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Bounded projections in weighted function spaces
in a generalized unit disc

by A. H. KARAPETYAN (Erevan)

Abstract. Let Mpm, n be the space of all complex m x n matrices. The generalized
unit disc in M, is

Rinn = {2 € M : I'™ — ZZ* is positive definite}.

Here 10 ¢ M, m is the unit matrix. If 1 <p<oo and @ > —1, then L5 (Rm,»n) is defined
to be the space LP{Rm n;[det(I"™ — ZZ*)|* dpm.n(Z)}, where pum n is the Lebesgue
measure in M, n, and H? (Rmm) c L%, (Rmm) is the subspace of holomorphic functions.
In [8, 9] M. M. Djrbashian and A. H. Karapetyan proved that, if Reg > (e« +1)/p— 1
(for 1 < p < o0) and Re > a (for p = 1), then

F2) =Tha()(Z), Z€Rmpn,

where T,%’n is the integral operator defined by (0.13)—(0.14). In the present paper, given

1 < p < oo, we find conditions on a and g for Tg’n to be a bounded projection of
L% (Rm,n) onto HE(Rm,»n). Some applications of this result are given.

0. Introduction

0.1. In the fourties M. M. Djrbashian [4, 5] introduced the classes HP(«)
(1 < p < oo, a > —1) of functions f(z) holomorphic in the unit disc
D={z€eC:|z| <1}, with

(0.1) [ 1£QPA =[P dedn <00 (¢ =E+in).
D
In the same papers [4, 5] the following result was established.
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194 A. H. Karapetyan

THEOREM A. (i) Let 1 < p < 0o and a > —1. Then for each f € HP(«)
we have

(0.2) f(2) :a+1 ff 1) 1_|<’) dédn, ze€D,

1 ZC 2+o¢

(0.3) T:O‘H ff f OO d¢dn, z €D,

zC 2+o¢

(ii) The integral operator induced by the right hand side of (0.2) acts in
L2{D; (1 — |¢|*)* d€ dn} as the orthogonal projection onto H?(a), o > —1.

The classes HP () began to play an important role in complex analysis.
The integral representation (0.2) had numerous applications. For example, in
the same papers [4, 5] by the use of (0.2)—(0.3) a canonical factorization was
established for certain weighted classes of functions meromorphic in . For
other applications of Theorem A see the surveys [6, 7] and the monograph [3].

0.2. Later on, in the fifties, the following problem arose: establish rea-
sonable analogs of Theorem A for functions of several complex variables. To
survey the relevant investigations we need first to introduce some notations.

For m,n > 1 we denote by M,, ,, the space of all complex m xn matrices.
For each Z € M, n,, Z* € M,, ,, will denote the Hermitian conjugate of Z.
Further, for k > 1, I ¢ Mj. 1 denotes the unit matrix. The Lebesgue
measure [t n in M, , can be written as

(0.4) dpm,n(Z) = H A8k Ay
1<k<m
1<j<n
where Z = (ij)lgkgm,lgjgn € My, with (xj = &k + imij. Note that
M; ,, coincides with C™ and p;, is 2n-dimensional Lebesgue measure in
C" =~ R,
The generalized unit disc in My, , is
(0.5) Ry =12 € My, : I'™ — ZZ* is positive definite}.
It is easy to see that Ry ,, coincides with the unit ball B,,={¢ € C™ : (¢* < 1}
in Ml,n =Cm.
In Hua’s monograph [12, Theorem 4.3.1] the following result was estab-
lished.

THEOREM B. (i) Every holomorphic function f(Z) € L*{Ry.n; dttm.n}
admits an integral representation of the form

1(2)
00 1Z)=enn [ oo gz

dpmn(Z2),  Z € Ry,
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where
m-+n m n
(0.7) e =7 [T TOT[ " ®) [T 0)-
=1 k=1 j=1
(ii) The integral operator induced by the right hand side of (0.6) acts in
L?{ Ry n; dtim n} as the orthogonal projection onto the subspace of holomor-
phic functions.

Note that for m = 1, Theorem B establishes the integral representation

_n f(©)
(0.8) f(z) = o = oy dp1,n(Q),

n

z € B,,

for holomorphic functions f € L?{B,; du1,,}. Also, Theorem B is a gener-
alization of Theorem A, but only for the particular values p = 2 and a = 0.

0.3. In further investigations a multidimensional generalization of The-
orem A (this time for arbitrary 1 < p < co and o > —1) was established.
The result is

THEOREM C. (i) Suppose that 1 < p < oo, a > —1 and the complex
number [ satisfies Ref > (a+1)/p—1 (if 1 <p < o0) and Ref > « (if
p=1). Then every function f(z) holomorphic in B,, C C™ for which

(0.9) [ 1P = ¢¢) ¥ dprn(C) < 0
B,

admits the integral representations

n —(¢*)P
010) g = EHDE) p HOUZE) g0, 2B
- n) o~ FEO(L — )8
an) 7o) = P pHOC S o, 2B

(ii) For 1 < p < oo, a > —1 and Re3 > (a + 1)/p — 1 the integral
operator induced by the right hand side of (0.10) is a bounded projection of
LP{B,; (1 — CC*)*dp1,n(C)} onto the subspace of holomorphic functions.

As follows from the proof of Theorem A in [5], for n = 1 assertion (i)
of Theorem C was actually established in [4, 5]. For n > 1 and p = 2,
B = a = 0, Theorem C follows from Theorem B (compare (0.8) and
(0.10)). Forn > 1l and 1 < p < oo, « = 0, Re8 > 1/p — 1, Theorem
C was established by F. Forelli and W. Rudin [11] (see also [15, Theo-
rem 7.1.4]). These conditions are exactly the same as in Theorem C(i)
(for a = 0) except the case p = 1, Refs = 0 which is not considered
in [11]. Finally, in the general form stated above, Theorem C(i) was proved in
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M. M. Djrbashian’s survey [7] by use of the methods developed in [4, 5]. Note
that § was assumed to be real in [7], but this restriction is not essential. As
to assertion (ii) of Theorem C, it was mentioned in [7] that the correspond-
ing proof, given in [11] for a = 0, can be easily adapted to the general case
a>—1.

0.4. Of course, Theorem C is a more or less satisfactory generalization
of the main Theorem A. However, in the recent papers [8, 9] a much more
general result was established. To be more precise, for the case of the gen-
eralized unit disc R, » (m,n > 1) similar weighted integral representations
were obtained. To formulate the corresponding result we introduce some
further notations.

Let myn > 1 and 1 < p < oo, @« > —1. For an arbitrary complex
measurable function f(Z), Z € Ry, p, set

(0.12) 111, : flf )IP[det(I"™) = ZZ*))* dpim,n(Z).

Then we introduce the space L2 (R, n) := {f : || fllp,a <oo}. Next we define
H?(R,,») to be the space of holomorphic functions in L% (R,, ). Further,
if m,n>1and Re3 > —1, then we set

m+n m

(0.13) cmAm:w%m[IFw+zII ﬁ+kII LB+ 9)
=1 j=1

and consider the integral operator

(014)  T0,(N(Z) = con® [

m,n

f(Z)[det(10™) — ZZ2*)]8 ;
[det(I(m) — ZZ¥)|mn+s Hm,n

(2),

Z € Rpn.
The result established in [8, 9] is

THEOREM D. Suppose that m,n > 1, 1 < p < oo, a > —1 and the
complex number 3 satisfies Re > (a+ 1)/p—1 (if 1 < p < o0) and
Ref > a (if p = 1). Then for each f € HE(R,, ) the following integral
representations hold:

(0.15) F(Z2)=Tpo(/)(2), Z€Rmn,
(0.16) F0) =T7 .(H(2), Z€Rnn

Remark0.1. In [8, 9] only the formula (0.15) was written down. But it
is easy to see that (0.16) can be directly deduced from (0.15).

For m = 1, Theorem D coincides with assertion (i) of Theorem C. More-
over, for all m,n > 1 and the particular values p = 2, 8 = a = 0, Theorem D
gives assertion (i) of Theorem B. In connection with Theorem D we have
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to mention the paper [16] by M. Stoll, published earlier than [8, 9]. In [16]
weighted integral representations were established for all bounded symmetric
domains, including R, ,, but only for holomorphic functions in LP-spaces
without weights. Theorem D can be deduced from the results of [16] only for
o =0 and real § > 0.

0.5. In [8], in addition to the establishment of Theorem D the following
problem was posed: for m,n > 1 and 1 < p < oo, under what conditions
on o and 3 is T ,, (see (0.14)) a bounded projection of L2 (Ry, ») onto its
subspace HE (R, ,,)? A similar problem was also raised in [16]. Theorems 3.1
and 3.2 of the present paper give a solution of these problems. The technique
of the proof of the main Theorem 3.1 goes back to [11]. However, in our case
we had to overcome some additional computational difficulties. For instance,
we had to compute the determinant (see [13])

(0.17)  det|B(l; +j,t +1)[7;—;, Relx>—-1(1<k<n), Ret > -1,

where B is the Euler beta function. (When ¢t = 0 in (0.17), we get a special
case of the Cauchy determinant det |(I; + j)~[?;_;.)

Concluding the paper we give some applications of Theorems D and 3.1,
3.2. To be more precise, we establish integral representations and integral

inequalities for functions pluriharmonic in R, .
b

The author wishes to express his gratitude to Professor M. M. Djrbashian
for his constant encouragement and help.

1. Preliminaries and auxiliary facts

1.1. We recall that for A = (aij)?’j:l € My, p,

(11) det(A) = Z 51‘11'2._,'"61,1‘11@1‘22 o Qim

= g 5i1i2...ina1i1a2i2 <o Qg
i

where the summation is over all permutations ¢ = (i1,...,4,) of {1,...,n}
and 0;,4,..4, is the signature of the permutation. We denote by My ., the set
of all invertible n X n matrices.

Further, for every A = (a;;)};=1 € Mpn We set

(12) (A)/\ = (alla ey A1, G215, A2y e e ey ATy - - - ,ann) € (CnQ,
(1.3) sp(A) = a1 +asa + ...+ app.

It is easy to verify that

(1.4)  sp(A") =sp(4), sp(AB) =sp(BA), sp(XAX ') =sp(A).
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We denote by H,, the set of all Hermitian n x n matrices. For A € H,
we write A > 0 (A > 0) if A is positive definite (nonnegative definite). The
set of all unitary n x n matrices is denoted by U,,.

For complex numbers Ay,..., A\, we denote by A = [A1,...,\,] the di-
agonal n X n matrix with diagonal entries Ay, ..., A,.
The following facts are well known:

e For every matrix A > 0, there exists a unique matrix B > 0 such that
A = BB. We write B = V/A; note that A4 > 0 is equivalent to vA > 0.

e Every matrix A > 0 may be represented as A = TT™*, where T is a
uniquely determined lower triangular matrix with positive diagonal entries.

e Every A € H, may be represented as A = VAV*, where V € H,,
A=1[\,...,\y] and Ay > ... > \,,. Moreover, A is uniquely determined
and A >0 (A > 0) is equivalent to A,, > 0 (A, > 0).

e Every A € M, ,, admits a representation A = TU, where U € U,,
T € M, , is a lower triangular matrix with positive diagonal entries, and
both T and U are uniquely determined.

1.2. In [12, Theorem 2.1.2] it was established that for every Z € M,, ,,
the conditions 1™ —ZZ* > 0 (> 0) and I™ —Z*Z > 0 (> 0) are equivalent
and, furthermore,

(1.5) det(I™ — Z7*) = det(I™ — z*Z).
This fact will often be used in what follows. For instance, we have (see (0.5))
(1.6) Rym ={Z € My : I'™ — Z22* > 0}
={ZecMpy,: 1™ —2°7 >0}
Also, (1.5) implies the identity
(1.7) det(I™ — 27*) = det(I'"™ — Z*2Z),  Z,Z € My, n.

Further, in [12, §2.2] two recursion relations were derived for integrals
over R,, , relative to the Lebesgue measure fi,, p:

FormuLA I. Evidently, every Z € M,, ,, can be written as
(1.8) Z=(Z1q), Zi€Mpn-, q€Mp;=C"
Then one can show that
Roypn =4Z=(Z1q) € Myppn:2Z1 € Ry 1,
(1.9) q:\/mw, we€Ry1=B,,},
det(I™ — Z27*) = det(I'™ — 2, Z7)(1 — w*w).
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Furthermore, for every nonnegative measurable function f(Z),Z € Ry n,
the following integral formula holds:

(1.10) ff ) dim,n(Z) =

Rm n
[ det(1'"™) = 225 )dpmn—1(Z1) [ £(Z1 VI = 2025 ) djtn 1 (w).
Rm,n—l Rmal
FormuLA II. Every Z € M,, , can be written as

Z
(1.11) Z = <p1>, Z1 € Mim—1n, p € My =C"

Then we have

A
Rm,n = {Z = ( 1) S Mm,n : Zl € Rm—l,na
p

(1.12) p=wVIMm — Z{ 74, wERLn—IBSn},

det(I™ — 2*2) = det(I™ — Z; Z,)(1 — ww™).

Furthermore, for every nonnegative measurable function f(Z2), Z € Ry, »,
the following integral formula holds:

(1.13) ff ) i, (Z)
= f det(I'™ — Z7 Z1) dpt—1.n(Z1) ff % dpi1n(w).
w1 = Z: 7, ’

Rm—l,n

1.3. We shall require some notations introduced in [12]. For n > 1 let
fi>...> fn >0 be integers. Then put

(114) My, (21, z) = det |22 2= (21,0, 20) €T
Iffi=...=f,=0, we get

(1.15) Mo, ... o(zl,...,z)—det\z" ’” 1, z=(21,-..,2n) € C".

In other words, My .. o(21,...,2y) is the well-known Vandermonde determi-
nant. We have

(1.16) det [27 ZZL] 1=D(z1,...,2,), z=(21,...,2n) €C",
where

(1.17) D(z1,...,2,) = H (zi —2j), z=1(z1,...,2,) € C".

1<i<j<n
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Next, for arbitrary integers f1 > ... > f, > 0 we set

D —1 —2.... n— 17n
(118)  N(fi,...,fa) = (fﬁnp(n’%i:_z’...71f0)1+ =

Note that N(f1,..., fn) is a natural number.

1.4. Recall that U,, (n > 1) denotes the group of all unitary n x n mat-
rices. Let I, be the subgroup of all diagonal unitary matrices. We say that
Ui, Uz € U, are equivalent (U; ~ Us) if U1_1U2 € I,. The set of the cor-
responding equivalence classes is denoted by [U,,]. Further, let dU and d[U]
be the volume elements in U, and [U,], respectively. In [17, Ch. VII, 4]
and [12, §3.2] a relation between dU and d[U] was established, but we do
not dwell on this. Also, it was shown in [12, Theorems 3.1.1 and 3.2.1]
that

(27T)n(n+1)/2
1.1 n — dU = )
(1.19) s Mf U= bm=—tn=2...1,0
27T)n(n71)/2
1.2 A ( .
(1.20) “n [uf] U] Din—1,n—2,...,1,0)

Now let us introduce polar coordinates in M, , (see [12, §3.4]). If
Z € My ., then Z = TU, where U € U,, and T" € M, , is a lower tri-

n,n’
angular matrix with positive diagonal entries. Next, since ZZ* =TT* > 0

we have a representation ZZ* = VAV*, where V. € U,,, A = [A1,..., ],
A1 > ... > A, > 0 and the matrix A is uniquely determined. If we assume
in addition that Ay > ... > X\, > 0, then V € U,, in the above represen-
tation is in a sense also uniquely determined. To be more precise, ZZ* =
V1AV = Vo AVS implies that Vi and Vs belong to the same equivalence class
[V]€[Uy]. Thus, every matrix Z € M , such that all eigenvalues of ZZ* are
distinct (the other matrices Z form in M,, ,, a variety of dimension less than
n? = dim M, ,,) uniquely defines a triple {A, U, [V]}, where A = [A1, ..., \n],
A > ... > N, >0,U €U, [V] € U,]. This triple is called the polar co-
ordinates of the matrix Z. Notice that Z may be recovered from its polar
coordinates as follows: put A = VAV* where V € [V] (A does not depend
on the choice of V' € [V]); then A > 0, so A = TT*, where T is lower
triangular with positive diagonal entries; finally, set Z = TU.

In conclusion, note that the Lebesgue measure p, , on M, , can be
written in polar coordinates as follows:

(1.21) Apinn(Z) =27 D2(\1, ..., An) dAy ... dN, dU d[V].

1.5. Assume that n > 1 and f; > ... > f, > 0 are arbitrary integers.
In H. Weyl’s monograph [17, Ch. IV], starting from rather complicated al-
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gebraic considerations, a certain mapping
(1.22) A— Xy .1, (A)

from M, , into My n was constructed, where N = N(fi,...,fn) (see
(1.18)). This mapping has the following important properties:

(a) Xy, (AB) = Xy, 1, (A) X, 5, (B), VA, B € My p;
(b) if A€ My, ,, then Xy, (A) € My y;
(c) if U € Uy, then Xy, 4 (U) € Un;
(d) Xf1...fn(A*) = (Xfl-.-fn(A))*7 VA € Mn,n;

(e) the entries of the matrix Xy, y, (A), where A = (a;)} ;=1 € My n,
are homogeneous polynomials of degree f = fi+...+ f, ina;;, 1 <14, j < n.

Algebraically, the properties (a)—(c) can be stated as follows:

e the correspondence A — Xy, ¢ (A), A€ M}

mons 18 an N(f1,..., fn)-
dimensional linear representation of the group M, ,;

e the correspondence U — Xy, . (U), U € Uy, is a unitary N(fi,...
.., fn)-dimensional linear representation of the group U,,.

In [17, Ch. IV] it was also established that both these representations
are irreducible.

Next, set
(1'23) Xf1~~-fn(A) = Sp(Xf1~~fn (A))v Ae Mn,n'
Combining (1.4) with (a), (b), (d), we get
fn(A ) Xfi... (BA), AaBEMnm
(1'24) fn(B ) Xf1-fn (A)v A€ My, B € M;mk o
cfa (A7) = Xy 10 (A), A€ M.
Moreover, if A = [A1,...,\,] and A\; # \; for i # j, then (see [17, Ch. VII])
M My )
1.25 A EEEHERAAERE MUY
( ) Xf fn( ) ()\1,...,An)

For A € M, ,, we denote by wj(c?mfn(A), i=1,...,9(f1,..., fn), the entries
of the matrix Xy, ¢, (A) numbered in a definite way. To be more precise,
we set (see the notation (1.2))

(1.26) {0 (AT = (X, g (A

It is easy to see that q(fi,..., fn) = N%(f1,...,fa). Also, one can easily
check the following relations:
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q(f17"'7f") -
(1.27)  xpon (2= Y WP (@l (2),
=1
VZ,7Z € M, ,,
q(flw"vfn) .
(1.28)  xp.p(Z229= Y WY (DP VZE My
=1

1.6. Now we establish some important auxiliary facts.

LEMMA 1.1. Let f1 > ...> fr, >0 and g1 > ... > g, > 0 be arbitrary
integers. Also, let 1 <i<q(f1,...,fn), 1 <7 <q(91,-..,9n) and o> —1.
Then

(120) [ (205 (2)ldet(I™) = ZZ7)]* djign(2)
Royn
_{0) (fla"’?fn)#(gla"wgn)’
N 6ij9§¢?.),,fn¢ (flv"-afn):(glv"-agn)a

where 0;; s the Kronecker symbol and 95“?.)..1‘” > 0 does not depend on 1.

In [12, §5.1] this fact was established for « = 0. However, the proof
given in [12] and based on the well-known Schur lemma (see, for example,
[14, Ch. II, §3]) remains valid in the more general case of a > —1. So we
omit the proof of Lemma 1.1.

LEMMA 1.2. Let n>1 and o > —1.
(i) For arbitrary integers f1 > ... > fn, >0,
(1.30)  q(fu,--. ol ;.
= [ X1 (Z227)[det(I™) — ZZ7))* dpinn(Z).
Rn,n
(ii) For arbitrary integers fr > ... > f, > 0,91 > ... > g, > 0 and for
Z e M, , we have

(131) [ Xpr (BZ)Xgr.gu (ZE7)det(I™) = Z227)]* dprn(2)
Rn,n

_{0’ (fl""vfn)?é(gla'--agn)a
- Q,EC?-)--anfl---fn(ZZ*)7 (f1s-- 5 fn) = (91,5 Gn)-

Proof. Lemma 1.1 gives, for 1 <i < q(f1,..., fn),

(1.32) [ 1) (2)Pldet(I™) — 22 dpinn(2Z) = o .
R

n,n
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This together with (1.28) establishes (1.30), and (1.31) follows immediately

from (1.27)—(1.29).

We now turn to the computation of the explicit value of the constant
ggc?) s,.- For a = 0 it was computed in [12, §5.2]. The general case of & > —1
turns out to be much more complicated. The computation is essentially
based on the following non-trivial fact established in [13]:

THEOREM 1.1. For Rely, > —1 (1 <k <n) and Rea > —1,

o D(l+1) 1 (a+1)
H I'(lg+n+14a)

(1.33) det|B(l; + j,ac + 1) rim1 = D(ly,...,0n)Pp(a),
k=1
where Pp(a), a € C, is a polynomial of degree < n(n —1)/2.

Remark 1.1. Here B and I" denote the well-known Euler functions. In
[13] the polynomial P,, is written in an explicit form. For o = 0 we obtain
det |(l; +7)~'[i*;=, on the left hand side of (1.33), which is a special case of
the Cauchy determinant.

We need the following

LEMMA 1.3. Let o, a and {lp}}_,, {mr}}_, be arbitrary complex num-
bers which satisfy

(1.34) Rea > -1, Re(lj+mj+a)>—-1, 1<i,j<n.
Then

1 1
(1.35) L= [ det|Nrfr_y - det |NTHR,

0 0

XH)\ (1= Xe)%dA; ... dA,
k=1

=nldet |B(l; + mj +a+ 1, a+1)[7,;_;.

Proof. In view of (1.1),
(1.36)  det |A[7,_, - det|\T|7,_,

D DRI D DL
J

=D NN 255“ D VD
J

:Z/\ LA Z% PP VAL Vi

—zm

2,7=1
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Inserting (1.36) into the integral I, we get

1 1
l ntm a
(137) I _ ZZ(Sklkn f f )\ 1+77Lk1+a )\‘l7n+ kn+
Jj ok 0 0
X(L=X)%. .. (1 =X;,)%dA...d\,
=Y kk, Bli+m, +a+1,a+1)
ik
X B(ly+mg, +a+1l,a+1)
Remark 1.2. In fact, we have repeated the proof of Theorem 5.2.1 of
[12], where (1.35) was established for az = 0.

Setting in (1.35), a =0, mp = n—k (1 < k < n), we get, in view of
(1.16), (1.17) and (1.33), the following assertion.

LEMMA 14. If Rea > —1 and Rely > —1 (1 < k <mn), then

det [ |7

i,5=1"

(1.38) fl
0

S

DA, A H (1= Me)¥dAr...dhy,

Il +1 a+1)
_ n(n 1)/2 k D(l I
H lk+n+1+a) (17-'-7n)7)n(a)'

The final result of this section is

LEMMA 1.5. Suppose that o« > —1, f1 > ... > fn, > 0 are arbitrary
integers and set l; = fi +n—1i (1 <i<mn). Then

(139) Q(f1,>fn)9;(f) fn

_ L+ a+1)
—9 n? N n(n 1)/2
Wy Hrl+n+1+a)

x D(l1,. .., 1n)Pu(c).

Proof. Introducing the polar coordinates in the right hand side of (1.30),
we get, in view of (1.21) and (1.25),

1 )\1 >\n71
= wnw, fd)\l [dxa [ dhaxs g (P, n)
0 0 0

< [T = 2227 D2 (A, .., )
k=1
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1 A1 An—1 n
=2 wuwl, [dh [ dha. [ dh, [T -0
0 0 0 k=1

XMfl"“’f”()\l""’)\n)D()\lv"'a)\n)
2 " ! 7 ! it
- Tn ff det|>\]1 ZJZID()\l”ATL)
0 0

x [T =A)drr ... dr,.
k=1
Combining (1.40) with (1.38) and taking into account the definition of I;,
we obtain (1.39).

2. Computation of the main integral

2.1. We begin with some new notations and auxiliary facts.

Let a and b be positive. We write a ~ b if the ratio a/b is bounded from
above as well as from below by fixed positive numbers. For example, the
Euler I' function admits the following well-known asymptotic estimate: if
w=p1 +ipus € C, then
(2.1) |l'(u+ R)| = R~ V2R R
as R — oo (i.e. for Ry < R < 00).

Further, for £ > 1 we denote by G, the set of all matrices A € Mj, ;, with
eigenvalues less than 1 in modulus. It is not difficult to verify that Gy, is a
complete circular domain in M}, ;. This means that if A € G, and a € C,
la] < 1, then @A € Gj. In particular, Gy, is starlike with respect to the
null-matrix 0 € My, ;; consequently, G, is simply connected. Furthermore,
we have:

o if Ac My, then A € G, & A* € Gi;
o if A€ My and X € M, ., then AeGLe XAX 1 e Gy

Also, Ry, C Gy, for k > 1. If m,n > 1, then
(2.2) 27" € Ry CGyy and ZZ* € Ry, C Gy

for Z € Riny Z € Rpn.p (closure in M, ).

Next, it is easy to see that det(1(™) — A) # 0 for A € G,,.

Since G, C M, ,, is simply connected, there exists a unique holomorphic
function ¢ : G,, — C which satisfies

(2.3) exp{p(A)} = det(I™ — A), AecG,, ¢(0)=0.
We write p(A) = Indet(I™ — A), A € G,,. Then for every 3 € C we define
(2.4) [det(I™ — A)]° := exp{fIndet(I™ — A)}, AecG,.

One can easily verify the following assertions:
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oif A=1[N\,..., A\, then A € G,, & |\;| <1 (1 <i<mn); moreover,

(2.5) In det(1™ — Zln (1-—

(2.6) [det (I — A)]P = H(1 - N5, VBeC;

o if A€ G, then

(2.7) Indet(I™ — A%) = Indet(I(™ — A),

(2.8) [det(I™ — A%)]% = [det(I™ — A)), VB ER,
(2.9) Re[lndet(I™ — A)] = In|det(I™ — A)],

(2.10) [det(I™ — A))8| = |det(I™ — A)|°, VB eR.

Finally, we shall require the following important fact established in
[12, Theorem 1.2.5 and §5.3]. Let n > 1, Rep > 0 and set

(2.11) a? =T+ 1)/(Ier(1+1)), 1=01,2,...
Then
(212)  [det(I™ — A)]~(etn—D)

=Cp > afaf N(fi,oo fu)Xprgn(A), A€ Gy,

11>..>1,>0
where C, = (afaf...a_ ;) tand l; = fi+n—i (1 <i<n).
2.2. For myn >1and t > —1, ¢ € R we consider the integral
(2.13) Ty ne(2)

_ [det (1™ — ZZ*)]t
|det( I<m) — ZZx)|mtn+te

dpemn(Z), Z € Ry .

'rnn

The behaviour of this integral is described by
THEOREM 2.1. For m,n > 1, ¢t > —1 and ¢ > min{m,n} — 1
(2.14) J! ~ [det(I™ — ZZ2*)]7¢,  Z € Ry

mnc( )

Proof. We break up the proof into three steps.

Step 1. First we establish (2.14) in the case m = n, when t > —1,
c¢>n—1and

(2.15)

7’L7’LC

[det(I(™) — Z2Z*)]t
f ]det I(n) ZZ*)’2n+t+c Mnn(Z)

Notice that
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(2.16)  |det(I"™) — Zz*)|~(nttte)
= [det(I(") _ ZZ*)]—(nJr(tJrc)/g)

x [det(I™ — zz*))~(n+t+0)/2D -z Z e R, .
Using (2.12) and (2.2) we obtain the expansions
(217)  [det(I™ — zz*)]~(nH{t+e)/2)
=C, Z al .. af N(fi,-- s fa)xp..1.(227),

11>..>1,>0
Z,7 € Ry, p,

(2.18)  [det(I(™) — Zzz*)]~(nF(t+a)/2)

=C, > af .l N(fi,... . f)Xpiogn(Z27), 2,7 € Ryp.
11>..>1,2>0

Note that in both (2.17) and (2.18), o = 1+ (t+¢)/2and [; = fi+n—i (1 <
i <n). Combining (2.15)—(2.18) with (1.31), we see that

(219) Ty n.(2) =
2N (o af PN (fry e f)E) X (B2Y), 2 € Run.
11>..>1,>0

Further, by (1.39) and (1.18) (together with the asymptotic formula (2.1))
we have

i 1
i=1 "

Furthermore, from (2.11) it follows that
(2.21) af ~(;+1)27 =1+ 102 (1<i<n).
Using all these formulas, we obtain

(222)  Jp,(2)

Z fla"'v H l+1n CXfl fn(ZZ)
z:l

&

11>..>10,>20
T I'(li+c—n+1)
~ ZZ*
2. N HFZ + )T c—n+1)Xf1“'f"( )
11>...>1,>0 i=1

Z € R

It remains to note that (2.12) and (2.22) yield (2.14) for m = n.
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Step 2. Assume that m > n > 1; then £ > —1 and ¢ > n — 1. First
note that for all U € U,,, and V € U,,,

(2.23) JL o UZVY =T (2), Z€Rpn.

Further, for every Z € R, ,, there exists U € U,,, such that
(2.24) W:=UZe€R,,

has the form

1%
(2.25) W = < 01>, Wi € Rp1n, 0€C",

and, moreover,

(2.26) det(I™ — z2*) = det(I™~Y — W, W7y).
Consequently, by (1.13) we have

(227)  JL . (2) =Tt (W)

m,n,c m,n,c

f [det(I(™) — ZZ*)]t
’det(I(mfl) _ W1Zi<)|m+n+t+c

dpom,n(Z)

det I(m—l) — 7T t+1
_ ol 2O

‘det([(mfl) _ leik)’m+n+t+c
m—1,n

X f (1 — ww*) duy (W)
B,

Irt+1)m"

I't+n+1) '

Thus, we have established the following fact: if m > n > 1, ¢t > —1 and
¢ >n — 1, then for every Z € R,, ,, there exists W; € R,,,_1,, such that

_ Jt+1 (Wl)

m—1,n,c

(2.28) det(I™ — 22*) = det(I™~ 1) — W, W7),
I(t+1)

2.29 JE o (2) =T (W) ———— "

( ) m,n,c( ) m—l,n,c( 1) I’(t—l—n—{—l) m

It follows from (2.28) and (2.29) that one can reduce the parameter m step
by step and thus reduce the problem to the case m = n > 1 examined above.

Step 3. The case n > m > 1 is considered in a similar way, except that
we now use the integral formula (1.10) instead of (1.13).

Thus, the theorem is proved.

Remark 2.1. For m = 1 the estimate (2.14) was originally obtained
in [11], where the case of arbitrary ¢ € R was considered.
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Remark 2.2. The results of [16] give

(2.30) Tl n.o(2) = const[det(I™ — ZZ%)]7¢,  Z € Ry p,

where m,n > 1,t >0 and ¢ = t + m + n. Of course, (2.30) is more explicit
than (2.14), but we consider the conditions ¢ > 0 and ¢ = ¢ + m + n to be
rather restrictive.

3. Bounded projections in L? (R, )

3.1. Recall (see (0.14)) that for m,n > 1 and Re f > —1 we have defined
the integral operator Tﬁm acting on functions f(Z), Z € R, ». The asser-
tion of Theorem D can be reformulated as follows: if m,n > 1,1 < p < oo,
a > —1 and the complex number [ satisfies Re > (o + 1)/p — 1 for
l1<p<ooand Ref > a for p=1, then Tﬁm is a reproducing operator for
the class HE (R, ). As an important addition to Theorem D we have

THEOREM 3.1. Suppose that m,n > 1,1 <p < oo, a > (p—1) min{m,n}
—p and (B is a complex number satisfying

a+ min{m,n}

(3.1) Re > —1.

Then TP . is a bounded projection of LP(Ry,.n) onto HE(Ry,.).

m,n

Proof. Since the assumptions of Theorem 3.1 imply those of Theorem D,
it suffices to show that T} , is bounded from L2 (R, ) into HE(Ryn).
Furthermore, in view of [8, Corollary 3.1 to Lemma 3.1], T/  (f)(Z) is
holomorphic in Z € R, ,,, for every f € L (R,, ). Consequently, to prove

Theorem 3.1 we need to establish an estimate of the form
(3.2) 1T . (F)lp.a < const || fllpar  Vf € LE(Rm.n),

where the constant may depend on m,n and p, a, #, but not on feL? (R, ).
Note first that in view of Lemma 1.2 of [10],

53) TN < A | et i)
Z € Ry,

where

(3.4) Afy i = lem,n(B)] exp{mm|[Im ]}

First we assume p = 1. Then
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35 NTha(Dlhe
f| det(I(m) *)]a dﬂm,n(z)

< A8, f [det(1(™) — ZZ*)]|*

R
|f(Z)|[det(I™) — ZZ*)|ReP
d m,n Z)d m.n Z
f ]det I(m)—ZZ*)’ern+ReB tom,n(Z) Apim,n(Z)
SA/B f |f(Z)|[det( 7m) _ )]ReﬂJgInRe,B AZ) dpiman(2).

Further, for p =1 the assumptions of the theorem can be written as
(3.6) a>—-1, Ref>a+min{m,n} —1.
In view of Theorem 2.1, (3.5) gives
(3.7) TS o (Flla < const [ [f(Z)][det(I0™) — ZZ7)]RP
R
x [det(I™) — zz*)]~ReB= gy, (Z) = const || f]|1.a.

So Theorem 3.1 is established for p = 1.
Suppose now that 1 < p < oo and put ¢ =p/(p —1) € (1,00). Set

(3.8) dv(Z) := [det(I'™ — ZZ")|“dpmn(Z), Z € R,
[det(I(™) — ZZ*)|Ref=o
|det(l(m) ZZ*)’m—l—n—s—ReB’

Now, (3.3) can be written as

(3.10)  |TE .(f)(2)] < AL, f|f NQ(Z,2)dv(Z), Z € Rpp.

(3.9) Q(Z2,2) = Z,7Z € Rpp.pn.

Hence, to prove (3.2) we have to show the boundedness of the integral op-
erator

(3.11) - [ W2)Q(Z,2)dv(Z), Z € Rmn,
Rm n

in the space LP (R, ,,;dv)=LE (R, ). For this we invoke the Forelli-Rudin
lemma [11]. It asserts that the operator (3.11) is bounded provided that there
exists a positive measurable function g(Z), Z € R, », such that

(3.12) [ Q(Z,2)[9(2))%dv(Z) < const[g(2)]?,  Z € Ry,
Rpn
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(3.13) [ Q(Z.2)[g(2))Pdv(2) < const [g(Z)]",  Z € Runn.
Rin,n

In view of (3.8) and (3.9), these inequalities can be written as

Z)|9[det (I — ZZ*)|ReB
U [féetz]ﬂ[m) ( zz*)|m+n+)]Re — i (2)

m,mn

< const [9(2)]?,  Z € R,

(3.15) [det(I™ — ZZz*) BB~ qp,, .(Z)

f Pldet(1(™) — ZZ*)]«
\det (m) _ ZZ*)‘m—l—n—l—Reﬁ
< counst [¢(2))?, Z € Ry

)

We set
(316)  g(2) = [det(I™ — Zz*)-CH(mintmn}=D/0)  z R,

where § € (0,00). By Theorem 2.1, the two inequalities hold under the
following conditions:

Re 3 — (g0 + min{m,n} — 1) > —1,

min{m,n} —1
(3.17) a—p<5+q > > —1,

min{m,n} — 1

Reﬁ—a—i—p(é—i— >>min{m,n}—1.

It is easy to verify that in view of our assumptions such a choice of § € (0, o)
is possible, so the case 1 < p < oo is also settled. Thus, Theorem 3.1 is
established.

Remark 3.1. For m=1, this theorem coincides with the assertion (ii)
of Theorem C. Furthermore, for m,n > 1 and for the particular values p = 1,
a =0, 8 =m+n, Theorem 3.1 follows from the results of [16] on bounded
projections in L'-spaces on arbitrary bounded symmetric domains.

3.2. For p = 2, Theorem 3.1 has an important supplement. But first we
need one more notation. If m,n > 1 and o > —1, then for all f, g€ L2 (R, )
we define

(3.18) {f,g}a = f F(2)g(Z) [det(I'™ — ZZ*)]™ dpipm . (Z).

Clearly, {-, -}, is an inner product in L2 (Ry,,n). Moreover, with this inner
product L2(R,, ) is a Hilbert space and H2(R,,.,) is its closed subspace.
Notice also that {f, f}o = ||f113.0:Vf € L2Z(Rimn)- For f,g € L2(Rm.n) we
write f 1 g if {f,g}a = 0.
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THEOREM 3.2. If m,n > 1 and o > —1, then T}
the orthogonal projection onto H2(Ru.n)-

acts in L2 (Rpy.p) as

,n )

Proof. Fix f € L2(R,.»). Then we have the representation

(3.19) f=h+r,

where f; € H2(Ry.n) and fo | H2(Ry0), ie.

(3.20) fole, Vo€ H2(Rpyy).

Further, in view of Theorem D (for p =2, a > —1, § = ) we get
(3.21) T () =T5 . (f1) + T (f2) = f1 + Ty 0 (f2)-
Consequently, it suffices to show that

(3.22) Tonn(f2)(2) =0, Z€Rpun.

Note that

(3.23) Ton(f2)(Z2) ={f2,0z}a: Z € Ry,

where

(3.24)  ¢z(Z) = cpm(@)[det(I™ — Zzz*)"(mtnta) 7 c R

In view of Proposition 2.2(c) of [8], for fixed Z € R,, , the function ¢z is
continuous on R,, , and holomorphic in R, . Hence, pz € H2(Ry,.n). It
remains to note that (3.22) follows from (3.23) and (3.20).

Remark 3.2. For a = 0 this result coincides with the assertion (ii) of
Theorem B. Note also that Theorem 3.2 is a corollary of Theorem 3.1 only
for a > min{m,n} — 2.

4. Integral representations and inequalities for pluriharmonic
functions

4.1. Let £2 be an arbitrary open set in C¥ (k > 1). We denote by H(f2)
the space of all holomorphic functions in 2. A function g(w), w € £2, is called
antiholomorphic if the function f(w) := g(w) is holomorphic. The space of
all antiholomorphic functions in 2 will be denoted by H(§2). Further, a
complex function f € C?({2) is said to be pluriharmonic provided that its
restriction to an arbitrary complex line is an ordinary harmonic function
of one complex variable. It is well known that this condition can also be
written as

1 =0, w=(w wr) € 2 (1<4,i<k)
awjawz— 5 - 1y« Wk >t .

The space of all pluriharmonic functions in {2 will be denoted by h({2). Note
the inclusion

(4.2) H(2)+ H(2) C h(£).

(4.1)
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Moreover, if f € h(2), then f € h(£2), Ref € h(£2) and Im f € h(£2). In
particular, the real part of any holomorphic function in {2 is a real pluri-
harmonic function. The natural question arises: is every real pluriharmonic
function the real part of some holomorphic function? In general, this is not
so for every open set £2 C C*. However, for convex domains the answer is
affirmative. In other words, for every convex domain 2 C C* real plurihar-
monic functions coincide with real parts of holomorphic functions. Hence,
for such domains we have (compare with (4.2))

(4.3) H(Q)+ H(2) = h(N).
Finally, observe that R,, , C M,, , = C™" is convex.

4.2. Let my,n > 1 and 1 < p < oo, @ > —1. Then together with the
space HY (R, n) = H(Ryn) N L2 (Ryy,.n) we also consider the spaces
HE(Rn.n)
he(Bm.n)

H(Rpn) O LG (Bim.n),

(4.4)
(Bun.n) OV LE (Rin.n)-

It is easy to see that
(4.5) H?(Rpnp) + H2(Rimn) Ch2 (Rmn)-
Further, let Re 8 > —1. Then apart from the operator
(4.6)  T5.(H)(2)

f(Z)[det(I"™ — ZZ%))°

= Crn,n(ﬁ) f [det(I(m) — ZZ*)]m+n+ﬁ /’Lm,n(z)u
Rm,n

Z e Rm,n,

which was already considered, we introduce the following integral operator:
(4.7)  Pra(H)(2)
= cmm(ﬂ) f f(Z)[det(I(m) _ ZZ*)]ﬂ
Rm n

1
X { [det(I(m) _ ZZ*)]m+n+B

1
det(I0m) — ZZ*)]

t [ m—+n+ B 1} duman(z)v Ze Rm,n~

The operators (4.6) and (4.7) are connected by the following simple (but
useful) relation:

(4.8) P2 (NE)=TL . ()E)+Ton(P(E) =T .(f)0), Z € Ry
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LEMMA 4.1. Let myn > 1,1 <p < oo, a > —1 and f € LE(Ry, ).
Then

(i) For fized Z € Ry p, both TS . (f)(Z) and PJ, . (f)(Z) (as functions
of B) are holomorphic in the domain {Re > (a+1)/p—1} if 1 < p < oo,
and are holomorphic in {Re 8 > a} and continuous in {Re 8 > a} if p=1.
(ii)) If Ref > (a+1)/p—1 (for 1 < p < o0) and Ref3 > «a (for p
= 1), then TS ,(f)(Z) is holomorphic (in Z) in Ry n, and P (f)(Z) is

pluriharmonic (in Z) in Ry, p.

Proof. For Tn‘in the assertions of the lemma were established in [8,
Corollaries 3.1 and 3.2 of Lemma 3.1]. The case of Pﬁl,n is similar.

The following main theorem holds:
THEOREM 4.1. Let m,n > 1. Then

(i) If1<p<oo,a>—-1and Ref > (a+1)/p—1 for1l < p < oo, and
Re > a for p =1, then for each u € hE (R, ) we have a representation

(4.9) wZ)="P5 (u)(2), ZERpn.
(i) If 1 <p<oo, a> (p—1)min{m,n} —p and

o+ min{m,n}

(4.10) Ref > 1,
then PJ ,, is a bounded projection of LF(Rm.n) onto h¥,(Rm, ).
(iii) If a > —1, then P, ,, is the orthogonal projection of L (R, ) onto

h2 (R n)-

Proof. (i) Evidently, we can suppose that u € h?(R,, ) is real. Fur-
thermore, in view of Lemma 4.1(i) and the uniqueness theorem (for analytic
functions of one complex variable) we can additionally assume that g > 0.
Since R, , is convex, we have u = Re f, where f € H(R,, ). Note that
f need not be of class H?(R,,.), in spite of the condition u € hf (R, »)-
Nevertheless, for each r € (0,1) we have

(4.11) fr(Z) = f(rZ) € H{(Rmn)-

Hence, Theorem D yields

(4.12) F(2)=T0(F)(2),  Z€Rpn (0<r<1),
(4.13) [0)=T0 (f)(2), Z€Rp, (0<r<l).
Summing (4.12) and (4.13), we get

(4.14) Fr(2)+ f(0) =215 (u,)(Z), Z€ERpa (0<r<1).

Then set Z =0 in (4.14):
(4.15) ur(0) =T5 (u.)(0) (0<r<1).
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Further, since 3 is real, (4.8) leads to

(116) P2, (r)(2) = T o) (2) + Ton(r) (2) = T2 (1) 0),
ZeRnn (0<r<]l).

Taking real parts in (4.14), we obtain

(417)  u(2) +u(0) =2ReT? (u,;)(Z), Z€Rmn (0<r<1).

Using all these formulas, we get

(4.18) u(2) =Pl () (Z), ZE€Rp, (0<r<1).

Now note (see (4.7)) that (4.18) can be written as follows:

(419)  u(rZ) = cmn(B)r 2" [ w(Z)[det(r? 10 — 227))°

rRyn

1
8 { [det(I(m) — Z(Z* /r))|m+n+6
1
det(I(m) — (Z/r)Z*)|mtn+B - 1} dpim 0 (Z),
ZERm,n (O<’l”<1)7

M

where
(420) rRyun={rZ:Z € Rnn}
={Z €My, : 1™ —Z7* >0} (0<r<1).

Letting r to tend to 1 in (4.19), we get (4.9) in view of the Lebesgue domi-
nated convergence theorem.

Further, Theorem 3.1 together with Lemma 4.1(ii) and (4.8) give (ii). The
proof of (iii) is merely a repetition of that of Theorem 3.2. Thus, Theorem 4.1
is proved.

Remark4.1. The operator Pﬁ ,, was considered in [1]. There it was also
established that for v > —1, P{,, is the orthogonal projection of LZ(R1,,) =
L2(B,,) onto h2(Ry.,) = h2(B,).

4.3. We now give some applications of the main theorems established
above.

THEOREM 4.2. (a) If 1 <p < oo and a > (p — 1)min{m,n} — p, then
(4.21) RE (Run) = HE(Rpy ) + HP(Ry ).

(b) If a > —1, then
(4.22) hZ(Rmn) = H3(Rmn) + Ho(Rmn)-
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Proof. We only prove (a) as (b) can be established in the same way.
In view of (4.5), it suffices to show that

(4.23) B (Rnn) © HE (R ) + H2 (B ).
Fix 8 € R such that 8 > (o + min{m,n})/p — 1. By Theorem 4.1(i) and
(4.8) we get
(4.24)  w(2) =T, ,(w)(2) + Tnn(@)(2) = T} . (u)(0),  Z € Ry,
Vu € h? (Rp.n)-
According to Theorem 3.1,
(4.25) TP . (u) € HY(Rpp)s  Thn(@) € HY(Rpnn)-
Combining (4.24) with (4.25), we see that u € HE(Ry )+ HE (Rm,n), which

completes the proof.

THEOREM 4.3. Assume that either

(a) 1 <p<oo,a>(p—1)min{m,n} —p and a > 0, or
(b)) p=2, a>0.

Then
(4.26) 1fllp.a < Cllullpa, € =C(p,a) € (0,00),
forall f =u+iv e H(R,, ) with v(0) = 0.

Proof. We first assume that f = u+iv € H?(R,, ) and v(0) = 0. Fix
0 € R with

a + min{m,n}

B> 1 (in case (a)),
f=a (in case (b)).
In view of Theorem D we have
(4.27) f(2) =T (H(2), w0) =T .(f)(2), Z€Run.
Consequently,
(4.28) f(2) =21 ,(u)(2) —u(0),  Z € Ry,
or
(4.29) f(2)=2T5 (u)(2) = T2 ,(u)(0), Z € Rppn.

From (4.29) and Theorems 3.1, 3.2 it follows that the estimate (4.26) is
valid, but under the additional hypothesis f € HP(R,,,) (note that the
assumption « > 0 is not used yet). If we only have f € H(R,, ), then for
re (0,1), fr(Z) = f(rZ) € H?(Ry, ). Hence

(4.30) Hf?"”p,a < C(p, O‘)H“er,aa r € (0,1).
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This estimate can be written as follows:

(4.31) [ 1F(2)P[Aet(r2 1™ — ZZ7))* dptrn,n (Z)
TR n

<C(pa) [ [(Z)Plet(r2 1™ — 22 djigu(2).
TR n

The final step is to let r tend to 1 in (4.31). If we take into account the hy-
pothesis a > 0, then an application of the Lebesgue monotone convergence
theorem makes it possible to derive the estimate (4.26) from (4.31). Thus,
Theorem 4.3 is proved.

Remark 4.2. In [2] the estimates of type (4.26) were established for
rather large classes of unbounded multidimensional domains. Moreover,

there the conditions on the parameters p and o were not so restrictive as in
Theorem 4.3.

Remark 4.3. For p = 1, @ = 0 and under the assumption f(0)
= 0, Theorem 4.3 follows from [16], where, as mentioned earlier, the case of
arbitrary bounded symmetric domains is considered.
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