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On positive solutions of a class of second order nonlinear
differential equations on the halfline

by SVATOSLAV STANEK (Olomouc)

Abstract. The differential equation of the form (q(¢)k(u)(u')%)’ = f(t)h(w)v', a €
(0,00), is considered and solutions u with u(0) = 0 and (u(t))*+ (' (t))* > 0 on (0, c0) are
studied. Theorems about existence, uniqueness, boundedness and dependence of solutions
on a parameter are given.

1. Introduction. In [9] the differential equation (¢(¢)k(u)u') = F(t,u)u’
was considered and the author gave sufficient conditions for the existence
and uniqueness of solutions u such that u(0) =0 and (u(t))?+ (v/(t))? >0
for t € (0,00). This problem is connected with the description of the math-
ematical model of infiltration of water. For more details see e.g. [3], [4] and
[6]. Naturally, a question arises of what are the properties of solutions of
the differential equation (q(t)k(u)(u')*)" = F(t,u)u’, where a is a positive
constant. For the sake of simplicity of our assumptions, results and proofs
we will consider the differential equations of the type

(1) (q(O)k(u)(w)*)" = fO)h(w',  a € (0,00).

We also study the qualitative dependence of solutions of (1) on the parame-
ter a. As special cases we obtain results of [9] (with F'(¢,u) = f(¢)h(u) and
a = 1), of [8] (where a = 1, f € C}(Ry), Ry = [0,00)) and of [7] (where
a=1,q(t) =1, h(u) =1). We observe that special cases of (1) (with a = 1)
were also considered in [1], [2], [4] and [6].

2. Notations and lemmas. We consider equation (1) in which the
functions ¢, k, f and h satisfy the following assumptions:
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(H1) q€C°Ry), q(t) >0 for t >0 and [ (1/q(s))/*ds < oo;

(Hy) ke CO(Ry ) k(0) =0, k(u) > 0 for u > 0 and [,(k(s))"/*ds < 0,
I k() ds = oo;

(H3) feC°%Ry), f(t) >0fort € Ry and f is decreasmg on Ry;

(Hy)  heC'Ry), h(u) >0 for u € Ry and H(u) = [ h(s)ds is strictly

1ncreasmg on R+,

(Hs)  fy(k( )M eds < oo, [F(k(s)/H(s)"*ds =

We say that u is a solution of (1) if u € CO(Ry) N C’l((O oo)), u(0) =
u(t) > 0 on Ry, (u(t))? + (v/(t))? > 0 for t € (0,00), q(t)k(u(t))(u'(t)
is continuously differentiable on (0, c0), lim;_o, q(t)k(u(t))(v/(t))* =0 a
(1) is satisfied on (0, 00).

Let p € C°(R), p(0) = 0. We say that u is a solution of the differential
equation

(2) (q(®)k(w)p(u) = f(t)h(w)’

if ue CO(RL)NCYH((0,00)), u(0) = 0, u(t) > 0on Ry, (u(t))?+ (u'(t))* >0
for t € (0,00), q(t)k(u(t))p(u'(t)) is continuously differentiable on (0, c0),
limg o, q(t)k(u(t))p(u'(t)) = 0 and (2) is satisfied on (0, 00).

LEMMA 1. Let u(t) be a solution of (2). Then u/'(t) >0 fort € (0,00).

\_g\‘o

d

5

Proof. We see that
t

(3) a(O)k(u(®)p(u' (1) = [ f(s)h(u(s))u'(s)ds  for t > 0.

0
Suppose that there exist 0 < t; < to such that u/(t1) = v/(t2) = 0 and
u'(t) > 0 (resp. u/(t) <0) on (t1,t2). Then u(t) > 0 for t € [t1,t2] and (3)
implies

0 = q(t2)k(u(tz))p(u'(t2)) — q(ty)k(u(t)p(u' (1)) = f f(s)h(u(s))u (s) ds,

which contradicts
u(tz)
f f(s (s)ds > f(ta) [ h(s)ds >0
u(t1)
u(t2)
(resp. f F()h(u(s))d (s)ds < f(t2) [ h(s) ds<o).
ty

u(t1)

Assume u/(7) = 0 for a 7 € (0,00) and /(¢) # 0 on (0, 7). Then necessarily
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u'(t) > 0 on (0,7) since u(t) > 0 for t € R4, and (cf. (3))
0 = q(r)k(u(r))p(/ (7)) = [ f(s)h(u(s))u'(s) ds,
0

which contradicts

u(T)

[ f(s)h(u(s)u (s)ds > f(r) [ h(s)ds > 0.
0 0

Therefore by virtue of (u(t))? + (v'(t))? > 0 on (0, 00) we conclude u'(t) > 0
for t € (0,00). m

COROLLARY 1. Let u(t) be a solution of (1). Then u'(t) > 0 fort €
(0,00).

Proof. If a = m/n, where m,n € N and n is odd, then the function
v® is defined for all v € R and Corollary 1 follows from Lemma 1. Assume
a = m/n, where m,n € N and n is even or a is an irrational number. Then
the function v® is defined for all v € Ry, and for every p; € C%((—o0,0])
with p1(0) = 0, the function p : R — R defined by p(v) = v® for v € Ry and
p(v) = pi(v) for v € (—o0,0) is continuous on R, p(0) = 0 and, moreover,
u(t) is a solution of (2). Hence u'(t) > 0 on (0,00) by Lemma 1. m

Remark 1. It follows from Corollary 1 that v € A for any solution
of (1), where

A={uecC'R,):u(0) =0, uis strictly increasing on R, }.

Set,

u u S L/a

Bi(w) = @)%, K@) = [ ka(s)ds, Plu) = [ <Z((S))> ds
0 0

for w € Ry. Obviously, k; € C°(Ry), K; € CY(R,), P € C°(Ry) N
C1((0,00)), K1 and P are strictly increasing on Ry, lim, o, Ki(u) = co by
(Hz) and lim, o P(u) = 0o by (Hs).

LEMMA 2. If u(t) is a solution of (1), then

@ ul) :K;1< f <q(15) ?”S)f(u—lm)h(r) d7> . ds), teR,,

0

where Kfl and u~! denote the inverse functions to K, and u, respectively.
Conversely, if u € A is a solution of (4), then u(t) is a solution of (1).

Proof. Let u be a solution of (1). Then u € A (cf. Remark 1) and

<k1<u<t>>u'<t>>“=q(1t) [ Fhu(s)(s)ds, ¢ >0.
0
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Hence

®  Ewo) - (4 lf)f I )/ 10,

and integrating (5) from 0 to ¢, we obtain

u(s) 1/a
Ki(u(t) f( ff —1( > ds, teRy,

and consequently, equality (4 ) is satisfied.
Conversely, let u € A be a solution of (4). Then u € C*((0, 00)),

u(t)
lim q(t)k(u(t))(u = lim flu=( s)ds =0

t—04 t—04
and (q(t)k(u(t))(w/'(t))*) = f(t)h(u(t))u ( ) for t € (0,00). Hence u is a
solution of (1). m

Define o, : Ry — R, by

gp(t):P_l(Oj (ﬁj;)l/ads), <p(t)=P—1<0ft <th§2)>>1/ads>,

where P~ : R, — Ry denotes the inverse function to P. Obviously, ¢(t) <
#(t) on Ry by (Hs).

LEMMA 3. Let u(t) be a solution of (1). Then
(6) o) <u(t) <p(t)  forteRy.

Proof. Since
u(t) t
FOH@®) = £(¢t) [ hs)ds < [ £(s /(s ds
0 0
u(t)
0) [ h(s)ds = f(0)H (u(t)),
0

we have

FOH (u(t) < q(t) (k1 (w(®)'(¢))" < f0)H(u(t), te€ (0,00).
Thus

and
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G (ﬁ@/ < ( I@((Z((tt’)))f/aufu) (= (P(®))) < (J;Efj)))/

t € (0,00).

Integrating (7) from 0 to t we obtain

F(£9) o< (20) e,

and (6) holds. m

Set
K={ueA:p(t) <u(t) <p(t) fort € Ry and
ults) — u(tr) > (FE)H (o)) [ (1/a(s)V/* ds
x [max{k; (u) : o(t1) < u < P(t2)}] ! for 0<t;<ta}.

Remark 2. We now verify that ¢ € K and thus K is a nonempty
subset of A. Fix 0 < t; < t5. Then

ty s 1/a
Plott) - Plet)) = [ (£9) " as

and, by the Taylor formula, there exists § € (¢(t1), p(t2)) C (p(t1), @(t2))
such that

o \als)
Since
/ _ k'l (5) — 1 e
PO = i < maxtia () ) < 0 <90 (1)
we get

X [max{ki(u) : p(t1) <u < @(tZ)}]il

and therefore ¢ € K. Analogously we can show that p € K as well.
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Define the operator T : K — C°(R,) by

(Tu)(t) = Ky <f< T]Of Y >1/ads>, t € Ry.

LEMMA 4. T: K — K.

Proof. Let u € IC. Set

u(s) 1/a
y(t f ( f flu™( ) ds,
a(t) =~(t) - Kl(f( ), B(E) =~(t) — Ki(&(t))
for t € Ry. Then

u(t) B 1/a kl(@(t)) f(t) 1/a
1 - =7 | =—=Z
( @ P'(so(t))(q(t))
f® e ko) (1) 1/a

) (‘”) | ”)) h(eo(t»(qt) ) =20

q(t) k1(2()) \ 4(?)

for t € (0,00). Since a(0) = B(0) = 0 and /() > 0, §'(t) <
see that a(t) >0, 5(t) < 0 for t € Ry, and consequently,

(8) e(t) < K7 (v(1) = (Tu)(t) <p(t)  fort € Ry,
Let 0 < t; < to. Then

< (“‘”H(u@»)w £1(p “”( O g <>>) aso
0o

K1((Tu)(t2)) = Ki((Tu)(t1)) =

and
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K1((Tu)(t2)) — K1((Tu)(t1))
= k1 (O(Tu)(t2) — (Tu)(t1)]
< max{ki(u) : p(t1) <u <
by the Taylor formula (here & € ((Tw)(t1), (T
(with A = [max{k1(u) : o(t1) <u <P(t2)}] )
(9)  (Tu)(t2) = (Tu)(tr) = A[K:((Tu)(t2)) — Ki((Tu)(t1))]
ts 1/a
> A ) [ () s

From (8) and (9) it follows that Tu € K for each u € K, and consequently,
T:-K—-K. =

(t2) }(Tu)(t2) — (Tu)(t1)]
)(t2)) C (¢(t1),%(t2))). Hence

‘6 \

b—‘:

3. Existence theorem

THEOREM 1. Let assumptions (Hy1)—(Hs) be satisfied. Then there exists
a solution of (1).

Proof. By Lemma 2 and Corollary 1, u € A is a solution of (1) if and
only if u is a solution of (4). Therefore in order to prove Theorem 1 it is
enough to show that the operator T has a fixed point.

Let X be the Fréchet space of C°-functions on R with the topology of
uniform convergence on compact subintervals of Ry. Then K is a bounded
closed convex subset of X and T : K — K (by Lemma 4). Let {u,} C K
be a convergent sequence, lim, ..o u, = u (€ K). Then lim, o u,’ =
u™! (u;! and u~! denote the inverse functions to u, and u, respectively)
and consequently, lim,_,,, Tu, = Tu. This proves that T is a continuous
operator.

It follows from the inequalities (0 < t; < to < t3, u € K)

(0 <) K1((Tu)(t2)) — K1 ((Tu)(t1))

AN
—
7N
‘kh
~—~
=
X
=
»
=
N~
-
~
S]
<
»

IN

to 1/a
gomEE) (5]

and from the Arzela—Ascoli theorem that T(K) is a relatively compact subset
of K. By the Tikhonov—Schauder fixed point theorem, there exists a fixed
point of T. Hence Theorem 1 is proved. m
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THEOREM 2. Let assumptions (H1)—(Hs) be satisfied. If there exist two
different solutions u(t) and v(t) of (1) then

u(t) #v(t) forte (0,00).

Proof. Assume u,v are different solutions of (1). Assume there exists a
t1 > 0 such that u(t1) = v(t1) and u(t) # v(t) on (0,t1), say u(t) < v(t) for
t e (0,751). Then

0 =v(t1) —u(tr) = K1 ((To)(t1)) — K1((Tu)(t1))
v(s)

t1 1 . 1/a
_Of <q(3) Of flv (T))h(T)dT> ds
ty 1 u(s) . 1/a
—6[ (q(s) 6[ f(u (T))h(T)dT> ds,

which contradicts
ty v(s) 1/a
f < f Flo ) ds
u(s) 1/a
-1 h(t)d ds.
>f< 5 o ((rdr) s

Let 0 < t1 < t2 be such that u(t;) = v(tl), u(ts) =
(t1,t2), say u(t) > v(t) for t € (t1,t2). Then u'(t1) >
and
(10) 0 < q(ta)k(u(t))((u'(01))" = (v/(82))")

— q(t2)k(u(t2))((u'(2))* — (v'(t2))")

= ff(S)h(U(S))U’(S)dS* I F)h(v(s))' (s) ds

u(t1)
= [ [Fws) = F ()Ih(s) ds.
u(tz)
On the other hand, since u(tz) > u(t1) and f(u='(¢)) — f(v=(t)) > 0 on
[u(ty), u(t2)],
u(t1)
J @) = fo (s)hls) ds < 0.
u(t2)
Thus by (10), w/(t) = o/ (), o/ (t2) = v/(t) and f(u~" (1)) = [~ (1)) for
t € [u(t1),u(ts)]. Since
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u(t)

q(t) (K1 (u(t))))* — q(t)k(utr))( = [ fu(
u(t1)
v(t)

a(t) (K1 (v(t)))" — q(t)k(v(t1))( = [ fo7
u(t1)

) 4 t1))* = q(t)k(v(t))(v'(t1)), 0 < f(u™'(s)) =
f(v™1(s)) for s € [u(t1),u(t2)] and u(t) > v(t) on (t1,t2), we obtain
(K1 (u(t))* = (K, v(t)))')“
u(t)

f fu™ (s))h(s)ds >0, te€ (t1,t2).
v(t)
Thus
(11) (K1 (u(t))) > (Ki(v(t))"  for t € (t1,t2),
and consequently, K;(u(t2)) — Ki(u(t1)) > Ki(v(te)) — Ki(v(t1)), which
contradicts u(t;) = v(t1),

u(ta) = v(ta). So either u(t) # v(t) on (0,00) or
there exists a ty € (0,00) such that u(t) = v(t) for t € [0,to] and u(t) # v(t)
on (top,00), say for example u(t) > v(t) for t € (tp,00). Assume that the
second case occurs. Then, by the Bonnet mean value theorem, there exists
a & € [to, t] such that

(12) (K (u(®)))* = (K1 (v($)))"

= T S ~ het) s
1 3
=@ [f(to) f (h(u(s))u'(s) — h(v(s))v'(s)) ds

Set

M = amin{q(t) : to <t <to+ 1} -min{(k1(2))* " s u(ty) < z < u(ty + 1)}
x min{min{(u/(t))*7*, (' (£))* '} i to <t < to + 1} (> 0),

M; = min{k;(2) : u(ty) <z <wu(to+1)} (>0),
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L = max{h(z) : ulto) <
V(t) = max{u(s) —v(s) : to

z <u(to+ 1)} (>0),
<s<t} fort€ lty,to+ 1]

Obviously, V(tp) = 0 and V is continuous nondecreasing on [tg, to + 1].

By the Taylor formula, there exists a B (= B(t)) in the interval with
end points (K7 (u(t))) and (K;(v(t)))" such that

(K1 (u(®))))® = (K1(v(1))))* = aB*~ (K (u(t)) — K1(v()))',
t € [to, to + 1],

and therefore (cf. (12))
(K1 (u(t) = K1 (v(t)))’
1

< T [(H©) = H(v(€) + (H(ut)) — H(v(?)))]
2
< LItV (E), teltoto+1]

Then

and consequently,

u(t) — v(t) < 2]\%1(8 tof V(s)ds < 2%(;‘1)) [ Vis)yds, teltoto+1),

to

where € € [v(t), u(t)] by the Taylor formula. Hence

2Lf(to) | 2L f( to

< 20T
(13) V(t) < VAT tf V(s)ds < sV f ds
0
2Lf(t
Af&f)vu)(t —to), t€ [to,to+ 1].
Since V(t) > 0 for t € (to,to + 1], we obtain (cf. (13))
1< 2Lf(t0) (t — to) fort € (to,to + 1],

- MM,

a contradiction. m
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THEOREM 3. Let assumptions (H1)—(Hs) be satisfied. Then there exist
solutions u(t) and u(t) of (1) such that

p(t) < ult) <u(t) <u(t) <), teRy,

for any solution u(t) of (1).

Proof. Denote by B the set of all solutions of (1). By Theorem 1, B is a
nonempty set. If B is a finite set, then Theorem 3 follows from Theorem 2.
Assume B is an infinite set. Set

u(t) = inf{u(t) : w e B}, u(t)=sup{u(t):uwe B} forteR,.

Then ¢(t) < u(t) <u(t) < p(t) on Ry and to prove Theorem 3 it is enough
to show that u and @ are solutions of (1). By Theorem 2, there exists a
sequence {u,} C B, ui(t) < ... < wu,(t) <...<a(t), t € (0,00), such that
U(t) = limy,— 00 up (t) for t € Ry. Now we prove that lim,, . u),(t) =: b(t)
exists for all ¢ € (0,00) and b = @’. Evidently,

(K1 (uni1 (1)) = (K1 (un ()’

: <q(1t)unf(t)f(“ni1(8))h(s) d5>1/a - <1uft)f(u;l(3))h(8) d8> -

1 U, (t) . 1/a 1 . 1/a
> | —= fu;shsds) —( fu;shsds) =0
(s | e omie ol LR
for t € (0,00) and n € N. Therefore the sequence {k1 (u,,(t))u,,(t)} is strictly
increasing for each ¢t € (0,00). Setting a(t) = limy, o0 k1 (un(t))ul (t), t €
(0,00), we see that

e R0 a()
A (D) = 0 @) (D)

and using the Lebesgue dominated convergence theorem in the equalities

=:08(t), te(0,00),

un(t) = [up(s)ds, teRy, neN,

we get u(t) = fot B(s)ds on Ry ; hence 3(t) = u/(t) for t € (0,00). Applying
again the Lebesgue theorem to the equalities

1 t 1/a
k1<un<t>>u;<t>=<q<t) I f<s>h<un<s>>u;<s>ds) . te(0,x), neN,
0

we obtain

1 t 1/a
b)) = (o [ O E ) e 0.0,
0
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and consequently, 7 is a solution of (1). Analogously we can prove that w is
a solution of (1). m

4. Bounded and unbounded solutions

THEOREM 4. Let assumptions (Hy)—(Hs) be satisfied. Then

(i) some (and then any) solution of (1) is bounded if and only if
00 1 1/a

f — dt < o0,

5 \a()

(ii) some (and then any) solution of (1) is unbounded if and only if

f(q;ﬂ)”“dt:oo_

0

Proof. First note that either [;~(1/q(t))Y/*dt < oo or [~ (1/q(t))*/* dt
= 00. In the first case, by Lemma 3, any solution u of (1) is bounded. Now
assume [°(1/q(t))"/* dt = oo and u is a solution of (1). Then

t u(s) 1/a
J (G [t epneyar) " as
0 0

‘ q(s)
lim

G

and consequently,

t u(s) 1/a
1
Jlim Ko (u(t)) = lim O (q() f Fu™"(m)h(7) dT) ds = oc.
Hence lim;_, o, u(t) = oo and u is unbounded.

Let u be a solution of (1). If u is bounded, then [~ (1/q(t))"/*dt < oo
since in the opposite case u is unbounded by the first part of the proof.
Analogously, u unbounded implies [;°(1/¢(t))Y/*dt = co. m
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5. Uniqueness theorem

THEOREM 5. Let assumptions (H1)—(Hs) be satisfied. Moreover, assume
that

(H¢)  There exist positive numbers € and L such that

(1) |f(t1) (t2)| < L|t1 — t2| fO’I’ all t1,t0 € [0 E]
(ii) the modulus of continuity v(t) (= sup{|(q(t1))"/* — (q(t2))"/?| :
t1,ta €[0,¢], |t1 —ta] <t}) of (q(t))Y/* on [0,¢] satisfies
(1)

limsup —= < oo.
t*>0+

Then (1) admits a unique solution.

Proof. By Theorem 1, there exists at least one solution of (1). Let uq,
uz be different solutions of (1), say u1(t) < ua(t) on (0,00) (see Theorem 2).
According to the last part of the proof of Theorem 2 it is enough to show that
u1(t) = ua(t) on [0,tg] for a positive number ¢y. Setting A; = lim;_, o u;(t)
and w; = u;l (i =1,2), we see that 0 < A7 < Ay < o0, w; : [0,4;) — R4
are continuous strictly increasing functions and

wi(t):ftk:l ( jf dT>_1/adS,

tel0,4), i=12.

Then (for ¢t € [0, A7))
(14) (0 <) wy(t) —wa(t)

t a(s)(a(wi (s >>>1/a
+6f (Jg fwi(r)h(r)dr [ f(we(7))h(T)dT)!/

<[(f rtomeran)’” (] rimomeran)*Jas

Let ¢ > 0 be as in assumption (Hg) and set b = min{ui(e),e}, A =
max{(q(t))/* : 0 < t < e} and X(t) = max{w;(s) — wa(s) : 0 < 5 < t
for t € (0, ] Then X is continuous nondecreasing, X (0) = 0, X (¢) > 0 for

€ (0,0] and (cf. (H))
[(g(wi ()Y = (a(wz (1)) < 4(X(2))  for t € [0,0].
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1. Let a = 1. Then (cf. (14))

1 1
wy(t) —wa(t) < e Of’f(S)W(X(S))(H(S)) ds
L ke(w(s) g
TR ] Twer ] O )i
1 LA
< EOIPO + G EEXOPO. ey
Hence
1 LA
X(t) < m’v(X(t))P(t) TGE t)P(t), tel[0,0]
and
V(X (2)) LA
(15) 1< f(E)X(t)P(t) Ok P(t), te€(0,b
Since
: V(X (@) . 7(t)
hgglip Xt htrigljp <o (by (Hg))
and lim;_o, P(t) = 0, we get
@) LA o1
i | T O+ et =0

which contradicts (15).

2. Let a > 1. Then there is a positive integer n such that (n+1)/a > 1
and

k/a 2 (n—k)/a
<[ fwal)h(s)ds) ([ flun(s)h(s) ds)
k=0 0 0
By the Taylor formula,
(n+1)/a

(jf(W2(S))h(8) ds)("ﬂ)/a_ ( j‘ f(wl(s))h(s)ds)
0

t

= nTﬂg(n+1)/a—1 f (f(wa(s)) — f(w1(s)))h(s)ds,

0
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where 5 = £(t) lies in the interval with end points fo (w1(s))h(s) ds,
fo (s))h(s)ds, and thus (cf. (14) and (16))
w (t ) ws(t)
< [ k(s Y(f(e)H(s)) " ds
0
k1(s)(g(wi(s)))"/*
+f (Jo flwi(m)h(r)dr [§ f(wa(T)h(T)dr) /e
[y f( (r) dr) /e — (fF f(wi(r))h(r) dr) "D/

Y, fo VR ([ s (7)) dr) e

SV(X(t))P(t)<f(16))l/ RELES ><n+2>/a

. f 1 ()€ D/ (s (7)) = S (7))h(r) dr
(= D(H ()7 (H(s) "

< ) < : )>(n+2)/aL(f (0))(n+1/a=1

(n+4)/a 1/a
Xf ne ZIE <n+2)/aX( s < 50X ))P(t)<f(18)>

ds

(n—|—2)/a
< ) (n+1)/a 1LX( )P( )

for t € [0, b] since |£(t)| < f(0)H (t) on [0,b]. Then

1/a
X(t) < 7<X<t>>P<t>(1))

fe
* é <f<1>> T oy ),
hence
TP (g)
* é (f(1)> T on e Lpy

for t € (0, b, and since limsup,_,,, v(X(t))/X(t) <oc and lim;—o, P(t)=0,
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we get
1/a (n+2)/a
tgirgghw(ﬂ;) +f@ig (F(0)) /a1 L(r) | =0,

which contradicts (17).

3. Let a < 1. By the Taylor formula,

1/a

(jf(wz(s))h(S) ds)l/a_ ( ft f(wi(s))h(s) ds)
0 0

_ t
yl/a 1

([ flwa(s)h(s)ds — [ flwi(s)h(s)ds),
0 0

a

where v = v(t) lies in the interval with end points fg f(wa(s))h(s)ds and
fg f(w1(s))h(s)ds, and using (14) we obtain

w1 (t) — W3 (t)

—oro(z) +4(z) v

[ G

[ (Flws(r)) = f(wi(7))h(7) dr ds
0

1\Y* A/ 1\ Va1 k()X (s
) +i(5) vony L!(agébw

f
1/a 2/a
x0 < x0ro(;5) +4 () GO IxwPe.

f(e) f(e)
t €10,0b],
and hence
YX(®) LAY AL LN e
b= X(t) P(t)<f(5)> TS <f(é_)> (F(O)Y"ILP(t), te(0,0],

which contradicts
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6. Dependence of solutions on a parameter. Consider the differen-
tial equation

(18x) (q(O)k(u)(u)") = Af(Oh(u)u', A >0,

depending on the positive parameter A with ¢, k, f and h satisfying assump-
tions (Hq1)—(Hs). Set

!

0

<p(t,)\)—P1<ft <A£g>l/ads>

0

for (t,\) € R4y x(0,00). Denote by u(t, \) a solution of (18y). By Theorem 3
(with Af instead of f), there exist solutions u(¢,\) and u(¢, \) of (18y) such
that

(19) p(t,A) <u(t,A) <u(t,\) <a(t,\) <Dt N),
(t,\) € Ry x (0,00),
for any solution u(t, \) of (18)).
THEOREM 6. Let assumptions (Hy)—(Hs) be satisfied. Then
u(t, A1) <u(t,A2), te€(0,00),
for any 0 < Ay < Aa.

Proof. Let 0 < A1 < Ag. Since

FORIONS
' J <>\QQ(S)) o C Qaf)Ve
lim -2 = lim 22— (A /M) > 1,
t—04 j, ()\ f(()))l/“ds =04 (A f(0))/a

J (s

there exists an € > 0 such that ¢(t, A\2) > @(t, A1) for ¢t € (0,¢], and conse-
quently,

(20) ﬂ(t, )\1) < g(t, )\2) for t € (0, 8]

by (19). Assume @(t, A1) < u(t, A2) on (0,%p) while @(to, A1) = u(to, A2) for
atg € (g,00). Then
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0 = K (u(to, \2)) — K1 (u(to, \1))
u(t,\2)

to 1/a
J"( ff s/\g)()ds> dt

ﬁ(t,Al)

to 1/a
- f<)\1)6f f(u_l(s,)\l))h(s)ds> dt,

g \alt

which contradicts
u (t7>‘ 1 )

<A2f f(u_l(s,/\z))h(s)ds)l/a_<Al | f(u_l(SaAl))h(S)ds>l/a

q(t)

COROLLARY 2. Let assumptions (Hy)—(Hs) be satisfied. Then there exists
an at most countable set R C (0,00) such that equation (18y) has a unique
solution for every A € (0,00) — R.

Proof. Let ty € (0,00) and set g(A) = u(tg, A) for A € (0,00). Then g is
strictly increasing on (0, 00) by Theorem 6, and

A, o) = g ello,

. L - to f(S) 1/a B
> )\lggof(to’)\) = AILH;oP 1( Of (Ag(s)> ds) = 00.

Evidently, if g is continuous at a point A = X\¢ then (18,) has a unique
solution for A = Ag. For each n € N denote by R, the set of points of
discontinuity of ¢ on the interval [1/n,n]. By Theorem 1 of [5, p. 229], the
set R, is at most countable. Hence R = |J,—, R, is the set of points of
discontinuity of g and since R is at most countable, the proof of Corollary 2
is finished. m

THEOREM 7. Let assumptions (H;)—(Hg) be satisfied and, moreover,
fooo(l/q(t))l/“ dt < oo. Then for each ¢ € (0,00) there exists a unique
Ac € (0,00) such that equation (18y) for A = A has a (necessarily unique)
solution u(t, ) with

tlim u(t,\e) = ¢
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Proof. By Theorem 5, equation (18,) has a unique solution u(t, A) for
each A € (0,00). This solution is strictly increasing (by Corollary 1) and
bounded on Ry (by Theorem 4). Define g(\) = lim;—,o u(t, ) for all A > 0.
The function ¢ : (0,00) — (0, 00) is increasing by Theorem 6. To prove our
theorem it is sufficient to show that g is continuous, strictly increasing and
maps (0, 00) onto itself. Assume g(A;) = g(A2) for some 0 < A\; < Ay. Then
u(t, \1) < u(t, A2) on (0,00) and thus

u(t,A\1

) 1/a
o0 = [ (2% | WA ds) e

u(t )\2)

1/a
<J (2% [ A ) = ),

a contradiction. Assume
lim g(\) — /\li{\n g(A) >0 fora )\ € (0,00).
Ed 0—

>\*>>\0+
Set
ot) = lim w(t,X), 6= lim u(tA) for¢€Ry.
Then
(21) lim inf(a(t) — B(t)) > 0.

Using the Lebesgue dominated convergence theorem as A — Aoy and A —
Ao— in the equality
u(s,\)

u(t,/\):Kf1<f <q(2)0f f(u_l(T,/\))h(T)dT)l/ad5>,

0
(t’ )‘) eRy x (0,00),

we see (cf. Lemma 2) that o and [ are solutions of (18),). Consequently,
a(t) = B(t) = u(t, \o) for t € Ry, which contradicts (21). Finally,

0o 1/a
o, 2l ) = Qiﬂgfl({ () )=

lim lim 3(t,A) = lim P‘l(bf (Af(0)> ds> =0,

A0 t—00 A—04 q(s)

1() = o0, Timy o, P1(t) =0,
jo( > ads<jo(‘;ég)))l/ads<oo

and therefore (cf. (19)) limy—o g(A) = 0o and limy—o, g(A) =0. =

since lim;_, oo P
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