t)

P (t) +
LA

(f(ε))2
P (t), t ∈ (0, b].

Since

lim sup
t→0+

γ(X(t))
X(t)

= lim sup
t→0+

γ(t)
t

<∞ (by (H6))

and limt→0+ P (t) = 0, we get

lim
t→0+

[
γ(X(t))
f(ε)X(t)

P (t) +
LA

(f(ε))2
P (t)

]
= 0,

which contradicts (15).

2. Let a > 1. Then there is a positive integer n such that (n+ 1)/a > 1
and

(16)
( t∫

0

f(w2(s))h(s) ds
)(n+1)/a

−
( t∫

0

f(w1(s))h(s) ds
)(n+1)/a

=
[( t∫

0

f(w2(s))h(s) ds
)1/a

−
( t∫

0

f(w1(s))h(s) ds
)1/a]

×
n∑
k=0

( t∫
0

f(w2(s))h(s) ds
)k/a( t∫

0

f(w1(s))h(s) ds
)(n−k)/a

.

By the Taylor formula,( t∫
0

f(w2(s))h(s) ds
)(n+1)/a

−
( t∫

0

f(w1(s))h(s) ds
)(n+1)/a

=
n+ 1
a

ξ(n+1)/a−1
t∫

0

(f(w2(s))− f(w1(s)))h(s) ds,
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where ξ = ξ(t) lies in the interval with end points
∫ t

0
f(w1(s))h(s) ds,∫ t

0
f(w2(s))h(s) ds, and thus (cf. (14) and (16))

w1(t)− w2(t)

≤
t∫

0

k1(s)γ(X(s))(f(ε)H(s))−1/a ds

+
t∫

0

k1(s)(q(w1(s)))1/a

(
∫ s

0
f(w1(τ))h(τ) dτ

∫ s
0
f(w2(τ))h(τ) dτ)1/a

×
[(
∫ s

0
f(w2(τ))h(τ) dτ)(n+1)/a − (

∫ s
0
f(w1(τ))h(τ) dτ)(n+1)/a]∑n

k=0(
∫ s

0
f(w2(τ))h(τ) dτ)k/a(

∫ s
0
f(w1(τ))h(τ) dτ)(n−k)/a

ds

≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
n+ 1
a

A

(
1

f(ε)

)(n+2)/a

×
t∫

0

k1(s)ξ(n+1)/a−1
∫ s

0
(f(w2(τ))− f(w1(τ)))h(τ) dτ

(n+ 1)(H(s))2/a(H(s))n/a
ds

≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)(n+2)/a

L(f(0))(n+1)/a−1

×
t∫

0

k1(s)(H(s))(n+1)/aX(s)
(H(s))(n+2)/a

ds ≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)(n+2)/a

(f(0))(n+1)/a−1LX(t)P (t)

for t ∈ [0, b] since |ξ(t)| ≤ f(0)H(t) on [0, b]. Then

X(t) ≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)(n+2)/a

(f(0))(n+1)/a−1LX(t)P (t),

hence

1 ≤ γ(X(t))
X(t)

P (t)
(

1
f(ε)

)1/a

(17)

+
A

a

(
1

f(ε)

)(n+2)/a

(f(0))(n+1)/a−1LP (t)

for t∈ (0, b], and since lim supt→0+
γ(X(t))/X(t)<∞ and limt→0+ P (t)=0,
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we get

lim
t→0+

[
γ(X(t))
X(t)

P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)(n+2)/a

(f(0))(n+1)/a−1LP (t)
]
=0,

which contradicts (17).

3. Let a < 1. By the Taylor formula,( t∫
0

f(w2(s))h(s) ds
)1/a

−
( t∫

0

f(w1(s))h(s) ds
)1/a

=
ν1/a−1

a

( t∫
0

f(w2(s))h(s) ds−
t∫

0

f(w1(s))h(s) ds
)
,

where ν = ν(t) lies in the interval with end points
∫ t

0
f(w2(s))h(s) ds and∫ t

0
f(w1(s))h(s) ds, and using (14) we obtain

w1(t)− w2(t)

= γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1

×
t∫

0

k1(s)(H(s))1/a−1

(H(s))2/a

s∫
0

(f(w2(τ))− f(w1(τ)))h(τ) dτ ds

≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1L
t∫

0

k1(s)X(s)
(H(s))1/a

ds

≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1LX(t)P (t)

for t ∈ [0, b] since |ν(t)| ≤ f(0)H(t) on [0, b]. Then

X(t) ≤ γ(X(t))P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1LX(t)P (t),

t ∈ [0, b],

and hence

1 ≤ γ(X(t))
X(t)

P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1LP (t), t ∈ (0, b],

which contradicts

lim
t→0+

[
γ(X(t))
X(t)

P (t)
(

1
f(ε)

)1/a

+
A

a

(
1

f(ε)

)2/a

(f(0))1/a−1LP (t)
]

= 0.
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6. Dependence of solutions on a parameter. Consider the differen-
tial equation

(18λ) (q(t)k(u)(u′)a)′ = λf(t)h(u)u′, λ > 0,

depending on the positive parameter λ with q, k, f and h satisfying assump-
tions (H1)–(H5). Set

ϕ(t, λ) = P−1

( t∫
0

(
λ
f(s)
q(s)

)1/a

ds

)
,

ϕ(t, λ) = P−1

( t∫
0

(
λ
f(0)
q(s)

)1/a

ds

)
for (t, λ) ∈ R+×(0,∞). Denote by u(t, λ) a solution of (18λ). By Theorem 3
(with λf instead of f), there exist solutions u(t, λ) and u(t, λ) of (18λ) such
that

ϕ(t, λ) ≤ u(t, λ) ≤ u(t, λ) ≤ u(t, λ) ≤ ϕ(t, λ),(19)

(t, λ) ∈ R+ × (0,∞),

for any solution u(t, λ) of (18λ).

Theorem 6. Let assumptions (H1)–(H5) be satisfied. Then

u(t, λ1) < u(t, λ2), t ∈ (0,∞),

for any 0 < λ1 < λ2.

P r o o f. Let 0 < λ1 < λ2. Since

lim
t→0+

t∫
0

(
λ2
f(s)
q(s)

)1/a

ds

t∫
0

(
λ1
f(0)
q(s)

)1/a

ds

= lim
t→0+

(λ2f(t))1/a

(λ1f(0))1/a
= (λ2/λ1)1/a > 1,

there exists an ε > 0 such that ϕ(t, λ2) > ϕ(t, λ1) for t ∈ (0, ε], and conse-
quently,

(20) u(t, λ1) < u(t, λ2) for t ∈ (0, ε]

by (19). Assume u(t, λ1) < u(t, λ2) on (0, t0) while u(t0, λ1) = u(t0, λ2) for
a t0 ∈ (ε,∞). Then
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0 = K1(u(t0, λ2))−K1(u(t0, λ1))

=
t0∫

0

(
λ2

q(t)

u(t,λ2)∫
0

f(u−1(s, λ2))h(s) ds
)1/a

dt

−
t0∫

0

(
λ1

q(t)

ū(t,λ1)∫
0

f(u−1(s, λ1))h(s) ds
)1/a

dt,

which contradicts(
λ2

q(t)

u(t,λ2)∫
0

f(u−1(s, λ2))h(s) ds
)1/a

−
(
λ1

q(t)

ū(t,λ1)∫
0

f(u−1(s, λ1))h(s) ds
)1/a

>

(
λ2

q(t)

ū(t,λ1)∫
0

f(u−1(s, λ1))h(s) ds
)1/a

−
(
λ1

q(t)

ū(t,λ1)∫
0

f(u−1(s, λ1))h(s) ds
)1/a

> 0 for 0 < t ≤ t0.

Corollary 2. Let assumptions (H1)–(H5) be satisfied. Then there exists
an at most countable set R ⊂ (0,∞) such that equation (18λ) has a unique
solution for every λ ∈ (0,∞)−R.

P r o o f. Let t0 ∈ (0,∞) and set g(λ) = u(t0, λ) for λ ∈ (0,∞). Then g is
strictly increasing on (0,∞) by Theorem 6, and

lim
λ→∞

g(λ) = lim
λ→∞

u(t0, λ)

≥ lim
λ→∞

ϕ(t0, λ) = lim
λ→∞

P−1

( t0∫
0

(
λ
f(s)
g(s)

)1/a

ds

)
=∞.

Evidently, if g is continuous at a point λ = λ0 then (18λ) has a unique
solution for λ = λ0. For each n ∈ N denote by Rn the set of points of
discontinuity of g on the interval [1/n, n]. By Theorem 1 of [5, p. 229], the
set Rn is at most countable. Hence R =

⋃∞
n=1Rn is the set of points of

discontinuity of g and since R is at most countable, the proof of Corollary 2
is finished.

Theorem 7. Let assumptions (H1)–(H6) be satisfied and , moreover ,∫∞
0

(1/q(t))1/a dt < ∞. Then for each c ∈ (0,∞) there exists a unique
λc ∈ (0,∞) such that equation (18λ) for λ = λc has a (necessarily unique)
solution u(t, λc) with

lim
t→∞

u(t, λc) = c.
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P r o o f. By Theorem 5, equation (18λ) has a unique solution u(t, λ) for
each λ ∈ (0,∞). This solution is strictly increasing (by Corollary 1) and
bounded on R+ (by Theorem 4). Define g(λ) = limt→∞ u(t, λ) for all λ > 0.
The function g : (0,∞)→ (0,∞) is increasing by Theorem 6. To prove our
theorem it is sufficient to show that g is continuous, strictly increasing and
maps (0,∞) onto itself. Assume g(λ1) = g(λ2) for some 0 < λ1 < λ2. Then
u(t, λ1) < u(t, λ2) on (0,∞) and thus

g(λ1) =
∞∫
0

(
λ1

q(t)

u(t,λ1)∫
0

f(u−1(s, λ1))h(s) ds
)1/a

dt

<
∞∫
0

(
λ2

q(t)

u(t,λ2)∫
0

f(u−1(s, λ2))h(s) ds
)1/a

dt = g(λ2),

a contradiction. Assume

lim
λ→λ0+

g(λ)− lim
λ→λ0−

g(λ) > 0 for a λ0 ∈ (0,∞).

Set
α(t) = lim

λ→λ0+
u(t, λ), β(t) = lim

λ→λ0−
u(t, λ) for t ∈ R+.

Then

(21) lim inf
t→∞

(α(t)− β(t)) > 0.

Using the Lebesgue dominated convergence theorem as λ → λ0+ and λ →
λ0− in the equality

u(t, λ) = K−1
1

( t∫
0

(
λ

q(s)

u(s,λ)∫
0

f(u−1(τ, λ))h(τ) dτ
)1/a

ds

)
,

(t, λ) ∈ R+ × (0,∞),

we see (cf. Lemma 2) that α and β are solutions of (18λ0). Consequently,
α(t) = β(t) = u(t, λ0) for t ∈ R+, which contradicts (21). Finally,

lim
λ→∞

lim
t→∞

ϕ(t, λ) = lim
λ→∞

P−1

( ∞∫
0

(
λf(s)
q(s)

)1/a

ds

)
=∞,

lim
λ→0+

lim
t→∞

ϕ(t, λ) = lim
λ→0+

P−1

( ∞∫
0

(
λf(0)
q(s)

)1/a

ds

)
= 0,

since limt→∞ P−1(t) =∞, limt→0+ P
−1(t) = 0,

0 <
∞∫
0

(
f(s)
q(s)

)1/a

ds <
∞∫
0

(
f(0)
q(s)

)1/a

ds <∞

and therefore (cf. (19)) limλ→∞ g(λ) =∞ and limλ→0+ g(λ) = 0.
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[6] W. Okras i ń sk i, Integral equations methods in the theory of the water percolation,
in: Mathematical Methods in Fluid Mechanics, Proc. Conf. Oberwolfach, 1981, Band
24, P. Lang, Frankfurt/M, 1982, 167–176.

[7] —, On a nonlinear ordinary differential equation, Ann. Polon. Math. 49 (1989), 237–
245.
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Reçu par la Rédaction le 30.6.1994
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