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A counterexample to
a conjecture of Drużkowski and Rusek

by Arno van den Essen (Nijmegen)

Abstract. Let F = X +H be a cubic homogeneous polynomial automorphism from
Cn to Cn. Let p be the nilpotence index of the Jacobian matrix JH. It was conjectured
by Drużkowski and Rusek in [4] that degF−1 ≤ 3p−1. We show that the conjecture is
true if n ≤ 4 and false if n ≥ 5.

1. Introduction. In [1] and [7] it was shown that it suffices to prove
the Jacobian Conjecture for cubic homogeneous polynomial maps from Cn

to Cn, i.e. maps of the form F = (F1, . . . , Fn) with Fi = Xi + Hi, where
each Hi is either zero or a homogeneous polynomial of degree 3. In [2] it
was shown that it even suffices to consider cubic linear polynomial maps,
i.e. maps such that each Hi is of the form Hi = l3i , where li is a linear form.

A crucial result (cf. [1] and [6]) asserts that the degree of the inverse of
a polynomial automorphism F is bounded by (deg F )n−1 (where deg F =
max deg Fi). In [4] Drużkowski and Rusek proved that for cubic homoge-
neous (resp. cubic linear) automorphisms this degree estimate could be im-
proved in some special cases; more precisely, if ind JH denotes the index of
nilpotency of JH then they showed that deg F−1 ≤ 3ind JH−1 if ind JH ≤ 2
and also if H is cubic linear and ind JH ≤ 3. This led them to the following
conjecture:

Conjecture 1.1 (D–R) ([4], 1985). If F = X+H is a cubic homogeneous
polynomial automorphism, then deg F−1 ≤ 3p−1, where p = ind JH.

Recently, in [3], Drużkowski showed that Conjecture D–R is true in case
all coefficients of H are real numbers ≤ 0 (in which case the map F is stably
tame, a result obtained by Yu in [8]).

In the present paper we show that the conjecture is true if n ≤ 4 and
false if n ≥ 5.
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2. The counterexample for n ≥ 5. Let n ≥ 5 and consider the poly-
nomial ring C[X] := C[X1, . . . , Xn].

Theorem 2.1. For each n ≥ 5 the polynomial automorphism

F = (X1 + 3X2
4X2−2X4X5X3, X2 +X2

4X5, X3 +X3
4 , X4 +X3

5 , X5, . . . , Xn)

is a counterexample to Conjecture D–R.

P r o o f. Put H = F − X. Then one easily verifies that (JH)3 = 0
and (JH)2 6= 0. Thus ind JH = 3. So if Conjecture D–R is true, then
deg F−1 ≤ 9. However, the inverse G = (G1, . . . , Gn) of F is given by the
following formulas:

G1 = X1 − 3(X4 −X3
5 )2(X2 − (X4 −X3

5 )2X5)
+ 2(X4 −X3

5 )X5(X3 − (X4 −X3
5 )3),

G2 = X2 − (X4 −X3
5 )2X5,

G3 = X3 − (X4 −X3
5 )3,

G4 = X4 −X3
5 ,

Gi = Xi for all 5 ≤ i ≤ n.

So looking at the highest power of X5 appearing in G1, one easily verifies
that deg G1 = 13 > 9.

3. The case n ≤ 4. The main result of this section is

Proposition 3.1. Conjecture D–R is true if n ≤ 4.

To prove this result we need the following theorem (cf. [5]):

Theorem 3.2. Let K be a field of characteristic zero and F = X − H
a cubic homogeneous polynomial map in dimension four such that Det(JF )
= 1. Then there exists some T ∈ GL4(K) such that T−1FT is of one of the
following forms:

x1

x2

x3

x4 − a4x
3
1 − b4x

2
1x2 − c4x

2
1x3 − e4x1x

2
2 − f4x1x2x3

− h4x1x
2
3 − k4x

3
2 − l4x

2
2x3 − n4x2x

2
3 − q4x

3
3

 ,(1)


x1

x2 − 1
3x3

1 − h2x1x
2
3 − q2x

3
3

x3

x4 − x2
1x3 − h4x1x

2
3 − q4x

3
3

 ,(2)
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x1

x2 − 1
3x3

1 − c1x
2
1x4 + 3c1x1x2x3 − 16q4c2

1−r2
4

48c2
1

x1x
2
3

− 1
2r4x1x3x4 + 3

4r4x2x
2
3 −

r4q4
12c1

x3
3 −

r2
4

16c1
x2

3x4

x3

x4 − x2
1x3 + r4

4c1
x1x

2
3 − 3c1x1x3x4 + 9c1x2x

2
3

− q4x
3
3 − 3

4r4x
2
3x4


,(3)


x1

x2 − 1
3x3

1

x3 − x2
1x2 − e3x1x

2
2 − k3x

3
2

x4 − e4x1x
2
2 − k4x

3
2

 ,(4)


x1

x2 − 1
3x3

1 + i3x1x2x4 − j2x1x
2
4s3x2x

2
4 + i23x3x

2
4 − t2x

3
4

x3 − x2
1x2 − 2s3

i3
x1x2x4 − i3x1x3x4 − j3x1x

2
4 −

s2
3

i23
x2x

2
4

− s3x3x
2
4 − t3x

3
4

x4

 ,(5)


x1

x2 − 1
3x3

1 − j2x1x
2
4 − t2x

3
4

x3 − x2
1x2 − e3x1x

2
2 − g3x1x2x4 − j3x1x

2
4 − k3x

3
2

−m3x
2
2x4 − p3x2x

2
4 − t3x

3
4

x4

 ,(6)


x1

x2 − 1
3x3

1

x3 − x2
1x2 − e3x1x

2
2 − k3x

3
2

x4 − x2
1x3 − e4x1x

2
2 − f4x1x2x3 − h4x1x

2
3 − k4x

3
2

− l4x
2
2x3 − n4x2x

2
3 − q4x

3
3

 ,(7)


x1

x2 − 1
3x3

1

x3 − x2
1x2 − e3x1x

2
2 + g4x1x2x3 − k3x

3
2 + m4x

2
2x3 + g2

4x2
2x4

x4 − x2
1x3 − e4x1x

2
2 − 2m4

g4
x1x2x3 − g4x1x2x4 − k4x

3
2

− m2
4

g2
4

x2
2x3 −m4x

2
2x4

 .(8)

P r o o f. See [5, Theorem 2.7].

P r o o f o f 3.1. As remarked in the introduction, the case ind JH = n
was proved in [1] and [6]. The case ind JH = 2 was done in [4]. So we
may assume that 2 < ind JH < n. Therefore only the case n = 4 and
ind JH = 3 remains. By the classification theorem of Hubbers ([5, Theo-
rem 2.7]) we know that there exists T ∈ GL4(C) such that T−1FT has one of
the eight forms described above. One easily verifies that in each of the eight
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cases in which the nilpotency index of JH equals 3, deg(T−1FT )−1 ≤ 9, so
deg F−1 ≤ 9.
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