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Oscillation of a logistic equation with delay and diffusion

by Sheng Li Xie (Jinzhou) and Sui Sun Cheng (Hsinchu)

Abstract. This paper establishes oscillation theorems for a class of functional parabolic
equations which arises from logistic population models with delays and diffusion.

1. Introduction. This paper is concerned with a parabolic differential
equation with delays which can be used to model the dynamical behavior of
a population density governed by a logistic law with time delays and spatial
diffusion. Assuming a positive stationary state of the population density,
we are interested to seek conditions under which every possible evolution
oscillates about it. Similar problems have been dealt with in a few recent
studies (see e.g. [2, Chapter 6], [8, 6, 4, 7], [5, Chapter 4] and [3]). The
literature is, however, quite limited.

Let τi(t), 1 ≤ i ≤ n, be positive continuous functions defined on [0,∞)
such that τ = maxi{maxt τi(t)} < ∞. Let Ω be a bounded domain in Rm
with a smooth boundary ∂Ω and let ν be the outward unit normal vector.
As usual, let ∆ be the Laplacian:

∆ ≡ ∂2

∂x2
1

+ . . .+
∂2

∂x2
m

.

Consider the following functional parabolic differential equation:

(1)
∂u(x, t)
∂t

= d(t)∆u(x, t) + c(t)u(x, t)
{
a(t)−

n∑
i=1

bi(t)u(x, t− τi(t))
}
,

where (x, t)∈Ω×(0,∞), a(t), c(t), d(t), b1(t), . . . , bn(t) are positive, bounded
and continuous functions on [0,∞) and 0 < d0 ≤ d(t), 0 < b0 ≤ c(t)bi(t) for
some i ∈ {1, . . . , n} on [0,∞). We will consider boundary conditions of the
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form

∂u(x, t)
∂ν

= 0, (x, t) ∈ ∂Ω × (0,∞),(2)

u(x, t) = φ(x, t), (x, t) ∈ Ω × [−τ, 0],(3)

where φ(x, t) is a non-negative and non-trivial continuous function.
Existence and uniqueness theorems for solutions of (1)–(3) follow from

the existence of a unique “heat kernel” g(x, t, ξ, µ) associated with the dif-
ferential operator L[u] = ut − d(t)uxx and the boundary condition (2). By
means of this kernel (1)–(3) can be transformed into an integral equation
which is well posed and can be solved by the “method of steps”. For details,
see Kreith and Ladas [7], and [9, 1, 10]. In what follows, by a solution of (1)–
(3), we mean a function u(x, t) which is continuously differentiable on the
closure of Ω× [−τ,∞) and twice continuously differentiable on Ω× [−τ,∞).

We will further assume that there is a positive constant u∗ such that

(4)
n∑
i=1

bi(t)u∗ = a(t), t ≥ 0,

so that u(x, t) = u∗ is a stationary solution of (1).
Let u(x, t) be a real continuous function defined on Ω× [t0,∞). Suppose

there is some T ≥ t0 such that u(x, t) > 0 on Ω × [T,∞). Then u(x, t)
is said to be eventually positive. An eventually negative u(x, t) is similarly
defined. The function u(x, t) is said to be oscillatory on Ω × [t0,∞) if it
is neither eventually positive nor eventually negative. Equation (1) is said
to be oscillatory about u∗ if for every positive solution u(x, t) of (1) which
satisfies the boundary conditions (2) and (3), the function u(x, t) − u∗ is
oscillatory on Ω × [−τ,∞).

2. Non-existence criteria. We first derive a necessary condition for
the existence of a solution u(x, t) of (1) such that u(x, t)− u∗ is eventually
positive.

Lemma 1. Suppose (1)–(3) has a solution u(x, t) such that u(x, t) − u∗
is eventually positive. Then the first order delay differential inequality

(5) y′(t) ≤ −
n∑
i=1

u∗c(t)bi(t)y(t− τi(t))

has an eventually positive solution.

P r o o f. Suppose there is a positive number t1 such that u(x, t)−u∗ > 0
on Ω × [t1,∞). For convenience, let w(x, t) = u(x, t) − u∗. Then from (1)
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and (4), we have

(6)
∂w(x, t)
∂t

= d(t)∆w(x, t)− c(t)[w(x, t) + u∗]
n∑
i=1

bi(t)w(x, t− τi(t)).

Integrate both sides of (6) with respect to x over Ω to obtain

d

dt

∫
Ω

w(x, t) dx = d(t)
∫
Ω

∆w(x, t) dx(7)

− c(t)
∫
Ω

[w(x, t) + w∗]
n∑
i=1

bi(t)w(x, t− τi(t)) dx.

By the Green formula and the boundary condition (2), we obtain

(8)
∫
Ω

∆w(x, t) dx =
∫
∂Ω

∂w(x, t)
∂ν

ds = 0.

Pick a number t2 > t1 + τ . Then w(x, t) > 0 and w(x, t − τi(t)) > 0 for
(x, t) ∈ Ω × [t2,∞). In view of (7) and (8), we have

d

dt

∫
Ω

w(x, t)dx ≤ −c(t)
∫
Ω

u∗
n∑
i=1

bi(t)w(x, t− τi(t)) dx, t ≥ t2.

We have thus shown that

y(t) =
∫
Ω

w(x, t) dx, t ≥ t2,

is an eventually positive solution of (5). The proof is complete.

Next we derive a necessary condition for the existence of a positive so-
lution u(x, t) of (1) such that u(x, t)− u∗ is eventually negative.

Lemma 2. Suppose (1)–(3) has a positive solution u(x, t) such that u(x, t)
− u∗ is eventually negative. Then for any µ ∈ (0, 1), the first order delay
differential inequality

(9) y′(t) ≤ −
n∑
i=1

u∗µc(t)bi(t)y(t− τi(t))

has an eventually positive solution.

P r o o f. Suppose there is a positive number t1 such that u(x, t)−u∗ < 0
for (x, t) ∈ Ω × [t1,∞). Let

p(x, t) = ln
(
u(x, t)
u∗

)
< 0, (x, t) ∈ Ω × [t1,∞).
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We assert that

y(t) =
∫
Ω

−p(x, t) dx

is an eventually positive solution of (9). To prove this, note first that from
(1) and (4) we have

(10)
∂p(x, t)
∂t

= d(t)e−p(x,t)∆ep(x,t) + c(t)
{
a(t)−

n∑
i=1

bi(t)u∗ep(x,t−τi(t))
}

= d(t)e−p(x,t)∆ep(x,t) − u∗c(t)
n∑
i=1

bi(t){ep(x,t−τi(t)) − 1}.

Integrate the above equality with respect to x over Ω to obtain

d

dt

∫
Ω

p(x, t) dx = d(t)
∫
Ω

e−p(x,t)∆ep(x,t) dx(11)

− u∗c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t−τi(t)) − 1} dx.

Since

∂

∂ν
{e±p(x,t)} = ±e±p(x,t) ∂p(x, t)

∂ν
, (x, t) ∈ ∂Ω × [t1,∞),(12)

∂p(x, t)
∂ν

∣∣∣∣
∂Ω

=
1

u(x, t)
∂u(x, t)
∂ν

∣∣∣∣
∂Ω

= 0,(13)

and

ep(x,t)∆e−p(x,t) = |∇p(x, t)|2 −∆p(x, t), (x, t) ∈ Ω × [t1,∞),

we obtain∫
Ω

e−p(x,t)∆ep(x,t) dx =
∫
ep(x,t)∆e−p(x,t) dx(14)

=
∫
Ω

|∇p(x, t)|2 dx−
∫
Ω

∆p(x, t) dx

=
∫
Ω

|∇p(x, t)|2 dx−
∫
∂Ω

∂p(x, t)
∂ν

ds

=
∫
Ω

|∇p(x, t)|2 dx.

From (11) we also obtain
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(15)
d

dt

∫
Ω

−p(x, t) dx

= −d(t)
∫
Ω

|∇p(x, t)|2 dx+ u∗c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t−τi(t)) − 1} dx

≤ u∗c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t−τi(t)) − 1} dx.

To complete the proof, it suffices to show that for any µ ∈ (0, 1), there
is some T0 such that

ep(x,t−τi(t)) − 1 ≤ µp(x, t− τi(t)), t ≥ T0.

In order to do this, pick t2 > t1 + τ so that p(x, t) < 0 and p(x, t− τi(t)) <
0 for (x, t) ∈ Ω × [t2,∞). For (x, t) ∈ Ω × [t2,∞), consider the positive
functional V defined by

V [p](t) = u∗
∫
Ω

p(x,t)∫
0

(ey − 1) dy dx.

By (10) and (12)–(14), the derivative of V with respect to (1) satisfies

dV

dt
= u∗
∫
Ω

(ep(x,t) − 1)
∂p(x, t)
∂t

dx

= u∗d(t)
∫
Ω

∆ep(x,t) dx− u∗d(t)
∫
Ω

e−p(x,t)∆ep(x,t) dx

− (u∗)2c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t) − 1}{ep(x,t−τi(t)) − 1} dx

≤ − u∗d(t)
∫
Ω

|∇p(x, t)|2 dx

− (u∗)2c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t) − 1}{ep(x,t−τi(t)) − 1} dx.

Note that from (1),

d

dt

∫
Ω

u(x, t) dx =
∫
Ω

∂u(x, t)
∂t

dx

=
∫
Ω

d(t)∆u(x, t) dx

+
∫
Ω

u(x, t)c(t)
n∑
i=1

bi(t)(u∗ − u(x, t− τi(t))) dx
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=
∫
Ω

u(x, t)c(t)
n∑
i=1

bi(t)(u∗ − u(x, t− τi(t))) dx ≥ 0,

thus ∫
Ω

(u(x, t)− u(x, t− τi(t))) dx ≥ 0,

which implies∫
Ω

{ep(x,t) − 1}{ep(x,t−τi(t)) − 1} dx

=
∫
Ω

{ep(x,t) − 1}2 dx+
∫
Ω

{ep(x,t) − 1}{ep(x−τi(t)) − ep(x,t)} dx

=
∫
Ω

{ep(x,t) − 1}2 dx+
1

(u∗)2
∫
Ω

(u(x, t)− u∗)(u(x, t− τi(t))− u(x, t)) dx

≥
∫
Ω

{ep(x,t) − 1}2 dx,

by the first mean value theorem for integrals. As a consequence, we see that
dV

dt
≤ − u∗d(t)

∫
Ω

|∇p(x, t)|2 dx(16)

− (u∗)2c(t)
n∑
i=1

bi(t)
∫
Ω

{ep(x,t) − 1}2 dx

= − u∗d(t)
∫
Ω

|∇p(x, t)|2 dx

− (u∗)2c(t)
n∑
i=1

bi(t)
∫
Ω

{u(x, t)− u∗}2 dx

for t ≥ t2. Integrate both sides of (16), and recall the assumptions that
0 < d0 ≤ d(t) and 0 < b0 ≤ bi(t)c(t), to obtain

V (t2) ≥ V (t) + u∗d0

t∫
t2

∫
Ω

|∇p(x, t)|2 dx dy

+ (u∗)2b0
t∫

t2

∫
Ω

{u(x, y)− u∗}2 dx dy.

Hence, by writing {
∫
Ω
| · |2 dx}1/2 = ‖ · ‖, we have

∞∫
t2

∫
Ω

{u(x, y)− u∗}2 dx dy =
∞∫
t2

‖u(x, y)− u∗‖2 dy <∞
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and
∞∫
t2

∫
Ω

|∇p(x, y)|2 dx dy =
∞∫
t2

‖∇p(x, y)‖2 dy <∞,

so that ‖u(x, y)−u∗‖ ∈ L1(0,∞) and ‖∇p(x, t)‖2 ∈ L1(0,∞). But from the
assumption that u(x, t) < u∗ for (x, t) ∈ Ω × [t1,∞) we have

1
(u∗)2

‖∇u(x, t)‖2 ≤ ‖∇p(x, t)‖2,

so that ‖∇u(x, t)‖2 ∈ L1(0,∞). Now

(17)
d

dt
‖∇u(x, t)‖2

=
(
∂u(x, t)
∂t

,−∆u(x, t)
)

= − d(t)‖∆u(x, t)‖2

+
(
∇
{
c(t)u(x, t)

[
a(t)−

n∑
i=1

bi(t)u(x, t− τi(t))
]}
,∇u(x, t)

)
≤ − d0‖∆u(x, t)‖2 + ca‖∇u(x, t)‖2

+ u∗c

n∑
i=1

bi‖∇u(x, t− τi(t))‖‖∇u(x, t)‖,

where |a(t)| ≤ a, |c(t)| ≤ c, |bi(t)| ≤ bi for t ≥ 0 (recall that a(t), c(t) and
bi(t) are bounded).

Integrate both sides of (17) from t = t2 to t = T > t2 to obtain

‖∇u(x, T )‖2 − ‖∇u(x, t2)‖+ d0

T∫
t2

‖∆u(x, t)‖2 dt(18)

≤ ca
T∫
t2

‖∇u(x, t)‖2 dt+ u∗c

n∑
i=1

bi

T∫
t2

‖∇u(x, t− τi(t))‖‖∇u(x, t)‖ dt

≤ ca
T∫
t2

‖∇u(x, t)‖2 dt

+ u∗c

n∑
i=1

bi

{ T∫
t2

‖∇u(x, t− τi(t))‖2 dt
}1/2{ T∫

t2

‖∇u(x, t)‖2 dt
}1/2

.

We may now infer from ‖∇u(x, t)‖2 ∈ L1(0,∞) and the above inequality
that ‖∆u(x, t)‖2 ∈ L1(0,∞) and ‖∇u(x, t)‖2 is bounded on (t2,∞).
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In a similar fashion, we obtain

T∫
t2

∣∣∣∣ ddt‖∇u(x, t)‖2
∣∣∣∣ dt

≤ d0

T∫
t2

‖∆u(x, t)‖2 dt+ ca
T∫
t2

‖∇u(x, t)‖2 dt

+ u∗c

n∑
i=1

bi

{ T∫
t2

‖∇u(x, t− τi(t))‖2 dt
}1/2{ T∫

t2

‖∇u(x, t)‖2 dt
}1/2

.

Since ‖∇u(x, t)‖2 ∈ L1(0,∞) and ‖∆u(x, t)‖2 ∈ L1(0,∞), we may deduce
the fact that (d/dt)‖∇u(x, t)‖2 ∈ L1(0,∞).

We now make a few more deductions. First, from ‖∇u(x, t)‖2 ∈ L1(0,∞)
and (d/dt)‖∇u(x, t)‖2 ∈ L1(0,∞), by integrating (d/dt)‖∇u(x, t)‖2 from
a large but fixed number to infinity, we see that as t tends to infinity,
‖∇u(x, t)‖2 tends to a constant which must be zero, i.e.

(19) lim
t→∞

∫
Ω

|∇u(x, t)|2 dt = lim
t→∞

‖∇u(x, t)‖2 = 0.

Furthermore, since

1
2
d

dt
‖u(x, t)− u∗‖2

=
∫
Ω

(u(x, t)− u∗)∂u(x, t)
∂t

dx

= d(t)
∫
Ω

(u(x, t)− u∗)∆u(x, t) dx

−
∫
Ω

(u(x, t)− u∗)c(t)u(x, t)u(x, t)
n∑
i=1

bi(t)(u(x, t− τi(t))− u∗) dx,

we have∣∣∣∣12 d

dt
‖u(x, t)− u∗‖2

∣∣∣∣
≤ d
∫
Ω

|u(x, t)− u∗| · |∆u(x, t)| dx

+ c

n∑
i=1

biu
∗
∫
Ω

|u(x, t)− u∗| · |u(x, t− τi(t))− u∗| dx
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and
T∫
t3

∣∣∣∣12 d

dt
‖u(x, t)− u∗‖2

∣∣∣∣ dt
≤ d
{ T∫
t3

‖∆u(x, t)‖2 dt
}1/2{ T∫

t3

‖u(x, t)− u∗‖2 dt
}1/2

+ cu∗
n∑
i=1

bi

{ T∫
t3

‖u(x, t)− u∗‖2 dt
}1/2

×
{ T∫
t3

‖u(x, t− τi(t))− u∗‖2 dt
}1/2

.

As a consequence, we have
d

dt
‖u(x, t)− u∗‖ ∈ L1(0,∞),

in view of the previously shown facts that ‖∆u(x, t)‖2 ∈ L1(0,∞) and
‖u(x, t)− u∗‖2 ∈ L1(0,∞). By integrating (d/dt)‖u(x, t)− u∗‖ from a large
but fixed number to infinity, we see that as t tends to infinity, ‖u(x, t)−u∗‖
tends to a constant which must be zero, i.e.

(20) lim
t→∞

‖u(x, t)− u∗‖ = 0.

Next, from u(x, t) < u∗ for t > t2 and the boundedness of ‖∇u(x, t)‖ on
(t2,∞), we see that ‖u(x, t) − u∗‖∞ and ‖∇u(x, t)‖∞ are bounded (where
‖w‖∞ = ess sup |w(x)|); then from the inequality

‖w‖σ ≤ ‖w‖(σ−2)/σ
∞ ‖w‖2/σ2 for all σ ≥ 2

and (19) as well as (20), we obtain

(21) lim
t→∞

‖u(x, t)− u∗‖σ = lim
t→∞

‖∇u(x, t)‖σ = 0, σ > m.

Next, from the Sobolev inequality, we obtain

(22) ‖u(x, t)− u∗‖∞
≤M(Ω,m, σ){‖u(x, t)− u∗‖σ + ‖∇(u(x, t)− u∗)‖σ},

where M(Ω,m, σ) is some positive constant.
Finally, from (21) and (22), we see that ‖u(x, t)− u∗‖∞ → 0 as t→∞,

so that
lim
t→∞

u(x, t) = u∗ uniformly in x ∈ Ω,

which implies

(23) lim
t→∞

p(x, t) = 0 uniformly in x ∈ Ω.
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Now for any t > t2 and t3 > t2,

ep(x,t−τi(t)) − ep(x,t3) = {p(x, t− τi(t))− p(x, t3)}ep(x,ηi(t)),

where ep(x,ηi(t)) → 1 as t→∞. Thus for any µ ∈ (0, 1), we can find t4 such
that

µ < ep(x,ηi(t)) < 1, t ≥ t4,
which implies

ep(x,t−τi(t)) − 1 ≤ µp(x, t− τi(t)), t ≥ t4,
as required. The proof is complete.

3. Oscillation criteria. In the last section, we have established neces-
sary conditions for the existence of eventually positive or negative solutions.
These conditions are related to delay differential inequalities. In order to
obtain oscillation theorems, we only need conditions under which these in-
equalities do not have eventually positive solutions. Such a technique for
obtaining oscillation theorems is standard (see for example [2, Chapter 6]
or [7]). For illustration, we now mention several examples.

Lemma 3 (Ladas and Stavroulakis [8]; see also [2, p. 199]). Let σ1, . . . , σk
be positive constants and let q1(t), . . . , qk(t) be positive continuous functions
on [t0,∞). Suppose

lim inf
t→∞

t∫
t−σi/2

qi(s) ds > 0, 1 ≤ i ≤ k,

and

lim inf
t→∞

t∫
t−σi

qi(s) ds >
1
e

for at least one i ∈ {1, . . . , k}.

Then the differential inequality

x′(t) +
k∑
i=1

qi(t)x(t− σi) ≤ 0

has no eventually positive solutions.

In view of Lemmas 1, 2 and 3, we obtain the following oscillation theorem.

Theorem 1. Suppose τ1, . . . , τn are positive constants and a(t), c(t),
d(t), b1(t), . . . , bn(t) are bounded functions on [0,∞) such that for t ≥ 0,
0 < d0 ≤ d(t) and 0 < b0 ≤ c(t)bi(t) for some i ∈ {1, . . . , n}. Suppose u∗ is
a positive constant such that (4) holds. If

lim inf
t→∞

t∫
t−τi/2

c(s)bi(s) ds > 0, 1 ≤ i ≤ n,
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and

lim inf
t→∞

t∫
t−τi

c(s)bi(s) ds >
1
e

for at least one i ∈ {1, . . . , n}.

Then equation (1) is oscillatory about u∗.

A result of Hunt and Yorke [6] states that if τi(t) and qi(t), 1 ≤ i ≤ n,
are positive continuous functions on [0,∞) such that

(24) max
i

max
t
τi(t) <∞,

and if

lim inf
t→∞

n∑
i=1

qi(t)τi(t) >
1
e
,

then all solutions of

(25) x′(t) +
n∑
i=1

qi(t)x(t− τi(t)) = 0

must oscillate. Another result in [5, Corollary 3.2.2] states that under the
same assumptions on τi(t) and qi(t) as above, a necessary and sufficient
condition for all solutions of (25) to oscillate is that the inequality

x′(t) +
n∑
i=1

qi(t)x(t− τi(t)) ≤ 0

does not have any eventually positive solution. In view of these two results
and our Lemmas 1 and 2, we obtain the following result.

Theorem 2. Suppose a(t), c(t), d(t), b1(t), . . . , bn(t) and τ1(t), . . . , τn(t)
are positive bounded continuous functions on [0,∞) such that (24) holds and
for t ≥ 0, 0 < d0 ≤ d(t) and 0 < b0 ≤ c(t)bi(t) for some i ∈ {1, . . . , n}.
Suppose u∗ is a positive constant such that (4) holds. If

lim inf
t→∞

c(t)
n∑
i=1

bi(t)τi(t)u∗ >
1
e
,

then equation (1) is oscillatory about u∗.

Other results can be obtained from corresponding oscillation theorems
for equation (25), which can be found, among others, in [5, Section 3.4].
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