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Coefficient bounds for certain classes
of analytic functions

by O. P. Juneja (Kanpur), S. Ponnusamy (Helsinki)
and S. Rajasekaran (Vandalur)

Abstract. We determine coefficient estimates for α-spiral functions of order % with
respect to N -symmetric points (|α| < π/2, 0 ≤ % < 1 and N is a positive integer).
Sharp coefficient bounds are also obtained for functions of the form f(z)−t, where t is a
positive integer and f(z) is an α-spiral function of order %. Using this we deduce coefficient
estimates for inverses of univalent α-spiral and meromorphic univalent α-spiral functions
with vanishing early coefficients.

1. Introduction. Denote by H the class of functions

(1.1) f(z) = z + a2z
2 + . . .

which are analytic in the open unit disc U = {z : |z| < 1}. For a fixed
positive integer N , let µ = e2πi/N be the Nth root of unity. Then for a
function f ∈ H given by (1.1), we define

fN (z) =
1
N

N−1∑
j=0

µ−jf(µjz).

Using the fact that
N−1∑
j=0

µjk =
{
N if k is a multiple of N ,
0 otherwise,

it is easily seen that fN (z) has the form

(1.2) fN (z) = z + aN+1z
N+1 + a2N+1z

2N+1 + . . .

A function f ∈ H is said to be α-spiral of order % with respect to N -
symmetric points (|α| < π/2, 0 ≤ % < 1) or N -α-spiral of order %, in
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symbols f ∈ SN (α, %), if

Re
{
eiα

zf ′(z)
fN (z)

}
> % cosα, z ∈ U,

where fN (z) is given by (1.2).
The class SN (α, %) introduced above includes various subclasses studied

earlier by a number of workers. For example, S2(0, 0) is the class of starlike
functions with respect to symmetric points introduced by Sakaguchi [12] and
studied further by Robertson [11]. Similarly, SN (0, 0) is the class of starlike
functions with respect to N -symmetric points introduced and studied by
Chand and Singh [3]. For N = 1, SN (α, %) reduces to the class S(α, %) of α-
spiral functions of order % introduced and studied by Libera [6]. Špaček [16]
has shown that the family of α-spiral functions of order 0 is univalent in U .
For α = 0, SN (0, %) (≡ SN (%)) leads to the class of starlike functions of order
% with respect to N -symmetric points. This was introduced and studied
by Singh and Singh [15] who claimed to have obtained sharp coefficient
estimates for this class. Unfortunately, the claim of Singh and Singh [15]
about their coefficient estimates being sharp is not correct. In fact, it can
be easily checked that the function given by them is not extremal for the
coefficient bounds stated.

In Section 2 of the present paper, we obtain sharp coefficient estimates
for the class SN (α, %) which, for α = 0, lead to correct and sharp coefficient
estimates for the class S∗N (%) introduced by Singh and Singh [15]. ForN = 1,
these estimates reduce to sharp coefficient estimates obtained for the class
S∗N (%) introduced by Singh and Singh [15]. For N = 1, these estimates also
reduce to sharp coefficient estimates obtained by Libera [6] for the class
S(α, %).

Let S(α, %)−1 denote the class of functions

(1.3) F (w) = w +A2w
2 + . . .

which are inverse to functions in S(α, %).
Likewise, let Σα denote the class of functions

(1.4) g(z) = z + b0 + b1z
−1 + . . .

that are regular and univalent in V = {z : 1 < |z| <∞} and satisfy

(1.5) Re
{
eiα

zg′(z)
g(z)

}
> 0, z ∈ V.

We observe that Σ0 ≡ Σ∗, the class of meromorphic univalent starlike func-
tions. Moreover, let Σ−1

α represent the class of functions which are inverse
to functions in Σα.
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In [9], MacGregor determined coefficient estimates for starlike functions
whose power series representations in U are of the form

(1.6) f(z) = z +
∞∑

n=p+1

anz
n.

Boyd [2] and Srivastava [17] extended MacGregor’s result to the classes of
starlike functions of order % (i.e. S∗(%)) and S(α, %) respectively.

Poole [10] found coefficient estimates for the function f(z)−t when f ∈ S∗
is of the form (1.6) and t is a positive integer. He also obtained coefficient
estimates for inverses of functions in S∗ and Σ∗ with vanishing early co-
efficients. Recently, the authors of [1] generalized the results of the above
workers by obtaining coefficient bounds for functions of the form f(z)t when
t is a positive integer and f ∈ S(α, %) is of the form (1.6).

Lately, a number of papers (see e.g. [7], [8], [13], [14]) have appeared in
which the coefficient bounds for inverse functions have been determined for
the class S and its various subclasses. A number of techniques have been
used to tackle these problems.

In Section 3 of the present paper, we obtain sharp coefficient estimates
for functions of the form

f(z)−t = z−t +
∞∑

n=−t+p
a(−t)
n zn

when f(z), given by (1.6), belongs to S(α, %) and t is a positive integer.
We apply these inequalities to deduce coefficient estimates for functions
in S(α, 0)−1 and Σ(α, 0)−1. The results thus obtained include those of
Poole [10] and Juneja and Rajasekaran [5].

We conclude this section by indicating the possibility of extending the
notion of N -symmetric points for general families of functions considered in
[4] and [18] respectively. In fact, Jakubowski [4] discussed a more general
family S∗m,M (α, %) of functions f ∈ H such that∣∣∣∣(eiα zf ′(z)f(z)

− % cosα− i sinα
)

[(1− %) cosα]−1 −m
∣∣∣∣ < M.

Also, he considered a similar definition for a family of meromorphic univalent
functions of the form

(1.7) F (z) = z−1 +
∞∑
k=1

bkz
k, 0 < |z| < 1,

and proved a sharp estimate for the modulus of the coefficients of functions
belonging to these families.
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In [18], Stankiewicz and Waniurski considered the family Σ∗n(A,B) of
meromorphic univalent functions F of the form (1.7) such that

−zF
′(z)

F (z)
≺ 1 +Az

1 +Bz
(−1 ≤ A ≤ 1, −A < B ≤ 1)

and obtained sharp coefficient estimates for this family.

2. Coefficient bounds for functions in SN (α, %). In this section we
solve the coefficient problem for functions in SN (α, %). While doing so, we
rectify an error of a result in [15].

Theorem 2.1. If f(z) = z +
∑∞
n=2 anz

n ∈ SN (α, %), then

(2.8) |amN+1| ≤
m−1∏
j=0

{∣∣∣∣2(1− %) cosαe−iα

N
+ j

∣∣∣∣/(j + 1)
}

and

(2.9) |amN+p| ≤
1
m!
· N

mN + p

m∏
j=0

{∣∣∣∣2(1− %) cosαe−iα

N
+ j

∣∣∣∣},
for m = 1, 2, . . . and p = 2, . . . , N . These estimates are sharp for the func-
tion f given by

(2.10) f ′(z) =
{

1 +
2(1− %) cosαe−iαz

1− z

}/
(1− zN )2N

−1(1−%) cosα exp(−iα).

P r o o f. For z ∈ U and f ∈ SN (α, %), we define

(2.11) w(z) =
eiα(zf ′(z)/fN (z)− 1)

eiαzf ′(z)/fN (z) + (e−iα − 2% cosα)
=
∞∑
n=1

wnz
n.

Since

Re
{
eiα

zf ′(z)
fN (z)

}
> % cosα,

we have |w(z)| < 1. We rewrite

fN (z) = z +
∞∑
n=2

anδnz
n,

where
δn ≡ δ(n,N) =

{ 1 if n = Np+ 1, p = 1, 2, . . .
0 otherwise.

Now replacing f(z), fN (z), w(z) by their power series expansions in the
equation (which follows from (2.11))

zf ′(z)− fN (z) = {zf ′(z) + (e−2iα − 2% cosαe−iα)fN (z)}w(z),
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we obtain

(2.12)
∞∑
n=2

(n− δn)anzn

=
{ ∞∑
n=1

[n+ (e−2iα − 2% cosαe−iα)δn]anzn
}( ∞∑

n=1

wnz
n
)
,

where a1 = 1. Comparing the coefficients of zn on both sides of (2.12) we
have

(2.13) (n− δn)an =
n−1∑
k=1

{k + (e−2iα − 2% cosαe−iα)δk}akwn−k, n ≥ 2.

This shows that, for n ≥ 2, the coefficients an on the left side depend upon
the coefficients a1, . . . , an−1. Therefore, for suitable coefficients dk, (2.12)
may be rewritten as
n∑
k=2

(k−δk)akzk+
∞∑

k=n+1

dkz
k =

{ n−1∑
k=1

[k+(e−2iα−2% cosαe−iα)δk]akzk
}
w(z).

Taking into account that |w(z)| < 1, and then multiplying each side of this
equation by its conjugate, integrating with respect to θ around 0 to 2π, and
taking the limit as r → 1−1, we obtain

n∑
k=2

(k − δk)2|ak|2 ≤ |1 + e−2iα − 2% cosαe−iα|2

+
n−1∑
k=2

|k + (e−2iα − 2% cosαe−iα)δk|2|ak|2

and so
(n− δn)2|an|2 ≤ |1 + e−2iα − 2% cosαe−iα|2

+
n−1∑
k=2

{|k + (e−2iα − 2% cosαe−iα)δk|2 − (k − δk)2}|ak|2,

which after simplification reduces to

(2.14) (n− δn)2|an|2 ≤ 4(1− %) cos2 α
{

(1− %) +
n−1∑
k=2

(k − %)δk|ak|2
}
,

where we have used the fact that δk = (δk)2. When n = N + 1, this gives

|aN+1| ≤
∣∣∣∣2(1− %) cosαe−iα

N

∣∣∣∣,
which shows that (2.8) is true for m = 1.
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Now we assume that (2.8) is true for m = 1, . . . , q − 1. For m = q,
since the contribution on the right hand side of (2.14) comes only from
aN+1, a2N+1, . . . , a(q−1)N+1, we have

q2N2|aqN+1|2 ≤ 4(1− %) cos2 α
{

(1− %)

+
q−1∑
j=1

(jN + 1− %)
j−1∏
k=0

(
|[2(1− %) cosαe−iα/N ] + k|

k + 1

)2}

=
{
qN

q−1∏
j=0

(
|[2(1− %) cosαe−iα/N ] + j|

j + 1

)}2

,

where the last equality can easily be proved by induction. This completes
the proof of (2.8).

When n = N + p, p = 2, . . . , N , (2.14) gives

(N + p)2|aN+p|2 ≤ 4(1− %) cos2 α{(1− %) + (N + 1− %)|aN+1|2},

from which we obtain

|aN+p| ≤
N

N + p

1∏
j=0

∣∣∣∣2(1− %) cosαe−iα

N
+ j

∣∣∣∣.
Since for n = mN +p, p = 2, . . . , N , the contribution on the right hand side
of (2.14) comes only from aN+1, a2N+1, . . . , amN+1, and so we can use the
induction hypothesis as in the proof of (2.8) to obtain

|amN+p| ≤
1
m!
· N

mN + p

m∏
j=0

∣∣∣∣2(1− %) cosαe−iα

N
+ j

∣∣∣∣,
which is (2.9). This completes the proof of the theorem.

R e m a r k 2.1. In [15] it was shown that if S∗N (%), then

(2.15) (n− δn)2|an|2 ≤ 4(1− %)2 + 2
n−1∑
k=2

{k + (1− %)(k − 2%)}δk|ak|2.

It was further claimed that the estimate (2.15) is sharp for the function
(2.10) when α=0. However, it is easy to check that this claim is not correct
for any n > 2N . In fact, when α = 0, for the function f given by (2.10),

(2N)2|a2N+1|2 =
{

(2− 2%)
(

2− 2%
N

+ 1
)}2

< 4(1− %)2 + 2{(N + 1) + (1− %)(N + 1− 2%)} (2− 2%)2

N2
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and

(2N + p)2|a2N+p|2

=
{
N

2!

2∏
j=0

(
2− 2%
N

+ j

)}2

< 4(1− %)2 + 2{(N + 1) + (1− %)(N + 1− 2%)} (2− 2%)2

N2

+ 2{2N + 1 + (1− %)(2N + 1− %)}{((2− 2%)/N)((2− 2%)/N + 1)}2

(2!)2
,

where p = 2, . . . , N , and so on.
On the other hand, our estimate (2.14), for α = 0, leads to

(2.16) (n− δn)2|an|2 ≤ 4(1− %)
{

(1− %) +
n−1∑
k=2

(k − %)δk|ak|2
}

and it is easy to see that equality occurs for every n in (2.16) for the function
f given by (2.10) when α = 0.

R e m a r k 2.2. Singh and Singh [15] have defined the class CN (%) as
follows: f ∈ CN (%) if and only if zf ′ ∈ S∗N (%). For f(z) = z +

∑∞
n=2 anz

n ∈
CN (%), they have obtained the estimates

(2.17) {mN(mN + 1)}2|amN+1|2

≤ 4(1− %)2 + 2
m−1∑
k=1

{(2− %)(kN + 1)− 2%(1− %)}(kN + 1)2|akN+1|2

for m = 1, 2, . . . , and

(2.18) (mN + p)2|amN+p|2

≤ 4(1− %)2 +
m∑
k=1

{(2− %)(kN + 1)− 2%(1− %)}(kN + 1)2|akN+1|2

for m = 0, 1, . . . and p = 2, . . . , N .
In view of (2.16), the results (2.17) and (2.18) can be modified to

{mN(mN + 1)}2|amN+1|2

≤ 4(1− %)
{

(1− %) +
m−1∑
k=1

(kN + 1− %)(kN + 1)2|akN+1|2
}

for m = 1, . . . , and
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(mN + p)4|amN+p|2

≤ 4(1− %)
{

(1− %) +
m−1∑
k=1

(kN + 1− %)(kN + 1)2|akN+1|2
}

for m = 0, 1, . . . and p = 2, . . . , N .

Now, putting α = 0, Theorem 2.1 gives the following result, which is a
refinement of the results in [3] and [15].

Corollary 2.1. If f(z) = z +
∑∞
n=2 anz

n ∈ S∗N (%), then

|amN+1| ≤
m−1∏
j=0

{(
2− 2%
N

+ j

)/
(j + 1)

}
for m = 1, 2, . . . , and

|amN+p| ≤
1
m!
· N

mN + p

m∏
j=0

(
2− 2%
N

+ j

)
for m = 0, 1, . . . and p = 2, . . . , N . These estimates are sharp.

In view of the fact that f ∈ CN (%) if and only if zf ′ ∈ S∗N (%), we have

Corollary 2.2. If f(z) = z +
∑∞
n=2 anz

n ∈ CN (%), then

|amN+1| ≤
1

mN + 1

m−1∏
j=0

{(
2− 2%
N

+ j

)/
(j + 1)

}
for m = 1, 2, . . . , and

|amN+p| ≤
1
m!
· N

(mN + p)2

m∏
j=0

(
2− 2%
N

+ j

)
for m = 0, 1, . . . and p = 2, . . . , N . These inequalities are sharp.

3. Some other coefficient bounds

Theorem 3.1. Suppose f(z) = z +
∑∞
n=p+1 anz

n ∈ S(α, %), and for
integral t ≥ 1, let

f(z)−t = z−t +
∞∑

γ=−t+p
a(−t)
γ zγ , 0 < |z| < 1.

Then

(3.19) |a(−t)
γ | ≤ mp

γ + t

m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)
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for −t + mp ≤ γ ≤ −t + (m + 1)p − 1, m = 1, . . . ,M + 1, where M =
[t(1 − %)/p]. (Here [x] denotes the largest integer not exceeding x.) The
result is sharp for γ = −t+mp.

The following two lemmas will be useful in the proof of this theorem.

Lemma 3.1. If p, t and q are positive integers, then for 0 ≤ % < 1, we
have

4t(1− %) cos2 α
{
t(1− %)

+
q−1∑
m=1

[t(1− %)−mp]
m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2}

= (qp)2
{ q−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)}2

whenever t(1− %)− (q − 1)p ≥ 0.

The above lemma can be easily proved by induction on q.

Lemma 3.2. If p, t and q are positive integers and 0 ≤ % < 1, then

(γ + t)2 ≥ (qp)2(−γ − %t)
t(1− %)− qp

for γ ≥ −t+ qp and t(1− %)− (q − 1)p ≥ 0.

The proof of Lemma 3.2 is straightforward and hence omitted.

P r o o f o f T h e o r e m 3.1. For 0 < |z| < 1, let

q(z) =
eiα

−t
· z[f(z)−t]′

f(z)−t
= eiα

zf ′(z)
f(z)

and q(0) can be defined so that q(z) is continuous at z = 0. Moreover, let

(3.20) w(z) =
q(z)− eiα

q(z) + e−iα − 2% cosα
=
∞∑
n=p

wnz
n.

Since Re q(z) > % cosα, we have |w(z)| < 1 in |z| < 1. Equating the coeffi-
cients of the same powers on both sides of (3.20) we get

eiα{[f(z)−t]′ + tf(z)−t} = {eiαz[f(z)−t]′ − (e−iα − 2% cosα)tf(z)−t}w(z)
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or

(3.21) eiα
∞∑

n=t+p

(n+ t)a(−t)
n zn

=
( ∞∑
n=p

wnz
n
){
− 2t(1− %) cosαz−t

+
∞∑

n=−t+p
[neiα − t(e−iα − 2% cosα)]a(−t)

n zn
}
,

from which we obtain the relations

(3.22) eiαγa
(−t)
γ−t = −2t(1− %) cosαwγ , γ = p, p+ 1, . . . , 2p− 1.

Since |w(z)| < 1, we have
∑∞
n=p |wn|2 ≤ 1 and therefore

(3.23)
2p−1∑
n=p

|wn|2 ≤ 1.

Now (3.22) and (3.23) yield

(3.24)
2p−1∑
n=p

γ2|aγ−t|2 ≤ 4t2(1− %)2 cos2 α.

We rewrite (3.21) in the form

(3.25)
k∑

n=−t+p
eiα(n+ t)a(−t)

n zn +
∞∑

n=k+1

dnz
n

= w(z)
{
− 2t(1− %) cosαz−t

+
k−p∑

n=−t+p
[neiα − t(e−iα − 2% cosα)]a(−t)

n zn
}
.

Taking into account that |w(z)| < 1, and then multiplying each side of (3.25)
by its conjugate, integrating around |z| = r < 1 and letting r → 1− yields
the inequality

(3.26)
k−p∑

n=−t+p
(n+ t)2|a(−t)

n |2

≤ 4t(1− %) cos2 α
{
t(1− %) +

k−p∑
n=−t+p

(−n− %t)|a(−t)
n |2

}
.
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Putting k = −t+ (q + 1)p− 1, (3.25) can be rewritten as

−t+(q+1)p−1∑
n=−t+p

(n+ t)2|a(−t)
n |2

≤ 4t(1− %) cos2 α
{
t(1− %) +

−t+qp−1∑
n=−t+p

(−n− %t)|a(−t)
n |2

}

= 4t(1− %) cos2 α
{
t(1− %) +

q−1∑
m=1

−t+(m+1)p−1∑
n=−t+mp

(−n− %t)|a(−t)
n |2

}
.

Now, by Lemma 3.2 and (3.24),

−t+2p−1∑
n=−t+p

(−n− %t)|a(−t)
n |2 =

t(1− %)− p
p2

−t+2p−1∑
n=−t+p

p2(−n− %t)
t(1− %)− p

|a(−t)
n |2

≤ [t(1− %)− p]
p2

−t+2p−1∑
n=−t+p

(n+ t)2|a(−t)
n |2,

≤ [t(1− %)− p]
p2

· 4t2(1− %)2 cos2 α,

= [t(1− %)− p]|(2t/p)(1− %) cosαeiα|2.

Now we assume

−t+(m+1)p−1∑
n=−t+mp

(−n− %t)|a(−t)
n |2

≤ [t(1− %)−mp]
m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2

for m = 2, . . . , q − 1. Then from (3.26),

−t+(q+1)p−1∑
n=−t+qp

(n+ t)2|a(−t)
n |2

≤ 4t(1− %) cos2 α
{
t(1− %) +

q−1∑
m=1

−t+(m+1)p−1∑
n=−t+mp

(−n− %t)|a(−t)
n |2

}

= 4t(1− %) cos2 α
{
t(1− %) +

q−1∑
m=1

[t(1− %)−mp]
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×
m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2}

= (qp)2
q−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2

,

by Lemma 3.1, as long as t(1 − %) − (q − 1)p ≥ 0. Now we use Lemma 3.2
and this estimate to show that
−t+(q+1)p−1∑
n=−t+qp

(−n− %t)|a(−t)
n |2

=
[t(1− %)− qp]

(qp)2

{−t+(q+1)p−1∑
n=−t+qp

(qp)2(−n− %t)
t(1− %)− qp

|a(−t)
n |2

}

≤ [t(1− %)− qp]
(qp)2

{−t+(q+1)p−1∑
n=−t+qp

(n+ t)2|a(−t)
n |2

}

= [t(1− %)− qp]
q−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2

.

Thus we have established by induction that

(3.27)
−t+(m+1)p−1∑
n=−t+mp

(n+ t)2|a(−t)
n |2

≤ (mp)2
m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2

and
−t+(m+1)p−1∑
n=−t+mp

(−n− %t)|a(−t)
n |2

≤ [t(1− %)−mp]
m−1∏
j=0

(
|(2t/p)(1− %) cosαe−iα − j|

j + 1

)2

for m such that t(1− %)− (m− 1)p ≥ 0.
The theorem now follows from (3.27). If n = −t + mp, the inequality

(3.19) is sharp for the function

f(z) = z(1− zp)−2(1−%) cosα exp(−iα)/p.

This completes the proof.
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Now take two functions

F (w) = w+
∞∑
n=2

Anw
n ∈ S(α, 0)−1, G(w) = w+

∞∑
n=1

Bnw
−n ∈ Σ(α, 0)−1.

It has been proved in [5] that

An = a
(−n)
−1 /n and Bn = −a(−n)

1 /n, for n = 1, 2, . . .

Now using these results and Theorem 3.1, we obtain the following results.

Theorem 3.2. If F (w) = w +
∑∞
n=p+1Anw

n ∈ S(α, 0)−1, then

|An| ≤
mp

n(n− 1)

m−1∏
j=0

(
|(2n/p) cosαe−iα − j|

j + 1

)
for mp+ 1 ≤ n ≤ (m+ 1)p, m = 1, 2, . . .

Theorem 3.3. If G(w) = w +
∑∞
n=p−1Bnw

−n ∈ Σ(α, 0)−1, then

|Bn| ≤
mp

n(n+ 1)

m−1∏
j=0

(
|(2n/p) cosαe−iα − j|

j + 1

)
for mp− 1 ≤ n ≤ (m+ 1)p− 2, m = 1, 2, . . .

For α = 0, Theorems 3.2 and 3.3 give the following results of Poole [10].

Corollary 3.1. If F (w) = w +
∑∞
n=p+1Anw

n ∈ S∗−1, then

|An| ≤
mp

n(n− 1)

m−1∏
j=0

(
(2n/p)− j
j + 1

)
for mp+ 1 ≤ n ≤ (m+ 1)p, m = 1, 2, . . .

Corollary 3.2. If G(w) = w +
∑∞
n=p−1Bnw

−n ∈ Σ∗−1, then

|Bn| ≤
mp

n(n+ 1)

m−1∏
j=0

(
(2n/p)− j
j + 1

)
for mp− 1 ≤ n ≤ (m+ 1)p, m = 1, 2, . . .

Moreover, when n = mp+1, Theorem 3.2 gives a result in [5]. Similarly,
when n = mp− 1, Theorem 3.3 gives a result in [5].
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