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Bounded projections in weighted function spaces
in a generalized unit disc

by A. H. Karapetyan (Erevan)

Abstract. Let Mm,n be the space of all complex m × n matrices. The generalized
unit disc in Mm,n is

Rm,n = {Z ∈Mm,n : I(m) − ZZ∗ is positive definite}.

Here I(m)∈Mm,m is the unit matrix. If 1≤p<∞ and α > −1, then Lpα(Rm,n) is defined
to be the space Lp{Rm,n; [det(I(m) − ZZ∗)]α dµm,n(Z)}, where µm,n is the Lebesgue
measure in Mm,n, and Hp

α(Rm,n) ⊂ Lpα(Rm,n) is the subspace of holomorphic functions.
In [8, 9] M. M. Djrbashian and A. H. Karapetyan proved that, if Reβ > (α + 1)/p − 1
(for 1 < p <∞) and Reβ ≥ α (for p = 1), then

f(Z) = Tβm,n(f)(Z), Z ∈ Rm,n,

where Tβm,n is the integral operator defined by (0.13)–(0.14). In the present paper, given
1 ≤ p < ∞, we find conditions on α and β for Tβm,n to be a bounded projection of
Lpα(Rm,n) onto Hp

α(Rm,n). Some applications of this result are given.

0. Introduction

0.1. In the fourties M. M. Djrbashian [4, 5] introduced the classes Hp(α)
(1 ≤ p < ∞, α > −1) of functions f(z) holomorphic in the unit disc
D = {z ∈ C : |z| < 1}, with

(0.1)
∫ ∫

D
|f(ζ)|p(1− |ζ|2)α dξ dη <∞ (ζ = ξ + iη).

In the same papers [4, 5] the following result was established.
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Theorem A. (i) Let 1 ≤ p <∞ and α > −1. Then for each f ∈ Hp(α)
we have

f(z) =
α+ 1
π

∫ ∫
D

f(ζ)(1− |ζ|2)α

(1− zζ)2+α
dξ dη, z ∈ D,(0.2)

f(0) =
α+ 1
π

∫ ∫
D

f(ζ)(1− |ζ|2)α

(1− zζ)2+α
dξ dη, z ∈ D.(0.3)

(ii) The integral operator induced by the right hand side of (0.2) acts in
L2{D; (1− |ζ|2)α dξ dη} as the orthogonal projection onto H2(α), α > −1.

The classes Hp(α) began to play an important role in complex analysis.
The integral representation (0.2) had numerous applications. For example, in
the same papers [4, 5] by the use of (0.2)–(0.3) a canonical factorization was
established for certain weighted classes of functions meromorphic in D. For
other applications of Theorem A see the surveys [6, 7] and the monograph [3].

0.2. Later on, in the fifties, the following problem arose: establish rea-
sonable analogs of Theorem A for functions of several complex variables. To
survey the relevant investigations we need first to introduce some notations.

For m,n ≥ 1 we denote by Mm,n the space of all complex m×n matrices.
For each Z ∈ Mm,n, Z

∗ ∈ Mn,m will denote the Hermitian conjugate of Z.
Further, for k ≥ 1, I(k) ∈ Mk,k denotes the unit matrix. The Lebesgue
measure µm,n in Mm,n can be written as

(0.4) dµm,n(Z) =
∏

1≤k≤m
1≤j≤n

dξkj dηkj ,

where Z = (ζkj)1≤k≤m, 1≤j≤n ∈ Mm,n with ζkj = ξkj + iηkj . Note that
M1,n coincides with Cn and µ1,n is 2n-dimensional Lebesgue measure in
Cn ∼= R2n.

The generalized unit disc in Mm,n is

(0.5) Rm,n = {Z ∈Mm,n : I(m) − ZZ∗ is positive definite}.

It is easy to see that R1,n coincides with the unit ball Bn={ζ ∈ Cn : ζζ∗ < 1}
in M1,n = Cn.

In Hua’s monograph [12, Theorem 4.3.1] the following result was estab-
lished.

Theorem B. (i) Every holomorphic function f(Z) ∈ L2{Rm,n; dµm,n}
admits an integral representation of the form

(0.6) f(Z) = cm,n
∫

Rm,n

f(Z)
[det(I(m) −ZZ∗)]m+n

dµm,n(Z), Z ∈ Rm,n,
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where

(0.7) cm,n = π−mn
m+n∏
l=1

Γ (l)
m∏
k=1

Γ−1(k)
n∏
j=1

Γ−1(j).

(ii) The integral operator induced by the right hand side of (0.6) acts in
L2{Rm,n; dµm,n} as the orthogonal projection onto the subspace of holomor-
phic functions.

Note that for m = 1, Theorem B establishes the integral representation

(0.8) f(z) =
n!
πn

∫
Bn

f(ζ)
(1− zζ∗)1+n

dµ1,n(ζ), z ∈ Bn,

for holomorphic functions f ∈ L2{Bn; dµ1,n}. Also, Theorem B is a gener-
alization of Theorem A, but only for the particular values p = 2 and α = 0.

0.3. In further investigations a multidimensional generalization of The-
orem A (this time for arbitrary 1 ≤ p < ∞ and α > −1) was established.
The result is

Theorem C. (i) Suppose that 1 ≤ p < ∞, α > −1 and the complex
number β satisfies Reβ > (α + 1)/p − 1 (if 1 < p < ∞) and Reβ ≥ α (if
p = 1). Then every function f(z) holomorphic in Bn ⊂ Cn for which

(0.9)
∫

Bn

|f(ζ)|p(1− ζζ∗)αdµ1,n(ζ) <∞

admits the integral representations

f(z) =
(β + 1) . . . (β + n)

πn

∫
Bn

f(ζ)(1− ζζ∗)β

(1− zζ∗)1+n+β
dµ1,n(ζ), z ∈ Bn,(0.10)

f(0) =
(β + 1) . . . (β + n)

πn

∫
Bn

f(ζ)(1− ζζ∗)β

(1− zζ∗)1+n+β
dµ1,n(ζ), z ∈ Bn.(0.11)

(ii) For 1 ≤ p < ∞, α > −1 and Reβ > (α + 1)/p − 1 the integral
operator induced by the right hand side of (0.10) is a bounded projection of
Lp{Bn; (1− ζζ∗)α dµ1,n(ζ)} onto the subspace of holomorphic functions.

As follows from the proof of Theorem A in [5], for n = 1 assertion (i)
of Theorem C was actually established in [4, 5]. For n ≥ 1 and p = 2,
β = α = 0, Theorem C follows from Theorem B (compare (0.8) and
(0.10)). For n ≥ 1 and 1 ≤ p < ∞, α = 0, Reβ > 1/p − 1, Theorem
C was established by F. Forelli and W. Rudin [11] (see also [15, Theo-
rem 7.1.4]). These conditions are exactly the same as in Theorem C(i)
(for α = 0) except the case p = 1, Reβ = 0 which is not considered
in [11]. Finally, in the general form stated above, Theorem C(i) was proved in



196 A. H. Karapetyan

M. M. Djrbashian’s survey [7] by use of the methods developed in [4, 5]. Note
that β was assumed to be real in [7], but this restriction is not essential. As
to assertion (ii) of Theorem C, it was mentioned in [7] that the correspond-
ing proof, given in [11] for α = 0, can be easily adapted to the general case
α > −1.

0.4. Of course, Theorem C is a more or less satisfactory generalization
of the main Theorem A. However, in the recent papers [8, 9] a much more
general result was established. To be more precise, for the case of the gen-
eralized unit disc Rm,n (m,n ≥ 1) similar weighted integral representations
were obtained. To formulate the corresponding result we introduce some
further notations.

Let m,n ≥ 1 and 1 ≤ p < ∞, α > −1. For an arbitrary complex
measurable function f(Z), Z ∈ Rm,n, set

(0.12) ‖f‖pp,α :=
∫

Rm,n

|f(Z)|p[det(I(m) − ZZ∗)]α dµm,n(Z).

Then we introduce the space Lpα(Rm,n) := {f : ‖f‖p,α<∞}. Next we define
Hp
α(Rm,n) to be the space of holomorphic functions in Lpα(Rm,n). Further,

if m,n ≥ 1 and Reβ > −1, then we set

(0.13) cm,n(β) = π−mn
m+n∏
l=1

Γ (β + l)
m∏
k=1

Γ−1(β + k)
n∏
j=1

Γ−1(β + j)

and consider the integral operator

(0.14) T βm,n(f)(Z) = cm,n(β)
∫

Rm,n

f(Z)[det(I(m) − ZZ∗)]β

[det(I(m) −ZZ∗)]m+n+β
dµm,n(Z),

Z ∈ Rm,n.
The result established in [8, 9] is

Theorem D. Suppose that m,n ≥ 1, 1 ≤ p < ∞, α > −1 and the
complex number β satisfies Reβ > (α + 1)/p − 1 (if 1 < p < ∞) and
Reβ ≥ α (if p = 1). Then for each f ∈ Hp

α(Rm,n) the following integral
representations hold :

f(Z) = T βm,n(f)(Z), Z ∈ Rm,n,(0.15)

f(0) = T βm,n(f)(Z), Z ∈ Rm,n.(0.16)

R e m a r k 0.1. In [8, 9] only the formula (0.15) was written down. But it
is easy to see that (0.16) can be directly deduced from (0.15).

For m = 1, Theorem D coincides with assertion (i) of Theorem C. More-
over, for all m,n ≥ 1 and the particular values p = 2, β = α = 0, Theorem D
gives assertion (i) of Theorem B. In connection with Theorem D we have
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to mention the paper [16] by M. Stoll, published earlier than [8, 9]. In [16]
weighted integral representations were established for all bounded symmetric
domains, including Rm,n, but only for holomorphic functions in Lp-spaces
without weights. Theorem D can be deduced from the results of [16] only for
α = 0 and real β ≥ 0.

0.5. In [8], in addition to the establishment of Theorem D the following
problem was posed: for m,n ≥ 1 and 1 ≤ p < ∞, under what conditions
on α and β is T βm,n (see (0.14)) a bounded projection of Lpα(Rm,n) onto its
subspaceHp

α(Rm,n)? A similar problem was also raised in [16]. Theorems 3.1
and 3.2 of the present paper give a solution of these problems. The technique
of the proof of the main Theorem 3.1 goes back to [11]. However, in our case
we had to overcome some additional computational difficulties. For instance,
we had to compute the determinant (see [13])

(0.17) det |B(li + j, t+ 1)|ni,j=1, Re lk > −1 (1 ≤ k ≤ n), Re t > −1,

where B is the Euler beta function. (When t = 0 in (0.17), we get a special
case of the Cauchy determinant det |(li + j)−1|ni,j=1.)

Concluding the paper we give some applications of Theorems D and 3.1,
3.2. To be more precise, we establish integral representations and integral
inequalities for functions pluriharmonic in Rm,n.

The author wishes to express his gratitude to Professor M. M. Djrbashian
for his constant encouragement and help.

1. Preliminaries and auxiliary facts

1.1. We recall that for A = (aij)ni,j=1 ∈Mn,n,

det(A) =
∑
i

δi1i2...inai11ai22 . . . ainn(1.1)

=
∑
i

δi1i2...ina1i1a2i2 . . . anin ,

where the summation is over all permutations i = (i1, . . . , in) of {1, . . . , n}
and δi1i2...in is the signature of the permutation. We denote by M∗n,n the set
of all invertible n× n matrices.

Further, for every A = (aij)ni,j=1 ∈Mn,n we set

(1.2) (A)∧ = (a11, . . . , a1n, a21, . . . , a2n, . . . , an1, . . . , ann) ∈ Cn
2
,

(1.3) sp(A) = a11 + a22 + . . .+ ann.

It is easy to verify that

(1.4) sp(A∗) = sp(A), sp(AB) = sp(BA), sp(XAX−1) = sp(A).
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We denote by Hn the set of all Hermitian n × n matrices. For A ∈ Hn

we write A > 0 (A ≥ 0) if A is positive definite (nonnegative definite). The
set of all unitary n× n matrices is denoted by Un.

For complex numbers λ1, . . . , λn we denote by Λ = [λ1, . . . , λn] the di-
agonal n× n matrix with diagonal entries λ1, . . . , λn.

The following facts are well known:

• For every matrix A ≥ 0, there exists a unique matrix B ≥ 0 such that
A = BB. We write B =

√
A; note that A > 0 is equivalent to

√
A > 0.

• Every matrix A > 0 may be represented as A = TT ∗, where T is a
uniquely determined lower triangular matrix with positive diagonal entries.
• Every A ∈ Hn may be represented as A = V ΛV ∗, where V ∈ Hn,

Λ = [λ1, . . . , λn] and λ1 ≥ . . . ≥ λn. Moreover, Λ is uniquely determined
and A > 0 (A ≥ 0) is equivalent to λn > 0 (λn ≥ 0).
• Every A ∈ M∗n,n admits a representation A = TU , where U ∈ Un,

T ∈ Mn,n is a lower triangular matrix with positive diagonal entries, and
both T and U are uniquely determined.

1.2. In [12, Theorem 2.1.2] it was established that for every Z ∈ Mm,n

the conditions I(m)−ZZ∗ > 0 (≥ 0) and I(n)−Z∗Z > 0 (≥ 0) are equivalent
and, furthermore,

(1.5) det(I(m) − ZZ∗) = det(I(n) − Z∗Z).

This fact will often be used in what follows. For instance, we have (see (0.5))

Rm,n = {Z ∈Mm,n : I(m) − ZZ∗ > 0}(1.6)

= {Z ∈Mm,n : I(n) − Z∗Z > 0}.

Also, (1.5) implies the identity

(1.7) det(I(m) −ZZ∗) ≡ det(I(n) − Z∗Z), Z, Z ∈Mm,n.

Further, in [12, §2.2] two recursion relations were derived for integrals
over Rm,n relative to the Lebesgue measure µm,n:

Formula I. Evidently, every Z ∈Mm,n can be written as

(1.8) Z = (Z1 q), Z1 ∈Mm,n−1, q ∈Mm,1
∼= Cm.

Then one can show that

Rm,n = {Z = (Z1 q) ∈Mm,n : Z1 ∈ Rm,n−1,

(1.9) q =
√
I(m) − Z1Z

∗
1 ω, ω ∈ Rm,1 ∼= Bm},

det(I(m) − ZZ∗) = det(I(m) − Z1Z
∗
1 )(1− ω∗ω).
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Furthermore, for every nonnegative measurable function f(Z), Z ∈ Rm,n,
the following integral formula holds:

(1.10)
∫

Rm,n

f(Z) dµm,n(Z) =∫
Rm,n−1

det(I(m) − Z1Z
∗
1 )dµm,n−1(Z1)

∫
Rm,1

f(Z1

√
I(m) − Z1Z

∗
1 ω) dµm,1(ω).

Formula II. Every Z ∈Mm,n can be written as

(1.11) Z =
(
Z1

p

)
, Z1 ∈Mm−1,n, p ∈M1,n = Cn.

Then we have

Rm,n =
{
Z =

(
Z1

p

)
∈Mm,n : Z1 ∈ Rm−1,n,

(1.12) p = ω
√
I(n) − Z∗1Z1, ω ∈ R1,n = Bn

}
,

det(I(n) − Z∗Z) = det(I(n) − Z∗1Z1)(1− ωω∗).

Furthermore, for every nonnegative measurable function f(Z), Z ∈ Rm,n,
the following integral formula holds:

(1.13)
∫

Rm,n

f(Z) dµm,n(Z)

=
∫

Rm−1,n

det(I(n) − Z∗1Z1) dµm−1,n(Z1)
∫

R1,n

f

(
Z1

ω
√
I(n) − Z∗1Z1

)
dµ1,n(ω).

1.3. We shall require some notations introduced in [12]. For n ≥ 1 let
f1 ≥ . . . ≥ fn ≥ 0 be integers. Then put

(1.14) Mf1,...,fn(z1, . . . , zn) := det |zfi+n−i
j |ni,j=1, z = (z1, . . . , zn) ∈ Cn.

If f1 = . . . = fn = 0, we get

(1.15) M0,...,0(z1, . . . , zn) = det |zn−ij |ni,j=1, z = (z1, . . . , zn) ∈ Cn.

In other words, M0,...,0(z1, . . . , zn) is the well-known Vandermonde determi-
nant. We have

(1.16) det |zn−ij |ni,j=1 ≡ D(z1, . . . , zn), z = (z1, . . . , zn) ∈ Cn,

where

(1.17) D(z1, . . . , zn) :=
∏

1≤i<j≤n

(zi − zj), z = (z1, . . . , zn) ∈ Cn.
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Next, for arbitrary integers f1 ≥ . . . ≥ fn ≥ 0 we set

(1.18) N(f1, . . . , fn) =
D(f1 + n− 1, f2 + n− 2, . . . , fn−1 + 1, fn)

D(n− 1, n− 2, . . . , 1, 0)
.

Note that N(f1, . . . , fn) is a natural number.

1.4. Recall that Un (n ≥ 1) denotes the group of all unitary n× n mat-
rices. Let Γn be the subgroup of all diagonal unitary matrices. We say that
U1, U2 ∈ Un are equivalent (U1 ∼ U2) if U−1

1 U2 ∈ Γn. The set of the cor-
responding equivalence classes is denoted by [Un]. Further, let dU and d[U ]
be the volume elements in Un and [Un], respectively. In [17, Ch. VII, 4]
and [12, §3.2] a relation between dU and d[U ] was established, but we do
not dwell on this. Also, it was shown in [12, Theorems 3.1.1 and 3.2.1]
that

ωn =
∫
Un

dU =
(2π)n(n+1)/2

D(n− 1, n− 2, . . . , 1, 0)
,(1.19)

ω′n =
∫

[Un]

d[U ] =
(2π)n(n−1)/2

D(n− 1, n− 2, . . . , 1, 0)
.(1.20)

Now let us introduce polar coordinates in Mn,n (see [12, §3.4]). If
Z ∈ M∗n,n, then Z = TU , where U ∈ Un and T ∈ Mn,n is a lower tri-
angular matrix with positive diagonal entries. Next, since ZZ∗ = TT ∗ > 0
we have a representation ZZ∗ = V ΛV ∗, where V ∈ Un, Λ = [λ1, . . . , λn],
λ1 ≥ . . . ≥ λn > 0 and the matrix Λ is uniquely determined. If we assume
in addition that λ1 > . . . > λn > 0, then V ∈ Un in the above represen-
tation is in a sense also uniquely determined. To be more precise, ZZ∗ =
V1ΛV

∗
1 = V2ΛV

∗
2 implies that V1 and V2 belong to the same equivalence class

[V ]∈ [Un]. Thus, every matrix Z∈M∗n,n such that all eigenvalues of ZZ∗ are
distinct (the other matrices Z form in Mn,n a variety of dimension less than
n2 = dimMn,n) uniquely defines a triple {Λ,U, [V ]}, where Λ = [λ1, . . . , λn],
λ1 > . . . > λn > 0, U ∈ Un, [V ] ∈ [Un]. This triple is called the polar co-
ordinates of the matrix Z. Notice that Z may be recovered from its polar
coordinates as follows: put A = V ΛV ∗, where V ∈ [V ] (A does not depend
on the choice of V ∈ [V ]); then A > 0, so A = TT ∗, where T is lower
triangular with positive diagonal entries; finally, set Z = TU .

In conclusion, note that the Lebesgue measure µn,n on Mn,n can be
written in polar coordinates as follows:

(1.21) dµn,n(Z) = 2−n
2
D2(λ1, . . . , λn) dλ1 . . . dλn dU d[V ].

1.5. Assume that n ≥ 1 and f1 ≥ . . . ≥ fn ≥ 0 are arbitrary integers.
In H. Weyl’s monograph [17, Ch. IV], starting from rather complicated al-



Bounded projections in weighted function spaces 201

gebraic considerations, a certain mapping

(1.22) A→ Xf1...fn
(A)

from Mn,n into MN,N was constructed, where N = N(f1, . . . , fn) (see
(1.18)). This mapping has the following important properties:

(a) Xf1...fn(AB) = Xf1...fn(A)Xf1...fn(B), ∀A,B ∈Mn,n;
(b) if A ∈M∗n,n, then Xf1...fn

(A) ∈M∗N,N ;
(c) if U ∈ Un, then Xf1...fn

(U) ∈ UN ;
(d) Xf1...fn(A∗) = (Xf1...fn(A))∗, ∀A ∈Mn,n;
(e) the entries of the matrix Xf1...fn

(A), where A = (aij)ni,j=1 ∈ Mn,n,
are homogeneous polynomials of degree f = f1 + . . .+fn in aij , 1 ≤ i, j ≤ n.

Algebraically, the properties (a)–(c) can be stated as follows:

• the correspondence A → Xf1...fn
(A), A ∈ M∗n,n, is an N(f1, . . . , fn)-

dimensional linear representation of the group M∗n,n;
• the correspondence U → Xf1...fn(U), U ∈ Un, is a unitary N(f1, . . .

. . . , fn)-dimensional linear representation of the group Un.

In [17, Ch. IV] it was also established that both these representations
are irreducible.

Next, set

(1.23) χf1...fn
(A) := sp(Xf1...fn

(A)), A ∈Mn,n.

Combining (1.4) with (a), (b), (d), we get

χf1...fn
(AB) = χf1...fn

(BA), A,B ∈Mn,n;
χf1...fn

(BAB−1) = χf1...fn
(A), A ∈Mn,n, B ∈M∗n,n;(1.24)

χf1...fn(A∗) = χf1...fn(A), A ∈Mn,n.

Moreover, if Λ = [λ1, . . . , λn] and λi 6= λj for i 6= j, then (see [17, Ch. VII])

(1.25) χf1...fn
(Λ) =

Mf1,...,fn
(λ1, . . . , λn)

D(λ1, . . . , λn)
.

For A ∈ Mn,n we denote by ψ(i)
f1...fn

(A), i = 1, . . . , q(f1, . . . , fn), the entries
of the matrix Xf1...fn

(A) numbered in a definite way. To be more precise,
we set (see the notation (1.2))

(1.26) {ψ(i)
f1...fn

(A)}q(f1,...,fn)
i=1 = (Xf1...fn(A))∧.

It is easy to see that q(f1, . . . , fn) = N2(f1, . . . , fn). Also, one can easily
check the following relations:
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χf1...fn
(ZZ∗) =

q(f1,...,fn)∑
i=1

ψ
(i)
f1...fn

(Z)ψ(i)
f1...fn

(Z),(1.27)

∀Z, Z ∈Mn,n,

χf1...fn(ZZ∗) =
q(f1,...,fn)∑

i=1

|ψ(i)
f1...fn

(Z)|2, ∀Z ∈Mn,n.(1.28)

1.6. Now we establish some important auxiliary facts.

Lemma 1.1. Let f1 ≥ . . . ≥ fn ≥ 0 and g1 ≥ . . . ≥ gn ≥ 0 be arbitrary
integers. Also, let 1 ≤ i ≤ q(f1, . . . , fn), 1 ≤ j ≤ q(g1, . . . , gn) and α > −1.
Then

(1.29)
∫

Rn,n

ψ
(i)
f1...fn

(Z)ψ(j)
g1...gn(Z)[det(I(n) − ZZ∗)]α dµn,n(Z)

=
{

0, (f1, . . . , fn) 6= (g1, . . . , gn),
δij%

(α)
f1...fn

, (f1, . . . , fn) = (g1, . . . , gn),

where δij is the Kronecker symbol and %(α)
f1...fn

> 0 does not depend on i.

In [12, §5.1] this fact was established for α = 0. However, the proof
given in [12] and based on the well-known Schur lemma (see, for example,
[14, Ch. II, §3]) remains valid in the more general case of α > −1. So we
omit the proof of Lemma 1.1.

Lemma 1.2. Let n ≥ 1 and α > −1.

(i) For arbitrary integers f1 ≥ . . . ≥ fn ≥ 0,

(1.30) q(f1, . . . , fn)%(α)
f1...fn

=
∫

Rn,n

χf1...fn
(ZZ∗)[det(I(n) − ZZ∗)]α dµn,n(Z).

(ii) For arbitrary integers f1 ≥ . . . ≥ fn ≥ 0, g1 ≥ . . . ≥ gn ≥ 0 and for
Z ∈Mn,n we have

(1.31)
∫

Rn,n

χf1...fn
(ZZ∗)χg1...gn

(ZZ∗)[det(I(n) − ZZ∗)]α dµn,n(Z)

=
{

0, (f1, . . . , fn) 6= (g1, . . . , gn),
%

(α)
f1...fn

χf1...fn
(ZZ∗), (f1, . . . , fn) = (g1, . . . , gn).

P r o o f. Lemma 1.1 gives, for 1 ≤ i ≤ q(f1, . . . , fn),

(1.32)
∫

Rn,n

|ψ(i)
f1...fn

(Z)|2[det(I(n) − ZZ∗)]α dµn,n(Z) = %
(α)
f1...fn

.
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This together with (1.28) establishes (1.30), and (1.31) follows immediately
from (1.27)–(1.29).

We now turn to the computation of the explicit value of the constant
%

(α)
f1...fn

. For α = 0 it was computed in [12, §5.2]. The general case of α > −1
turns out to be much more complicated. The computation is essentially
based on the following non-trivial fact established in [13]:

Theorem 1.1. For Re lk > −1 (1 ≤ k ≤ n) and Reα > −1,

(1.33) det |B(li + j, α+ 1)|ni,j=1 ≡
n∏
k=1

Γ (lk+1)Γ (α+1)
Γ (lk+n+1+α)

D(l1, . . . , ln)Pn(α),

where Pn(α), α ∈ C, is a polynomial of degree ≤ n(n− 1)/2.

R e m a r k 1.1. Here B and Γ denote the well-known Euler functions. In
[13] the polynomial Pn is written in an explicit form. For α = 0 we obtain
det |(li + j)−1|ni,j=1 on the left hand side of (1.33), which is a special case of
the Cauchy determinant.

We need the following

Lemma 1.3. Let α, a and {lk}nk=1, {mk}nk=1 be arbitrary complex num-
bers which satisfy

(1.34) Reα > −1, Re(li +mj + a) > −1, 1 ≤ i, j ≤ n.
Then

I :=
1∫

0

. . .
1∫

0

det |λlij |
n
i,j=1 · det |λmi

j |
n
i,j=1(1.35)

×
n∏
k=1

λak(1− λk)α dλ1 . . . dλn

= n! det |B(li +mj + a+ 1, α+ 1)|ni,j=1.

P r o o f. In view of (1.1),

det |λlij |
n
i,j=1 · det|λmi

j |
n
i,j=1(1.36)

=
∑
j

δj1...jnλ
l1
j1
. . . λlnjn

∑
s

δs1...sn
λ
ms1
1 . . . λ

msn
n

=
∑
j

λl1j1 . . . λ
ln
jn

∑
s

δsj1 ...sjn
λ
msj1
j1

. . . λ
msjn
jn

=
∑
j

λl1j1 . . . λ
ln
jn

∑
k

δk1...knλ
mk1
j1

. . . λ
mkn
jn

=
∑
j

∑
k

δk1...knλ
l1+mk1
j1

. . . λ
ln+mkn
jn

.
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Inserting (1.36) into the integral I, we get

I =
∑
j

∑
k

δk1...kn

1∫
0

. . .
1∫

0

λ
l1+mk1+a

j1
. . . λ

ln+mkn +a
jn

(1.37)

× (1− λj1)α . . . (1− λjn)α dλ1 . . . dλn

=
∑
j

∑
k

δk1...knB(l1 +mk1 + a+ 1, α+ 1)

× . . .×B(ln +mkn
+ a+ 1, α+ 1)

= n! det |B(li +mj + a+ 1, α+ 1)|ni,j=1.

R e m a r k 1.2. In fact, we have repeated the proof of Theorem 5.2.1 of
[12], where (1.35) was established for α = 0.

Setting in (1.35), a = 0, mk = n − k (1 ≤ k ≤ n), we get, in view of
(1.16), (1.17) and (1.33), the following assertion.

Lemma 1.4. If Reα > −1 and Re lk > −1 (1 ≤ k ≤ n), then

(1.38)
1∫

0

. . .
1∫

0

det |λlij |
n
i,j=1 ·D(λ1, . . . , λn)

n∏
k=1

(1− λk)α dλ1 . . . dλn

= n!(−1)n(n−1)/2
n∏
k=1

Γ (lk + 1)Γ (α+ 1)
Γ (lk + n+ 1 + α)

D(l1, . . . , ln)Pn(α).

The final result of this section is

Lemma 1.5. Suppose that α > −1, f1 ≥ . . . ≥ fn ≥ 0 are arbitrary
integers and set li = fi + n− i (1 ≤ i ≤ n). Then

(1.39) q(f1, . . . , fn)%(α)
f1...fn

= 2−n
2
ωnω

′
n(−1)n(n−1)/2

n∏
i=1

Γ (li + 1)Γ (α+ 1)
Γ (li + n+ 1 + α)

×D(l1, . . . , ln)Pn(α).

P r o o f. Introducing the polar coordinates in the right hand side of (1.30),
we get, in view of (1.21) and (1.25),

q(f1, . . . , fn)%(α)
f1...fn

(1.40)

= ωnω
′
n

1∫
0

dλ1

λ1∫
0

dλ2 . . .

λn−1∫
0

dλn χf1...fn([λ1, . . . , λn])

×
n∏
k=1

(1− λk)α2−n
2
D2(λ1, . . . , λn)
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= 2−n
2
ωnω

′
n

1∫
0

dλ1

λ1∫
0

dλ2 . . .

λn−1∫
0

dλn

n∏
k=1

(1− λk)α

×Mf1,...,fn
(λ1, . . . , λn)D(λ1, . . . , λn)

=
2−n

2
ωnω

′
n

n!

1∫
0

. . .
1∫

0

det |λfi+n−i
j |ni,j=1D(λ1, . . . , λn)

×
n∏
k=1

(1− λk)α dλ1 . . . dλn.

Combining (1.40) with (1.38) and taking into account the definition of li,
we obtain (1.39).

2. Computation of the main integral

2.1. We begin with some new notations and auxiliary facts.
Let a and b be positive. We write a ≈ b if the ratio a/b is bounded from

above as well as from below by fixed positive numbers. For example, the
Euler Γ function admits the following well-known asymptotic estimate: if
µ = µ1 + iµ2 ∈ C, then

(2.1) |Γ (µ+R)| ≈ Rµ1−1/2+R e−R

as R→∞ (i.e. for R0 ≤ R <∞).
Further, for k ≥ 1 we denote by Gk the set of all matrices A ∈Mk,k with

eigenvalues less than 1 in modulus. It is not difficult to verify that Gk is a
complete circular domain in Mk,k. This means that if A ∈ Gk and α ∈ C,
|α| ≤ 1, then αA ∈ Gk. In particular, Gk is starlike with respect to the
null-matrix 0 ∈ Mk,k; consequently, Gk is simply connected. Furthermore,
we have:

• if A ∈Mk,k, then A ∈ Gk ⇔ A∗ ∈ Gk;
• if A ∈Mk,k and X ∈M∗k,k, then A ∈ Gk ⇔ XAX−1 ∈ Gk.

Also, Rk,k ⊂ Gk for k ≥ 1. If m,n ≥ 1, then

(2.2) ZZ∗ ∈ Rm,m ⊂ Gm and ZZ∗ ∈ Rm,m ⊂ Gm
for Z ∈ Rm,n, Z ∈ Rm,n (closure in Mm,n).

Next, it is easy to see that det(I(n) −A) 6= 0 for A ∈ Gn.
Since Gn ⊂Mn,n is simply connected, there exists a unique holomorphic

function ϕ : Gn → C which satisfies

(2.3) exp{ϕ(A)} = det(I(n) −A), A ∈ Gn, ϕ(0) = 0.

We write ϕ(A) = ln det(I(n) −A), A ∈ Gn. Then for every β ∈ C we define

(2.4) [det(I(n) −A)]β := exp{β ln det(I(n) −A)}, A ∈ Gn.
One can easily verify the following assertions:



206 A. H. Karapetyan

• if A = [λ1, . . . , λn], then A ∈ Gn ⇔ |λi| < 1 (1 ≤ i ≤ n); moreover,

ln det(I(n) −A) =
n∑
i=1

ln(1− λi),(2.5)

[det(I(n) −A)]β =
n∏
i=1

(1− λi)β , ∀β ∈ C;(2.6)

• if A ∈ Gn, then

ln det(I(n) −A∗) = ln det(I(n) −A),(2.7)

[det(I(n) −A∗)]β = [det(I(n) −A)]β , ∀β ∈ R,(2.8)
Re[ln det(I(n) −A)] = ln |det(I(n) −A)|,(2.9)
|[det(I(n) −A)]β | = |det(I(n) −A)|β , ∀β ∈ R.(2.10)

Finally, we shall require the following important fact established in
[12, Theorem 1.2.5 and §5.3]. Let n ≥ 1, Re % > 0 and set

(2.11) a%l = Γ (%+ l)/(Γ (%)Γ (l + 1)), l = 0, 1, 2, . . .

Then

(2.12) [det(I(n) −A)]−(%+n−1)

= C%
∑

l1>...>ln≥0

a%l1 . . . a
%
ln
N(f1, . . . , fn)χf1...fn

(A), A ∈ Gn,

where C% = (a%0a
%
1 . . . a

%
n−1)−1 and li = fi + n− i (1 ≤ i ≤ n).

2.2. For m,n ≥ 1 and t > −1, c ∈ R we consider the integral

(2.13) J tm,n,c(Z)

≡
∫

Rm,n

[det(I(m) − ZZ∗)]t

|det(I(m) −ZZ∗)|m+n+t+c
dµm,n(Z), Z ∈ Rm,n.

The behaviour of this integral is described by

Theorem 2.1. For m,n ≥ 1, t > −1 and c > min{m,n} − 1,

(2.14) J tm,n,c(Z) ≈ [det(I(m) −ZZ∗)]−c, Z ∈ Rm,n.

P r o o f. We break up the proof into three steps.

S t e p 1. First we establish (2.14) in the case m = n, when t > −1,
c > n− 1 and

(2.15) J tn,n,c(Z) =
∫

Rn,n

[det(I(n) − ZZ∗)]t

|det(I(n) −ZZ∗)|2n+t+c
dµn,n(Z).

Notice that
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(2.16) |det(I(n) −ZZ∗)|−(2n+t+c)

= [det(I(n) −ZZ∗)]−(n+(t+c)/2)

× [det(I(n) − ZZ∗)]−(n+(t+c)/2), Z, Z ∈ Rn,n.

Using (2.12) and (2.2) we obtain the expansions

(2.17) [det(I(n) −ZZ∗)]−(n+(t+c)/2)

= C%
∑

l1>...>ln≥0

a%l1 . . . a
%
ln
N(f1, . . . , fn)χf1...fn(ZZ∗),

Z, Z ∈ Rn,n,
(2.18) [det(I(n) − ZZ∗)]−(n+(t+c)/2)

= C%
∑

l1>...>ln≥0

a%l1 . . . a
%
ln
N(f1, . . . , fn)χf1...fn

(ZZ∗), Z, Z ∈ Rn,n.

Note that in both (2.17) and (2.18), % = 1+(t+c)/2 and li = fi+n− i (1 ≤
i ≤ n). Combining (2.15)–(2.18) with (1.31), we see that

(2.19) J tn,n,c(Z) =

C2
%

∑
l1>...>ln≥0

[a%l1 . . . a
%
ln

]2N2(f1, . . . , fn)%(t)
f1...fn

χf1...fn
(ZZ∗), Z ∈ Rn,n.

Further, by (1.39) and (1.18) (together with the asymptotic formula (2.1))
we have

(2.20) N(f1, . . . , fn)%(t)
f1...fn

≈
n∏
i=1

1
(li + 1)n+t

.

Furthermore, from (2.11) it follows that

(2.21) a%li ≈ (li + 1)%−1 = (li + 1)(t+c)/2 (1 ≤ i ≤ n).

Using all these formulas, we obtain

(2.22) J tn,n,c(Z)

≈
∑

l1>...>ln≥0

N(f1, . . . , fn)
n∏
i=1

1
(li + 1)n−c

χf1...fn
(ZZ∗)

≈
∑

l1>...>ln≥0

N(f1, . . . , fn)
n∏
i=1

Γ (li + c− n+ 1)
Γ (li + 1)Γ (c− n+ 1)

χf1...fn(ZZ∗),

Z ∈ Rn,n.

It remains to note that (2.12) and (2.22) yield (2.14) for m = n.
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S t e p 2. Assume that m > n ≥ 1; then t > −1 and c > n − 1. First
note that for all U ∈ Um and V ∈ Un,

(2.23) J tm,n,c(UZV ) = J tm,n,c(Z), Z ∈ Rm,n.

Further, for every Z ∈ Rm,n there exists U ∈ Um such that

(2.24) W := UZ ∈ Rm,n
has the form

(2.25) W =
(
W1

0

)
, W1 ∈ Rm−1,n, 0 ∈ Cn,

and, moreover,

(2.26) det(I(m) −ZZ∗) = det(I(m−1) −W1W
∗
1 ).

Consequently, by (1.13) we have

(2.27) J tm,n,c(Z) = J tm,n,c(W )

=
∫

Rm,n

[det(I(m) − ZZ∗)]t

|det(I(m−1) −W1Z∗1 )|m+n+t+c
dµm,n(Z)

=
∫

Rm−1,n

[det(I(m−1) − Z1Z
∗
1 )]t+1

|det(I(m−1) −W1Z∗1 )|m+n+t+c
dµm−1,n(Z1)

×
∫

Bn

(1− ωω∗)t dµ1,n(ω)

= J t+1
m−1,n,c(W1)

Γ (t+ 1)πn

Γ (t+ n+ 1)
.

Thus, we have established the following fact: if m > n ≥ 1, t > −1 and
c > n− 1, then for every Z ∈ Rm,n there exists W1 ∈ Rm−1,n such that

(2.28) det(I(m) −ZZ∗) = det(I(m−1) −W1W
∗
1 ),

(2.29) J tm,n,c(Z) = J t+1
m−1,n,c(W1)

Γ (t+ 1)
Γ (t+ n+ 1)

πn.

It follows from (2.28) and (2.29) that one can reduce the parameter m step
by step and thus reduce the problem to the case m = n ≥ 1 examined above.

S t e p 3. The case n > m ≥ 1 is considered in a similar way, except that
we now use the integral formula (1.10) instead of (1.13).

Thus, the theorem is proved.

R e m a r k 2.1. For m = 1 the estimate (2.14) was originally obtained
in [11], where the case of arbitrary c ∈ R was considered.
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R e m a r k 2.2. The results of [16] give

(2.30) J tm,n,c(Z) ≡ const[det(I(m) −ZZ∗)]−c, Z ∈ Rm,n,

where m,n ≥ 1, t ≥ 0 and c = t+m+ n. Of course, (2.30) is more explicit
than (2.14), but we consider the conditions t ≥ 0 and c = t + m + n to be
rather restrictive.

3. Bounded projections in Lpα(Rm,n)

3.1. Recall (see (0.14)) that for m,n ≥ 1 and Reβ > −1 we have defined
the integral operator T βm,n acting on functions f(Z), Z ∈ Rm,n. The asser-
tion of Theorem D can be reformulated as follows: if m,n ≥ 1, 1 ≤ p <∞,
α > −1 and the complex number β satisfies Reβ > (α + 1)/p − 1 for
1 < p <∞ and Reβ ≥ α for p = 1, then T βm,n is a reproducing operator for
the class Hp

α(Rm,n). As an important addition to Theorem D we have

Theorem 3.1. Suppose that m,n ≥ 1, 1 ≤ p <∞, α > (p−1) min{m,n}
− p and β is a complex number satisfying

(3.1) Reβ >
α+ min{m,n}

p
− 1.

Then T βm,n is a bounded projection of Lpα(Rm,n) onto Hp
α(Rm,n).

P r o o f. Since the assumptions of Theorem 3.1 imply those of Theorem D,
it suffices to show that T βm,n is bounded from Lpα(Rm,n) into Hp

α(Rm,n).
Furthermore, in view of [8, Corollary 3.1 to Lemma 3.1], T βm,n(f)(Z) is
holomorphic in Z ∈ Rm,n, for every f ∈ Lpα(Rm,n). Consequently, to prove
Theorem 3.1 we need to establish an estimate of the form

(3.2) ‖T βm,n(f)‖p,α ≤ const ‖f‖p,α, ∀f ∈ Lpα(Rm,n),

where the constant may depend on m,n and p, α, β, but not on f∈Lpα(Rm,n).
Note first that in view of Lemma 1.2 of [10],

(3.3) |T βm,n(f)(Z)| ≤ Aβm,n
∫

Rm,n

|f(Z)|[det(I(m) − ZZ∗)]Re β

|det(I(m) −ZZ∗)|m+n+Re β
dµm,n(Z)

Z ∈ Rm,n,

where

(3.4) Aβm,n = |cm,n(β)| exp{πm|Imβ|}.

First we assume p = 1. Then
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(3.5) ‖T βm,n(f)‖1,α

=
∫

Rm,n

|T βm,n(f)(Z)|[det(I(m) −ZZ∗)]α dµm,n(Z)

≤ Aβm,n
∫

Rm,n

[det(I(m) −ZZ∗)]α

×
∫

Rm,n

|f(Z)|[det(I(m) − ZZ∗)]Re β

|det(I(m) −ZZ∗)|m+n+Re β
dµm,n(Z) dµm,n(Z)

≤ Aβm,n
∫

Rm,n

|f(Z)|[det(I(m) − ZZ∗)]Re βJαm,n,Re β−α(Z) dµm,n(Z).

Further, for p = 1 the assumptions of the theorem can be written as

(3.6) α > −1, Reβ > α+ min{m,n} − 1.

In view of Theorem 2.1, (3.5) gives

(3.7) ‖T βm,n(f)‖1,α ≤ const
∫

Rm,n

|f(Z)|[det(I(m) − ZZ∗)]Re β

× [det(I(m) − ZZ∗)]−(Re β−α)dµm,n(Z) = const ‖f‖1,α.
So Theorem 3.1 is established for p = 1.

Suppose now that 1 < p <∞ and put q = p/(p− 1) ∈ (1,∞). Set

(3.8) dν(Z) := [det(I(m) − ZZ∗)]αdµm,n(Z), Z ∈ Rm,n,

(3.9) Q(Z, Z) :=
[det(I(m) − ZZ∗)]Re β−α

|det(I(m) −ZZ∗)|m+n+Re β
, Z, Z ∈ Rm,n.

Now, (3.3) can be written as

(3.10) |T βm,n(f)(Z)| ≤ Aβm,n
∫

Rm,n

|f(Z)|Q(Z, Z) dν(Z), Z ∈ Rm,n.

Hence, to prove (3.2) we have to show the boundedness of the integral op-
erator

(3.11) ψ(Z)→
∫

Rm,n

ψ(Z)Q(Z, Z) dν(Z), Z ∈ Rm,n,

in the space Lp(Rm,n; dν)=Lpα(Rm,n). For this we invoke the Forelli–Rudin
lemma [11]. It asserts that the operator (3.11) is bounded provided that there
exists a positive measurable function g(Z), Z ∈ Rm,n, such that∫

Rm,n

Q(Z, Z)[g(Z)]qdν(Z) ≤ const[g(Z)]q, Z ∈ Rm,n,(3.12)
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Rm,n

Q(Z, Z)[g(Z)]pdν(Z) ≤ const [g(Z)]p, Z ∈ Rm,n.(3.13)

In view of (3.8) and (3.9), these inequalities can be written as

(3.14)
∫

Rm,n

[g(Z)]q[det(I(m) − ZZ∗)]Re β

|det(I(m) −ZZ∗)|m+n+Re β
dµm,n(Z)

≤ const [g(Z)]q, Z ∈ Rm,n,

(3.15)
∫

Rm,n

[g(Z)]p[det(I(m) −ZZ∗)]α

|det(I(m) −ZZ∗)|m+n+Re β
[det(I(m)−ZZ∗)]Re β−α dµm,n(Z)

≤ const [g(Z)]p, Z ∈ Rm,n.

We set

(3.16) g(Z) = [det(I(m) −ZZ∗)]−(δ+(min{m,n}−1)/q), Z ∈ Rm,n,

where δ ∈ (0,∞). By Theorem 2.1, the two inequalities hold under the
following conditions:

(3.17)

Reβ − (qδ + min{m,n} − 1) > −1,

α− p
(
δ +

min{m,n} − 1
q

)
> −1,

Reβ − α+ p

(
δ +

min{m,n} − 1
q

)
> min{m,n} − 1.

It is easy to verify that in view of our assumptions such a choice of δ ∈ (0,∞)
is possible, so the case 1 < p < ∞ is also settled. Thus, Theorem 3.1 is
established.

R e m a r k 3.1. For m= 1, this theorem coincides with the assertion (ii)
of Theorem C. Furthermore, for m,n ≥ 1 and for the particular values p = 1,
α = 0, β = m+ n, Theorem 3.1 follows from the results of [16] on bounded
projections in L1-spaces on arbitrary bounded symmetric domains.

3.2. For p = 2, Theorem 3.1 has an important supplement. But first we
need one more notation. If m,n ≥ 1 and α > −1, then for all f, g∈L2

α(Rm,n)
we define

(3.18) {f, g}α :=
∫

Rm,n

f(Z)g(Z) [det(I(m) − ZZ∗)]α dµm,n(Z).

Clearly, {·, ·}α is an inner product in L2
α(Rm,n). Moreover, with this inner

product L2
α(Rm,n) is a Hilbert space and H2

α(Rm,n) is its closed subspace.
Notice also that {f, f}α = ‖f‖22,α,∀f ∈ L2

α(Rm,n). For f, g ∈ L2
α(Rm,n) we

write f ⊥ g if {f, g}α = 0.
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Theorem 3.2. If m,n ≥ 1 and α > −1, then Tαm,n acts in L2
α(Rm,n) as

the orthogonal projection onto H2
α(Rm,n).

P r o o f. Fix f ∈ L2
α(Rm,n). Then we have the representation

(3.19) f = f1 + f2,

where f1 ∈ H2
α(Rm,n) and f2⊥H2

α(Rm,n), i.e.

(3.20) f2⊥ϕ, ∀ϕ ∈ H2
α(Rm,n).

Further, in view of Theorem D (for p = 2, α > −1, β = α) we get

(3.21) Tαm,n(f) = Tαm,n(f1) + Tαm,n(f2) = f1 + Tαm,n(f2).

Consequently, it suffices to show that

(3.22) Tαm,n(f2)(Z) ≡ 0, Z ∈ Rm,n.
Note that

(3.23) Tαm,n(f2)(Z) = {f2, ϕZ}α, Z ∈ Rm,n,
where

(3.24) ϕZ(Z) := cm,n(α)[det(I(m) − ZZ∗)]−(m+n+α), Z ∈ Rm,n.
In view of Proposition 2.2(c) of [8], for fixed Z ∈ Rm,n the function ϕZ is
continuous on Rm,n and holomorphic in Rm,n. Hence, ϕZ ∈ H2

α(Rm,n). It
remains to note that (3.22) follows from (3.23) and (3.20).

R e m a r k 3.2. For α = 0 this result coincides with the assertion (ii) of
Theorem B. Note also that Theorem 3.2 is a corollary of Theorem 3.1 only
for α > min{m,n} − 2.

4. Integral representations and inequalities for pluriharmonic
functions

4.1. Let Ω be an arbitrary open set in Ck (k ≥ 1). We denote by H(Ω)
the space of all holomorphic functions inΩ. A function g(ω), ω ∈ Ω, is called
antiholomorphic if the function f(ω) := g(ω) is holomorphic. The space of
all antiholomorphic functions in Ω will be denoted by H(Ω). Further, a
complex function f ∈ C2(Ω) is said to be pluriharmonic provided that its
restriction to an arbitrary complex line is an ordinary harmonic function
of one complex variable. It is well known that this condition can also be
written as

(4.1)
∂2f

∂ωj∂ωi
≡ 0, ω = (ω1, . . . , ωk) ∈ Ω (1 ≤ j, i ≤ k).

The space of all pluriharmonic functions in Ω will be denoted by h(Ω). Note
the inclusion

(4.2) H(Ω) +H(Ω) ⊂ h(Ω).
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Moreover, if f ∈ h(Ω), then f ∈ h(Ω), Re f ∈ h(Ω) and Im f ∈ h(Ω). In
particular, the real part of any holomorphic function in Ω is a real pluri-
harmonic function. The natural question arises: is every real pluriharmonic
function the real part of some holomorphic function? In general, this is not
so for every open set Ω ⊂ Ck. However, for convex domains the answer is
affirmative. In other words, for every convex domain Ω ⊂ Ck real plurihar-
monic functions coincide with real parts of holomorphic functions. Hence,
for such domains we have (compare with (4.2))

(4.3) H(Ω) +H(Ω) = h(Ω).

Finally, observe that Rm,n ⊂Mm,n
∼= Cmn is convex.

4.2. Let m,n ≥ 1 and 1 ≤ p < ∞, α > −1. Then together with the
space Hp

α(Rm,n) = H(Rm,n) ∩ Lpα(Rm,n) we also consider the spaces

(4.4)
Hp
α(Rm,n) = H(Rm,n) ∩ Lpα(Rm,n),
hpα(Rm,n) = h(Rm,n) ∩ Lpα(Rm,n).

It is easy to see that

(4.5) Hp
α(Rm,n) +Hp

α(Rm,n) ⊂ hpα(Rm,n).

Further, let Reβ > −1. Then apart from the operator

(4.6) T βm,n(f)(Z)

= cm,n(β)
∫

Rm,n

f(Z)[ det(I(m) − ZZ∗)]β

[det(I(m) −ZZ∗)]m+n+β
dµm,n(Z), Z ∈ Rm,n,

which was already considered, we introduce the following integral operator:

(4.7) Pβm,n(f)(Z)

= cm,n(β)
∫

Rm,n

f(Z)[det(I(m) − ZZ∗)]β

×
{

1
[det(I(m) −ZZ∗)]m+n+β

+
1

[det(I(m) − ZZ∗)]m+n+β
− 1
}
dµm,n(Z), Z ∈ Rm,n.

The operators (4.6) and (4.7) are connected by the following simple (but
useful) relation:

(4.8) Pβm,n(f)(Z) ≡ T βm,n(f)(Z) + T β̄m,n(f)(Z)− T βm,n(f)(0), Z ∈ Rm,n.
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Lemma 4.1. Let m,n ≥ 1, 1 ≤ p < ∞, α > −1 and f ∈ Lpα(Rm,n).
Then

(i) For fixed Z ∈ Rm,n, both T βm,n(f)(Z) and Pβm,n(f)(Z) (as functions
of β) are holomorphic in the domain {Reβ > (α+ 1)/p− 1} if 1 < p <∞,
and are holomorphic in {Reβ > α} and continuous in {Reβ ≥ α} if p = 1.

(ii) If Reβ > (α + 1)/p − 1 (for 1 < p < ∞) and Reβ ≥ α (for p
= 1), then T βm,n(f)(Z) is holomorphic (in Z) in Rm,n, and Pβm,n(f)(Z) is
pluriharmonic (in Z) in Rm,n.

P r o o f. For T βm,n the assertions of the lemma were established in [8,
Corollaries 3.1 and 3.2 of Lemma 3.1]. The case of Pβm,n is similar.

The following main theorem holds:

Theorem 4.1. Let m,n ≥ 1. Then

(i) If 1 ≤ p <∞, α > −1 and Reβ > (α+1)/p−1 for 1 < p <∞, and
Reβ ≥ α for p = 1, then for each u ∈ hpα(Rm,n) we have a representation

(4.9) u(Z) = Pβm,n(u)(Z), Z ∈ Rm,n.
(ii) If 1 ≤ p <∞, α > (p− 1) min{m,n} − p and

(4.10) Reβ >
α+ min{m,n}

p
− 1,

then Pβm,n is a bounded projection of Lpα(Rm,n) onto hpα(Rm,n).
(iii) If α > −1, then Pαm,n is the orthogonal projection of L2

α(Rm,n) onto
h2
α(Rm,n).

P r o o f. (i) Evidently, we can suppose that u ∈ hpα(Rm,n) is real. Fur-
thermore, in view of Lemma 4.1(i) and the uniqueness theorem (for analytic
functions of one complex variable) we can additionally assume that β > 0.
Since Rm,n is convex, we have u = Re f , where f ∈ H(Rm,n). Note that
f need not be of class Hp

α(Rm,n), in spite of the condition u ∈ hpα(Rm,n).
Nevertheless, for each r ∈ (0, 1) we have

(4.11) fr(Z) := f(rZ) ∈ Hp
α(Rm,n).

Hence, Theorem D yields

(4.12) fr(Z) ≡ T βm,n(fr)(Z), Z ∈ Rm,n (0 < r < 1),

(4.13) fr(0) ≡ T βm,n(fr)(Z), Z ∈ Rm,n (0 < r < 1).

Summing (4.12) and (4.13), we get

(4.14) fr(Z) + fr(0) = 2T βm,n(ur)(Z), Z ∈ Rm,n (0 < r < 1).

Then set Z = 0 in (4.14):

(4.15) ur(0) = T βm,n(ur)(0) (0 < r < 1).
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Further, since β is real, (4.8) leads to

(4.16) Pβm,n(ur)(Z) ≡ T βm,n(ur)(Z) + T βm,n(ur)(Z)− T βm,n(ur)(0),
Z ∈ Rm,n (0 < r < 1).

Taking real parts in (4.14), we obtain

(4.17) ur(Z) + ur(0) = 2 ReT βm,n(ur)(Z), Z ∈ Rm,n (0 < r < 1).

Using all these formulas, we get

(4.18) ur(Z) = Pβm,n(ur)(Z), Z ∈ Rm,n (0 < r < 1).

Now note (see (4.7)) that (4.18) can be written as follows:

u(rZ) = cm,n(β)r−2m(n+β)
∫

rRm,n

u(Z)[det(r2I(m) − ZZ∗)]β(4.19)

×
{

1
[det(I(m) −Z(Z∗/r))]m+n+β

+
1

[det(I(m) − (Z/r)Z∗)]m+n+β
− 1
}
dµm,n(Z),

Z ∈ Rm,n (0 < r < 1),

where

rRm,n = {rZ : Z ∈ Rm,n}(4.20)

= {Z ∈Mm,n : r2I(m) − ZZ∗ > 0} (0 < r < 1).

Letting r to tend to 1 in (4.19), we get (4.9) in view of the Lebesgue domi-
nated convergence theorem.

Further, Theorem 3.1 together with Lemma 4.1(ii) and (4.8) give (ii). The
proof of (iii) is merely a repetition of that of Theorem 3.2. Thus, Theorem 4.1
is proved.

R e m a r k 4.1. The operator Pβ1,n was considered in [1]. There it was also
established that for α > −1, Pα1,n is the orthogonal projection of L2

α(R1,n) =
L2
α(Bn) onto h2

α(R1,n) = h2
α(Bn).

4.3. We now give some applications of the main theorems established
above.

Theorem 4.2. (a) If 1 ≤ p <∞ and α > (p− 1) min{m,n} − p, then

(4.21) hpα(Rm,n) = Hp
α(Rm,n) +Hp

α(Rm,n).

(b) If α > −1, then

(4.22) h2
α(Rm,n) = H2

α(Rm,n) +H2
α(Rm,n).
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P r o o f. We only prove (a) as (b) can be established in the same way.
In view of (4.5), it suffices to show that

(4.23) hpα(Rm,n) ⊂ Hp
α(Rm,n) +Hp

α(Rm,n).

Fix β ∈ R such that β > (α + min{m,n})/p − 1. By Theorem 4.1(i) and
(4.8) we get

(4.24) u(Z) ≡ T βm,n(u)(Z) + T βm,n(u)(Z)− T βm,n(u)(0), Z ∈ Rm,n,
∀u ∈ hpα(Rm,n).

According to Theorem 3.1,

(4.25) T βm,n(u) ∈ Hp
α(Rm,n), T βm,n(u) ∈ Hp

α(Rm,n).

Combining (4.24) with (4.25), we see that u ∈ Hp
α(Rm,n)+Hp

α(Rm,n), which
completes the proof.

Theorem 4.3. Assume that either

(a) 1 ≤ p <∞, α > (p− 1) min{m,n} − p and α ≥ 0, or
(b) p = 2, α ≥ 0.

Then

(4.26) ‖f‖p,α ≤ C‖u‖p,α, C = C(p, α) ∈ (0,∞),

for all f = u+ iv ∈ H(Rm,n) with v(0) = 0.

P r o o f. We first assume that f = u+ iv ∈ Hp
α(Rm,n) and v(0) = 0. Fix

β ∈ R with

β >
α+ min{m,n}

p
− 1 (in case (a)),

β = α (in case (b)).
In view of Theorem D we have

(4.27) f(Z) ≡ T βm,n(f)(Z), u(0) ≡ T βm,n(f)(Z), Z ∈ Rm,n.
Consequently,

(4.28) f(Z) ≡ 2T βm,n(u)(Z)− u(0), Z ∈ Rm,n,
or

(4.29) f(Z) ≡ 2T βm,n(u)(Z)− T βm,n(u)(0), Z ∈ Rm,n.
From (4.29) and Theorems 3.1, 3.2 it follows that the estimate (4.26) is
valid, but under the additional hypothesis f ∈ Hp

α(Rm,n) (note that the
assumption α ≥ 0 is not used yet). If we only have f ∈ H(Rm,n), then for
r ∈ (0, 1), fr(Z) := f(rZ) ∈ Hp

α(Rm,n). Hence

(4.30) ‖fr‖p,α ≤ C(p, α)‖ur‖p,α, r ∈ (0, 1).
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This estimate can be written as follows:

(4.31)
∫

rRm,n

|f(Z)|p[det(r2I(m) − ZZ∗)]αdµm,n(Z)

≤ C̃(p, α)
∫

rRm,n

|u(Z)|p[det(r2I(m) − ZZ∗)]αdµm,n(Z).

The final step is to let r tend to 1 in (4.31). If we take into account the hy-
pothesis α ≥ 0, then an application of the Lebesgue monotone convergence
theorem makes it possible to derive the estimate (4.26) from (4.31). Thus,
Theorem 4.3 is proved.

R e m a r k 4.2. In [2] the estimates of type (4.26) were established for
rather large classes of unbounded multidimensional domains. Moreover,
there the conditions on the parameters p and α were not so restrictive as in
Theorem 4.3.

R e m a r k 4.3. For p = 1, α = 0 and under the assumption f(0)
= 0, Theorem 4.3 follows from [16], where, as mentioned earlier, the case of
arbitrary bounded symmetric domains is considered.
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Reçu par la Rédaction le 14.4.1993


