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0. Introduction. The classical Bernstein inequality for derivatives of trigono-
metric polynomials can be stated as follows: Let p(x, y) be a polynomial of two
real variables so that q(θ) ≡ p(cos(θ), sin(θ)) is a trigonometric polynomial of
degree equal to deg(p). Then

|q′(θ)| ≤ (deg q)‖q‖[0,2π], θ ∈ [0, 2π],

which is equivalent to

|DT p(x, y)| ≤ (deg p)‖p‖S , (x, y) ∈ S
where S = {(x, y) : x2 + y2 = 1}, ‖f‖E is the supremum norm of a function f on
a set E, and DT denotes the unit tangential derivative along S. We note that by
general Banach space theory, for any smooth compact curve K in the plane one
gets an estimate of the form

‖DT p(x, y)‖K ≤ C‖p‖K
where C depends in some unspecified way on deg(p) and K. The main purpose
of this paper is to prove the following result giving a characterization of algebraic
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curves among all smooth (C1) compact curves in terms of whether certain classical
analytical results in approximation theory are valid.

Main Theorem. Let K be a smooth compact connected curve in R2 and let
C(K) denote the continuous functions on K. The following are equivalent :

1) K is algebraic.
2) K satisfies a tangential Markov inequality with exponent one, i.e., there

exists M = M(K) > 0 such that

(MT ) ‖DT p‖K ≤M(deg p)‖p‖K
for all polynomials p where DT denotes the unit tangential derivative (along K).

3) For some 0 < α < 1, K satisfies a Bernstein theorem: there exists B =
B(K) > 0 such that for f ∈ C(K),

(B) if En(f) ≤ n−α, then f ∈ Lip(α) and ‖f‖α ≤ B
where

En(f) ≡ inf{‖f − pn‖K : pn ∈ Pn}
and Pn = polynomials of degree at most n in two variables.

4) For all 0 < α < 1, K satisfies a Bernstein theorem.

Here ‖f‖α denotes the Lip(α) norm of f (defined in Section 2). In the next
three sections we will prove the main theorem. We fix a smooth compact curve
K in R2 which we may take to be irreducible.

1. Proof that 1) implies 2), i.e., K algebraic implies (MT ) with expo-
nent one. There is a beautiful characterization of complex algebraic subvarieties
of CN among the (complex-) analytic ones, due to Sadullaev [S]. We briefly de-
scribe his result. Let A be a complex analytic subvariety of CN such that the
regular points of A, Areg, from a complex manifold of pure dimension m < N .
Let K be a compact subset of A and form the extremal function

uK(z) ≡ sup
{

1
deg(p)

log
|p(z)|
‖p‖K

: p polynomial, deg(p) > 0
}
.

Then u∗K(z) ≡ lim supζ→z uK(ζ) ≡ +∞; but clearly uK(z) ≤ 0 for z in K and
uK(z) may be finite at other points z as well. We say that K is pluripolar in A
if K is pluripolar as a subset of the complex manifold Areg.

Theorem 1.1 [S]. A is algebraic if and only if uK ∈ L∞loc(A) for some (and
hence for each) non-pluripolar compact set K in A.

For example, if q(z, w) is a polynomial in two complex variables, then

A ≡ {(z, w) : q(z, w) = 0}
is an algebraic curve in C2. If we let

K = A ∩ R2 = {(z, w) ∈ A : Jz = Jw = 0},
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then locally the curve K looks like a piece of an interval in R2 and hence is not
(pluri-) polar in A provided K is non-empty and non-singular. Thus uK is locally
bounded on A and Lip(1) near K. This will be the basis for the proof of our
characterization of algebraicity.

We now proceed with the proof. Let K = {(x, y) ∈ R2 : k(x, y) = 0} for some
irreducible polynomial k with ∇k = (kx, ky) 6= (0, 0) on K. Fix (x0, y0) in K.
Let A in C2 be the complexification of K, i.e.,

K = A ∩ R2 = {(z, w) ∈ A : Jz = Jw = 0}.

Without loss of generality, we can use a linear change of coordinates to arrange
that (x0, y0) = (0, 0) and ∇k(0, 0) = (0, 1). Note then that the tangential deriva-
tive of a function at this point of K is just differentiation with respect to x = Rz.
Let p = p(x, y) =

∑
a+b≤n cabx

ayb be a polynomial of degree n in the real vari-
ables x, y. We use the same notation p = p(z, w) =

∑
a+b≤n cabz

awb for the
polynomial of degree n in the complex variables z, w.

Let (u, v) = F (z, w) = (z, k(z, w)). This is a non-singular algebraic change
of coordinates valid between a ball Br0 of radius r0 about (0, 0) in the (z, w)
coordinates and a ball Br̃0 of radius r̃0 about (0, 0) in the (u, v) coordinates. By
the smoothness and compactness of K, there is a uniform r0 (and r̃0) valid for
all points (x0, y0) in K. A simple computation shows that

DT p(0, 0) =
∂p̃

∂u
(0, 0)

where p̃ is p in the (u, v) coordinates.
By applying Cauchy’s integral formula to ∂p̃/∂u on the circle

Cr̃ ≡ {(u, 0) : |u| = r̃}, r̃ < r̃0,

we obtain

|DT p(0, 0)| =
∣∣∣∣ 1
2πi

∫
Cr̃

p̃(u, 0)
u2

, du

∣∣∣∣ ≤ ‖p̃‖Cr̃

r̃
=
‖p‖γr

r̃

where γr is the pre-image of Cr̃ under our coordinate change. Hence, by the
definition of the extremal function uK , we have

|DT p(0, 0)| ≤ 1
r̃
‖p‖K exp[n‖uK‖γr ].

It follows from Sadullaev’s work that

‖uK‖γr ≤ C log(1 + r̃)

for some C = C(F (K)). Here we are using Corollary 3.3 and Proposition 3.4 of
[S] which say that for a non-polar (real) algebraic curve E in a one (complex)
dimensional variety V , the extremal function uE is harmonic in V −E and is the
(one-variable) Green function for V − E. Furthermore, if V is smooth near E,
then uE is Lip(1) on a neighborhood of E in V .



128 L. BOS ET AL.

We conclude that

|DT p(0, 0)| ≤ 1
r̃
‖p‖K exp[nC log(1 + r̃)].

Taking r̃ = r̃0/n in the above inequality we obtain

|DT p(0, 0)| ≤ n

r̃0

(
1 +

r̃0
n

)nC
‖p‖K ≤

n

r̃0
er̃0C‖p‖K .

2. Proof that 2) implies 4), i.e., (MT ) with exponent one implies (B)
for each 0 < α < 1. Suppose we have a tangential Markov inequality

(MT ) ‖DT p‖K ≤M(deg(p))‖p‖K .

The proof of property (B) then follows very closely the proof of the classical
Bernstein theorem using Bernstein’s inequality on trigonometric polynomials (cf.
[L], pp. 59–60).

For points a, b ∈ K, we denote by %(a, b) the geodesic distance along K be-
tween a and b. In the rest of this section, we assume for simplicity that our
functions f ∈ C(K) satisfy ‖f‖K ≤ 1.

Lemma 2.1. There exists a constant C depending only on K such that for any
f ∈ C(K) we have

|f(a)− f(b)| ≤ C%(a, b)
∑

n≤1/%(a,b)

En(f), a, b ∈ K,

where En(f) = inf{‖f − pn‖K : pn ∈ Pn}.

P r o o f. Without loss of generality, we may assume %(a, b) < 1. First of all,
from the mean-value theorem,

(1) |p(a)− p(b)| ≤ %(a, b)‖DT p‖K
for any polynomial p (indeed, any C1 function p). Now

|f(a)− f(b)| = |f(a)− p(a) + p(a)− p(b) + p(b)− f(b)|

so that, setting p = pn where pn ∈ Pn and En(f) = ‖f − pn‖K , we get

(2) |f(a)− f(b)| ≤ |pn(a)− pn(b)|+ 2En(f) ≤ %(a, b)‖DT pn‖K + 2En(f)

by (1).
For any a ∈ K we have the identity

DT p2k(a) = DT p1(a)−DT p0(a) +
k∑
i=1

[DT p2i(a)−DT p2i−1(a)].

By (MT ), the triangle inequality, and the fact that E2i ≤ E2i−1 , we get

|DT p2i(a)−DT p2i−1(a)| ≤M2i‖p2i − p2i−1‖K ≤M2i2E2i−1(f).
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Thus

‖DT p2k‖K ≤ 2ME0(f) +M21+1
k∑
i=1

2i−1E2i−1(f).

Note that

(3)
k∑
i=1

2i−1E2i−1 ≤ 2
2k−1∑
i=1

Ei

since Ek decreases with k so that

2E2 ≤ 2E1, 4E4 ≤ 2E2 + 2E3, . . . , 2j−1E2j−1 ≤ 2E2j−2 + . . .+ 2E2j−1−1.

We thus obtain

‖DT p2k‖K ≤ 8M
∑

0≤n≤2k−1

En(f) ≤ 8M
∑

0≤n≤2k

En(f).

Then, since Em(f) ≤ Em−1(f),∑
1≤n≤2k

En(f) ≥ E2k(f)
∑

1≤n≤2k

1 = 2kE2k(f)

so that using (2) with n = 2k we obtain

|f(a)− f(b)| ≤ %(a, b)‖DT p2k‖K + 2E2k(f) ≤ C(%(a, b) + 2−k)
∑

0≤n≤2k

En(f)

for some constant C. Now choose k ∈ {0, 1, . . .} with 2k ≤ %(a, b)−1 < 2k+1.
Then since 2%(a, b) > 2−k we get our result. Note that (MT ) with exponent one
is essential ; if the exponent of deg(p) were greater than 1, the above argument
would fail.

Lemma 2.2. If
∑∞
n=1 n

−1En(f) <∞, then there exists C > 0 with

En(f) ≤ C
∑

j≥[n/2]

j−1Ej(f), n = 2, 3, . . .

P r o o f. We first note the following fact (cf. [L], p. 58):

(4)
∞∑
j=1

E2jn ≤
∞∑
j=n

1
j
Ej .

To see this, simply note that in the sum on the right, the first n terms from En/n
to E2n−1/(2n− 1) are each at least E2n−1/n ≥ E2n/n and hence add to at least
E2n; the next 2n terms are each at least E4n/(2n) and hence add to at least E4n,
etc., yielding the result. Using (4), we thus obtain

En(f) ≤
∞∑
i=1

E2i−1n(f) ≤ C
∑

j≥[n/2]

j−1Ej(f).

Note the following corollary.
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Corollary 2.3. If En(f) ≤ n−α, 0 < α < 1, then

En(f) ≤ C
∑

j≥[n/2]

j−1−α.

Recall that for I = [−1, 1], we say f ∈ LipI(α) if

‖f‖0,α ≡ ‖f‖I + sup
x 6=y

|f(x)− f(y)|
|x− y|α

<∞.

For f ∈ C(K), we write f ∈ Lip(α) if for each x in K there exists a coordinate
chart φ : I → K with x ∈ φ(−1, 1) and f ◦ φ ∈ LipI(α). Then

‖f‖α ≡
∑
i

‖f ◦ φi‖0,α

where the sum is over a finite collection of charts with K =
⋃
i φi(I). We want to

conclude, under the hypothesis of Corollary 2.3, that we actually have f ∈ Lip(α)
and ‖f‖α ≤ B. To prove this, we use both Lemmas 2.1 and 2.2. First of all, by
Lemma 2.1, for a, b ∈ K,

|f(a)− f(b)| ≤ C%(a, b)
∑

n≤1/%(a,b)

En(f).

Now from Lemma 2.2 (Corollary 2.3) we can estimate each term En(f):

En(f) ≤ C
∑

j≥[n/2]

j−1−α ≤ C ′α(n/2)−α, n = 1, 2, . . .

(by the integral test). Thus

|f(a)− f(b)| ≤ C%(a, b)
∑

n≤1/%(a,b)

C ′α(n/2)−α ≤ C ′′[%(a, b)]α

where C ′′ = C ′′(K,α) is a constant depending only on K and α. We note that
by compactness and smoothness of K, there exists a constant c depending only
on K such that

%(a, b) ≤ c‖a− b‖, a, b ∈ K.
Thus f ∈ Lip(α) as desired. Moreover, we get a uniform bound on the Lip(α)
norms for f as in the corollary. Hence we have proved (B) for 0 < α < 1.

3. Proof that 3) implies 1), i.e., (B) for some α implies K algebraic.
In order to prove that (B) implies K algebraic, we need some preliminaries. The
first result we need is a generalization of Jackson’s theorem on the decay of the
approximation numbers En(f) for f ∈ Lip(α).

Theorem 3.1. (Corollary 2.2 of [R]). Let 0 < α ≤ 1. There exists C(α) > 0
such that f ∈ Lip(α) implies En(f) ≤ C(α)‖f‖αn−α.
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Given a set A in a Banach space X, if Xn is an n-dimensional subspace of X,
we call the number

EXn
(A) ≡ sup

f∈A
{ inf
p∈Xn

‖f − p‖X} ≡ sup
f∈A

EXn
(f)

the degree of approximation to A by Xn; this is the “worst” best approximation
for elements in A by elements of Xn. Then the n-width of A in X is given by

dn(A) ≡ inf
Xn

EXn
(A)

where the infimum is taken over all n-dimensional subspaces of X. This is, in an
obvious sense, the closest distance from A to all n-dimensional subspaces of X.
To get upper bounds on the n-widths of sets A in X is easy; merely estimate
EXn

(A) for an appropriate space Xn (e.g., polynomials of degree at most n − 1
in one-variable settings). Thus, from the Jackson theorem, if we let

U = {f ∈ C(K) : ‖f‖α ≤ 1}

be the unit ball in Lip(α), then

(5) dδ(n)(U) ≤ C(α)n−α

where δ(n) is the dimension of the space Pn|K of polynomials in Pn restricted
to K.

We call Xn extremal for A if dn(A)=EXn
(A). For full approximation sets A, it

is easy to find extremal subspaces. Such sets are constructed as follows. Take a se-
quence p1, p2, . . . of linearly independent elements in X and a decreasing sequence
of positive numbers a1 ≥ a2 ≥ . . . with am → 0. Let Xm = span{p1, . . . , pm}.
Finally, let

A ≡ {x ∈ X : EXn
(x) ≤ an, n = 1, 2, . . .}.

The set A is called a full approximation set . We state without proof the following.

Proposition 3.2 (Theorem 3, p.139 of [L]). dn(A) = an, n = 1, 2, . . . , and
Xn is extremal for A.

S k e t c h o f p r o o f. Clearly from the definitions of dn and A, we have
dn(A) ≤ EXn(A) ≤ an; to prove the reverse inequality, one considers

An ≡ {x ∈ Xn+1 : ‖x‖X ≤ an}

and shows that dn(An) = an (Theorem 2, p. 137 of [L]). Since An ⊂ A, we have
dn(An) ≤ dn(A), which yields the result.

We can now state the key result from [R].

Theorem 3.3 [R]. Suppose for some 0 < α ≤ 1 there exists B such that

(6) En(f) ≤ 1
nα

implies ‖f‖α ≤ B.

Then 1/nα = O(dδ(n)(U)).
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This says that if we have a Bernstein theorem for K, then Pn|K is (essentially)
extremal, i.e., we automatically get an estimate from BELOW on the δ(n)-widths
of U , at least asymptotically. For the reader’s convenience, we reproduce Ragozin’s
proof.

P r o o f. Let

A ≡ {f ∈ C(K) : En(f) ≤ 1/nα, n = 1, 2, . . .}.

By Proposition 3.2, dδ(n)(A) = 1/nα. By (6), A ⊂ BU≡{f ∈ C(K) : ‖f‖α ≤ B}.
Hence

1/nα = dδ(n)(A) ≤ dδ(n)(BU) = Bdδ(n)(U)
from obvious properties of n-widths. This completes the proof.

Recall by (5) we have
dδ(n)(U) ≤ C(α)n−α

so that

(7) dδ(n)(U) � 1
nα
.

Next we relate n-widths of U to n-widths of things we can compute. By com-
paring pieces of K to intervals I and patching together — it is known that
dn(U) � 1/nα for U = {f ∈ C(I) : ‖f‖0,α ≤ 1} — we get the following re-
sult.

Theorem 3.4 [R]. dn(U) � 1/nα.

Combining Theorem 3.4 with (7), we see that (B) implies dn(U) � dδ(n)(U)
so that δ(n) = O(n). This implies K is algebraic since, for large n, we have shown
that the dimension of Pn |K is of order n, not n2. Indeed, δ(n)=O(n) if and only
if K is contained in an algebraic variety of dimension 1.

4.Remarks and examples.We mention that the main theorem remains true
for K a smooth, compact m-dimensional submanifold of RN , m = 1, . . . , N−1 (cf.
[BLMT]). In the non-smooth case, one must replace (MT ) by a condition which
“makes sense.” For example, as in Section 1, suppose that A is a complex analytic
subvariety of CN of pure dimension m < N in a neighborhood of K ≡ A ∩ RN .
Suppose for simplicity that K is compact but not necessarily smooth. Then for
each regular point (x0, y0) ∈ K, there is a tangential Markov inequality (MT ) of
the form

(M ′T ) |DT p(f(t))|t=0 ≤Mf (deg p)‖p‖K
with exponent 1 for all analytic disks f : {t ∈ C : |t| < 1} → A with f(0) =
(x0, y0). This result and related problems will not be discussed here.

For a curve K with singularities, we can require that (MT ) holds for all tan-
gential derivatives in 2). With this interpretation, we have the following result.
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Proposition 4.1. Let K ⊂ R2 be a curve consisting of finitely many line
segments and arcs of circles. Then K satisfies a tangential Markov inequality
with exponent r ≤ 2.

P r o o f. Clearly if L is a line segment forming a part of K, then by the
univariate case, at any point (x, y) in L,

|DT p(x, y)| ≤M(deg p)2‖p‖L ≤M(deg p)2‖p‖K
for any polynomial p = p(x, y). Thus it suffices to show that if E is an arc of a
circle forming a part of K, then for any point (x, y) in E and any polynomial
p = p(x, y),

|DT p(x, y)| ≤M(deg p)2‖p‖E .
Without loss of generality we let E be an arc on the unit circle. Let p = p(x, y)

be a polynomial of degree n. Then p restricts to a trigonometric polynomial on
E. By setting z = eiθ, we may write p(z) = z−nP2n(z) for some holomorphic
polynomial P2n of degree 2n. A simple calculation reveals that at a point z in E,

|DT p(z)| =
∣∣∣∣ ddz z−nP2n(z)

∣∣∣∣ =
∣∣∣∣z−n ddzP2n(z)− nz−n−1P2n(z)

∣∣∣∣
≤
∣∣∣∣ ddzP2n(z)

∣∣∣∣+ |nP2n(z)| ≤ e

2
1

cap (E)
(2n)2‖p2n‖E + n‖P2n‖E .

Here cap (E) denotes the logarithmic capacity of E and we have used Theorem 1
of Pommerenke [P].

The example of the boundary of a square shows that the exponent r = 2 is,
in general, best possible. We conclude this note by sketching an alternate proof
of 2) implies 1) which illustrates the significance of the exponent 2.

Proposition 4.2. Let K be a smooth compact connected curve in R2 satisfying
(MT ) with exponent strictly less than 2, i.e., there exists M = M(K) > 0 and
1 ≤ r < 2 such that

(MT ) ‖DT p‖K ≤M(deg p)r‖p‖K
for all polynomials p. Then K is algebraic.

P r o o f. Let γ : [0, L]→ R2 be the arclength parameterization of K. Note by
the mean-value theorem and the fact that γ is smooth, for any function f which
is differentiable on a neighborhood of K in R2 and for each pair of points γ(t1),
γ(t2) on K,

(8) |f(γ(t2))− f(γ(t1))| ≤ c[‖γ(t2)− γ(t1)‖]‖DT f‖K
for some constant c = c(K). Suppose K is not algebraic. Fix a positive integer
n and let N = N(n) =

(
n+2

2

)
= dimension of Pn. Choose N/2 points {aj} ∈ K

with ‖aj − aj−1‖ < 4L/N for successive points aj−1, aj . Here L = arclength of
K. We can find a non-zero polynomial qn ∈ Pn which vanishes at each point ai.
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By (MT ) applied to qn,

‖DT qn‖K ≤Mnr‖qn‖K .
Now choose a ∈ K with |qn(a)| = ‖qn‖K . Let ai be a nearest point to a among
the {aj}. Using (8) and (MT ) we obtain

‖qn‖K = |qn(a)− qn(ai)| ≤ c
4L
N
‖DT qn‖K ≤ c

4L
N
Mnr‖qn‖K .

But N > n2/2 so we have

(9) ‖qn‖K ≤ (8LcM)nr−2‖qn‖K .
Since K is not algebraic, for each n we can chose qn ∈ Pn satisfying (9). Since
r < 2, letting n→ +∞ we obtain a contradiction.
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