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1. Introduction. Let D be a domain in Cn. We shall denote by Ak(D) the
algebra of the holomorphic functions in D which have a Ck extension to D and
by O(D) the algebra of the holomorphic functions in a neighborhood of D. A
subset E of ∂D is locally a maximum modulus set for Ak(D) ((LMAk) for short)
if for every p ∈ ∂D, there exist a neighborhood U of p and f ∈ Ak(D ∩ U) such
that |f | = 1 on E ∩U and |f | < 1 on D ∩U\E. Similarly, E is locally a peak set
for Ak(D) ((LPAk) for short) if for every p ∈ E, there exist a neighborhood U
of p and f ∈ Ak(D ∩ U) such that f = 1 on E ∩ U and |f | < 1 on D ∩ U\E. We
have the same definitions for the algebra O(D) of the holomorphic functions in a
neighborhood of D ((LMH) and (LPH) for short).

The characterization of the subsets of the boundary of a bounded strictly pseu-
doconvex domain with C∞ boundary which are (LPA∞) is well known: these are
sets which are locally contained in totally real complex-tangential submanifolds
of dimension n− 1 ([HS] and [CC2]). In fact, these sets are also global peak sets
for A∞(D) [FH].

For instance, few things are known about the sets which are (LMAk) and are
not (LPAk). The situation is clear only for the real analytic submanifolds M of
dimension n in the boundary of strictly pseudoconvex domains with real analytic
boundary: M is (LMH) if and only if M is totally real and admits a real analytic
foliation by complex-tangential submanifolds of codimension 1 [DS]. In general, a
subset E of the boundary of a strictly pseudoconvex domain with C∞ boundary
which is (LMA∞) is locally contained in totally real submanifolds of dimension n
which admit a foliation of dimension 1 which is complex-tangential at the points of
E [I2]. But a set which is (LMH) is not in general a global maximum modulus set
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[DS] and a submanifold of dimension n of the boundary of a strictly pseudoconvex
domain with real analytic boundary which is (LMA2) is real analytic [NR].

Here we use the contact structure of the boundary of a strictly pseudoconvex
domain to study the foliations by complex-tangential submanifolds [BI]. These
methods were used in the context of interpolation sets, peak sets or maximum
modulus sets in [HT], [CC1], [CC2] and [DS]. We present the results from [BS]
and [DS] about real analytic submanifolds of maximal dimension of the boundary
of a strictly pseudoconvex domain with real analytic boundary which are (LMH)
and we use them to obtain results in lower dimension ([BI]). Finally we present
an approach from [NR] (matching of holomorphic and antiholomorphic functions
along maximum modulus sets) and some examples from [NR], which prove that
the situation is really complicated for curves transverse to the complex-tangent
space which are not real analytic.

2. Preliminaries

a) Symplectic structures. A symplectic manifold is a couple (X,Ω), where X
is a differentiable manifold of dimension 2n and Ω is a 2 closed form on X such
that Ωn 6= 0 on X. A submanifold M of X is isotropic if Ω(ξ, η) = 0 for all ξ, η
tangent to M . If M is an isotropic submanifold of X, we have dimM ≤ n and if
dimM = n we say that M is lagrangian.

We shall use the following:

Theorem 1 (Darboux-Weinstein theorem) [WEI]. Let (X1,Ω1), (X2,Ω2), two
symplectic manifolds of the same dimension, M1 ⊂ X1,M2 ⊂ X2, submanifolds.
Let ϕ : M1 → M2 a diffeomorphism such that ϕ∗(Ω2|M2) = Ω1|M1. Then, for
every p ∈ M1 there exist a neighborhood V1 in X1, a diffeomorphism ψ on a
neighborhood V2 of ϕ(p) in X2 such that ψ is an extension of ϕ and ψ∗(Ω2|V2) =
Ω1|V1.

Theorem 1 is also true for real analytic objects.

b) Contact structures. A contact manifold is a couple (Z, ω), where Z is a
differentiable manifold of dimension 2n + 1, and ω is a 1 form on Z such that
ω∧(dω)n 6= 0 on Z. There exists a unique vector field Xω on Z (the characteristic
vector field) such that i(Xω)ω = 1, i(Xω)dω = 0, where i(ξ)η is the left inner
product of a differential form η by a vector field ξ.

A submanifold N of Z is isotropic if ω|N = 0. If N is an isotropic submanifold
of Z, we have dimN ≤ n and if dimN = n, we say that N is a Legendre manifold.

c) Levi form. Let D be a strictly pseudoconvex domain with C2 boundary
and ρ a strictly plurisubharmonic defining function for D. We denote by j the
inclusion of ∂D in Cn and ω = j∗( 1

i ∂ρ). Then the complex-tangent space to ∂D
is T c(∂D) = kerω and ω is a contact form on ∂D.

If ξ, η are sections of T c(∂D), the Levi form is defined by

L(ξ, η) = ∂∂ρ(X,Y )
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where X,Y ∈ T c(∂D) ⊗ C, ξ = ReX, η = ReY. The form L(ξ, η) defines a
hermitian metric on T c(∂D) and we shall say that ξ and η are L-orthogonal if
L(ξ, η) = 0.

A submanifold M of ∂D is complex-tangential if M is an isotropic submani-
fold of the contact manifold (∂D, ω). Since ∂∂ρ|∂D = −idω a complex-tangential
submanifold M is totally real and dimM ≤ n − 1 [HT], [BS]. Also we have
dω(ξ, η) = − 1

2 ImL(ξ, η).

3. Isotropic foliations

Proposition 1 [BI]. Let (X,ω) be a contact manifold of dimension 2n + 1
and M an isotropic submanifold of dimension k, 0 ≤ k ≤ n. Then, for every
p ∈M there exist local coordinates (x0, . . . , x2n) in a neighborhood of p such that
ω = dx0 +

∑n
1 xidxi+n and M = {x0 = xk+1 = . . . = x2n = 0}. In particular M

is an intersection of Legendre submanifolds.

P r o o f. Let p∈M . Since the characteristic vector field Xω is transverse to
M , we may find a neighborhood U of p such that Y = U/Xω is a manifold and
the restriction of the projection π : U → Y to M is an diffeomorphism onto
π(M ∩ U). Then (Y, σ) is a symplectic manifold , where σ is the form induced
by dω on Y . Since π(M ∩ U) is isotropic, by theorem 1 we may extend a co-
ordinate system of π(M ∩ U) to a coordinate system (x̃1, . . . , x̃2n) on Y such
that π(M ∩ U) = {x̃k+1 = . . . = x̃2n = 0} and σ =

∑n
1 dx̃i ∧ dx̃i+n. Then, if

x̃i = xi ◦ π, the form ω −
∑n

1 xi ∧ dxi+n is closed and we may find x0 such that
ω = dx0 +

∑n
1 xidxi+n and M = {x0 = xk+1 = . . . = x2n = 0}.

Now, M is the intersection of the Legendre manifolds {x0 = xk+1 = . . . =
xk+n = 0} and {x0 = xn+1 = . . . = x2n = 0}.

Proposition 2 [BI]. Let (X,ω) be a contact manifold of dimension 2n + 1
and M a submanifold of dimension k + 1 transverse to kerω. Then M admits a
foliation by isotropic submanifolds of codimension 1 if and only if there exist local
coordinates (x0, . . . , x2n) such that ω = ϕ(dx0 +

∑n
1 xidxi+n), with ϕ 6= 0 and

M = {xk+1 = . . . = x2n = 0}. In particular , in this case, M is intersection of
n+ 1 dimensional submanifolds foliated by Legendre submanifolds.

P r o o f. If ω is as in proposition 2, it is clear that the submanifolds Mc =
{xk+1 = . . . = x2n = 0, x0 = c} give an isotropic foliation of codimension 1 of
M , so we have only to prove the converse.

Let p ∈ M . By Frobenius theorem, there exist a neighborhood U of p and
functions f, u on U such that j∗(fω − du) = 0 on U , where j : M → X is the
inclusion. Since M is transverse to kerω, there exists a vector field ξ tangent to
M in a neighborhood of p such that i(ξ)j∗(fω) = 1.

We shall consider ω′ = ϕω such that the restriction of Xω′ to M is ξ.
For this we shall prove that there exists a function g in the neighborhood of p

such that g = 1 on M and i(ξ)d(gfω) = 0 on M . Indeed, since j∗d(fω) = 0 and ξ
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is tangent to M , we have i(ξ)j∗d(fω) = 0. It follows that i(ξ)d(fω) is of the form∑
αrdur + urβr

where αr, βr are 0 and respectively 1 forms defined in a neighborhood of p and
ur = 0 on M . We may take g = 1 +

∑
αrur.

Then, by taking ϕ = fg, since the characteristic vector field is the unique
vector field η which satisfies i(η)ω′ = 1 and i(η)dω′ = 0, we have Xω′ = ξ on a
neighborhood of p in M . Since i(η)ω′ = 1 and ω′−du|M = fω−du|M = 0 there
exists an extension ũ of u such that i(Xω′)dũ = 1 and we consider the foliation
of X given by ũ = constant.

Since i(Xω′)dũ = 1, there exists a diffeomorphism x→ (t, y) from a neighbor-
hood V of p to I×Y , where I is a real interval and Y is the manifold of orbits, such
that Xω′ is transformed to ∂

∂t . Since dω′ is an absolute integral invariant of Xω′ ,
(Y, σ) is a symplectic manifold, where σ is the form induced by dω′. Finally, M is
identified with I×M ′ where M ′ is an isotropic submanifold of Y and we may finish
the proof by applying theorem 1 in the same way as in the proof of proposition 1.

4. Maximum modulus manifolds of maximal dimension. From now on,
we shall denote by D a strictly pseudoconvex domain with real analytic boundary
in Cn. If M is a real analytic submanifold of the boundary we shall denote by
M c a complexification of M .

Proposition 3 [HS]. Let M be a submanifold of ∂ D which is (LPH). Then
M is complex-tangential. In particular M is totally real and dimM ≤ n− 1.

P r o o f. Let p ∈M and let ρ be a defining function for D in a neighborhood
of p. Let z = (z1, . . . , zn), zj = xj + iyj be local coordinates in a neighborhood of
p such that p = 0 and ρ(z) = xn +O(|z|2). Let f be a holomorphic function in a
neighborhood U of p such that f = 0 on M ∩ U and Re f < 0 on D ∩ U\M . By
the Hopf lemma we have ∂ Re f/∂xn(0) 6= 0. Since the origin is a local maximum
for Re f we have

∂ Re f
∂xj

(0) =
∂ Re f
∂yj

(0) = 0, 1 ≤ j ≤ n− 1,
∂ Re f
∂yn

(0) = 0

and by the Cauchy-Riemann equations we have also
∂ Im f

∂xj
(0) =

∂ Im f

∂yj
(0) = 0, 1 ≤ j ≤ n− 1,

∂ Im f

∂xn
(0) = 0,

∂ Im f

∂yn
(0) 6= 0.

It follows that Σ = {z | ρ(z) = Im f(z) = 0} is in a neighborhood of the origin a
manifold of dimension 2n− 2, T0(Σ) = {z | zn = 0} = T c0 (∂D) and since M ⊂ Σ,
M is complex-tangential.

Theorem 2 [BS]. Let M be a real analytic totally real submanifold of dimen-
sion n − 1 of ∂D. Then M is complex-tangential if and only if there exists M c

such that M c ∩D = M .
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P r o o f. Let p ∈ M and let z = (z1, . . . , zn), zj = xj + iyj be holomorphic
coordinates in a neighborhood of p such that p = 0 and M = {z | y1 = . . . =
yn−1 = zn = 0}. Let ρ be a strictly plurisubharmonic defining function for D in
a neighborhood of p.

Let us suppose that M c ∩D = M . We have ρ(z1, . . . , zn−1, 0) ≥ 0 and
ρ(x1, . . . , xn−1, 0) = 0. In particular ∂ρ

∂zj
(x1, . . . , xn−1, 0) = 0, j = 1, . . . , n − 1

and M is complex-tangential.
Conversely, let M be a complex-tangential submanifold of ∂D.
We denote z′ = (z1, . . . , zn−1), z′ = x′ + iy′. Since M is complex-tangential,

we have ∂ρ
∂zj

(x′, 0) = 0, j = 1, . . . , n− 1. So

ρ(z′, 0) =
1
2

n−1∑
j,k=1

∂2ρ

∂yj∂yk
(x′, 0)yjyk +O(|y|3).

Since ∂ρ
∂zj

(x′, 0) = 0, we have also ∂2ρ
∂xj∂xk

(x′, 0) = ∂2ρ
∂xj∂yk

(x′, 0) = 0, for every

j, k = 1, . . . , n − 1, so ∂2ρ
∂yj∂yk

(0) = 4 ∂2ρ
∂zj∂zk

(0). Since ρ is strictly plurisubhar-
monic, there exits m > 0 such that

n−1∑
j,k=1

∂2ρ

∂yj∂yk
(x′, 0)yjyk ≥ m|y′|2

for every (x′, y′) in a neighborhood of the origin, so ρ(z′, 0) ≥ 0 and ρ(z′, 0) = 0
if and only if y′ = 0 for |y′| small enough.

Proposition 4 [I2]. Let M be a submanifold of ∂D which is (LMH). Than
M is totally real. If we suppose that M is transverse to T c(∂D), then M admits
a foliation by complex-tangential submanifolds of codimension 1.

P r o o f. Let p ∈ M and f a holomorphic function in the neighborhood U of
p such that |f | = 1 on M ∩ U and |f | < 1 on D ∩ U\M . Let z = (z′, zn), z′ =
(z1, . . . , zn−1), zj = xj + iyj be holomorphic coordinates in a neighborhood
of p such that p = 0 and D has a strictly plurisubharmonic defining function
ρ = xn + h(z′, yn), where h vanishes to second order at the origin.

Let g = logf , with g holomorphic in the neighborhood of p and Im g(p) = 0.
As in the proof of proposition 3 we have

∂ Re g
∂xj

(0) =
∂ Re g
∂yj

(0) =
∂ Im g

∂xj
(0) =

∂ Im g

∂yj
(0) = 0, 1 ≤ j ≤ n− 1,

∂ Re g
∂yn

(0) =
∂ Im g

∂xn
(0) = 0,

∂ Re g
∂xn

(0) 6= 0,
∂ Im g

∂yn
(0) 6= 0.

So we may consider the holomorphic change of coordinates near 0 given by wn = g,
wn = un + ivn and we have h(z′, vn) ≥ 0 and h(z′, vn) = 0 if (z′, vn) ∈ M . It
follows that gradh(z′, vn) = 0 if (z′, vn) ∈M .
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Since h(z′, 0) is strictly plurisubharmonic, by [HW] there exists a complex
linear change of the coordinates z′ such that

h(z′, 0) =
n−1∑

1

(1 + λj)x2
j + (1− λj)y2

j +O(|z′|3), with λj ≥ 0.

It follows that {z | ρ = 0, ∂ρ∂xj
(z) = 0, j = 1, . . . n−1} is a totally real manifold

of dimension n in a neighborhood of the origin which containsM . Suppose thatM
is not complex-tangential. Than the set Ma = {z ∈M | Im g = a} is a manifold of
codimension 1 in a neighborhood of the origin for every a small enough. But Ma is
(LPH) for the function F = e−ia(f + eia)/2 [DS] and by proposition 3 it follows
that M admits a foliation by complex-tangential submanifolds of codimension 1.

Example 1. Let D be the domain

D =
{
z = (z1, . . . , zn) ∈ Cn

∣∣∣Re zn +
n−1∑
i=1

(Re zi)2 + ((Im zn + (Im z1)2)4 < 0
}

and M = {z | Re z1 = . . . = Re zn = 0, Im zn = −(Im z1)2}. D is a strictly pseu-
doconvex domain with real analytic boundary and M is a totally real submanifold
of dimension n − 1 of ∂D. We have Re zn ≤ 0 on D and Re zn = 0 on D if and
only if and only if z ∈M . So M is (LMH) for the function exp(zn). But

T0(M) = {z | Re z1 = . . . = Re zn−1 = zn = 0} ⊂ T c0 (∂D) = {z|zn = 0}

and M is transverse to T cz (∂D) if Im z1 6= 0.

Corollary 1 [DS]. Let M be an n-dimensional real analytic submanifold of
∂D which is (LMH). Then M is totally real and admits a real analytic foliation
of codimension 1 by complex-tangential submanifolds.

Theorem 3 [DS]. Let M be an n-dimensional real analytic totally real sub-
manifold of ∂D. Then M is (LMH) if and only if M admits a real analytic
foliation of codimension 1 by complex-tangential submanifolds.

P r o o f. By corollary 1 we have only to prove the converse. Let z∈M and sup-
pose that Ma = {z ∈M | ϕ(z) = a} give a foliation of M by complex-tangential
submanifolds, where ϕ is real analytic in a neighborhood of z in M . Since M is
totally real there exists a holomorphic extension ϕ̃ of ϕ in a neighborhood of z
in Cn. Let Σ = {z | Im ϕ̃(z) = 0}. Since dRe ϕ̃(z) 6= 0, by the Cauchy-Riemann
equations,Σ is a hypersurface in a neighborhood U of z which contains M . Also
if a ∈ R, Σa = {z ∈ U | ϕ̃(z) = a} is a complex submanifold of Σ which is a com-
plexification of Ma. By proposition 4, we have Σa∩D = Ma, so Σ∩D∩U = M∩U.
It follows that Im ϕ̃ has constant sign on D ∩ U , so M ∩ U is (LMH) for one of
the functions exp(±iϕ̃(z)).

Example 2 [DS]. Let B2 be the unit ball in C2, α1, α2 ∈ R such that α2
1+α2

2 =
1 and γ = α2

1/α
2
2 is irrational and M = {z = (z1, z2)||z1| = α1, |z2| = α2}. M is a
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totally real 2-dimensional submanifold of ∂B2 which is foliated by the complex-
tangential curves Mc = {z = (z1, z2) | z1 = α1e

−ciα2
2t, z2 = α2e

ciα2
1t}. Since Mc

is dense in M , it follows that M is not a global maximum modulus set. But M
is (LMH) for the function f(z1, z2) = z2

1z
γ
2 .

5. Complex-tangential foliations and diagonalizable Levi form

Lemma 1 [BI]. Let M be a k-dimensional submanifold of ∂D. Let p ∈M such
that M is not complex-tangential in a neighborhood of p. Then T (M) ∩ T c(∂D)
is a distribution of rank k − 1 in a neighborhood of p.

P r o o f. Since M is not complex-tangential, we have dimTz(M) ∩ T cz (∂D) < k
for z in a neighborhood of p and since both Tz(M) and T cz (∂D) are subspaces of
Tz(∂D) we have dimTz(M) ∩ T cz (∂D) = k − 1 for z in a neighborhood of p.

Theorem 4 [BI]. Let M be a submanifold of ∂D and p ∈ M such that M is
not complex-tangential in a neighborhood of p. The following are equivalent :

a) There exists a neighborhood of p where M admits a foliation by complex-
tangential submanifolds of codimension 1.

b) There exists a neighborhood U of p such that L(ξ, η) ∈ R for any sections
ξ, η over U of the bundle T (M) ∩ T c(∂D).

P r o o f. By Frobenius theorem a) is valid if and only if the distribution de-
fined by T (M) ∩ T c(∂D) is integrable. With the notations of 1c) this happens if
and only if j∗(dω) = ϕ ∧ j∗(ω). Since dω(ξ, η) = − 1

2 ImL(ξ, η) for any sections
ξ, η of kerω we obtain the result.

By theorem 2, proposition 2 and theorem 3 we obtain:

Corollary 2 [BI]. Let M be a real analytic totally real submanifold of ∂D
which is not complex-tangential at any point. Then M is (LMH) if and only
if L(ξ, η) ∈ R for every ξ, η sections of T (M) ∩ T c(∂D). This is always true if
dimM ≤ 2.

Corollary 3 [BI]. Let M be a real analytic totally real n-dimensional sub-
manifold of ∂D. M is (LMH) if and only if for every p ∈ M there exists a
complex L-orthogonal frame of T c(∂D) in a neighborhood of p which generates
T (M) ∩ T c(∂D) over R.

Example 3 [I1]. Let D = {z = (z1, z2, z3) ∈ C3 | 2 Re z3 + |z1|2 + |z2|2 + |z3|2
< 0} and M = {z ∈ ∂D|Re z2 = 2 Im z1, Re z1 = Im z2}. D is isomorphic with
the unit ball in C3 and M is a real analytic totally real submanifold of dimension
3 of ∂D. The vector space T0(M) ∩ T c0 (∂D) is generated by

ξ = Re
[(

∂

∂z1

)
0

− i
(

∂

∂z2

)
0

]
and η = Re

[
2
(

∂

∂z2

)
0

− i
(

∂

∂z1

)
0

]
.

We see that L0(ξ, η) 6∈ R, so M does not admit a foliation by complex tan-
gential submanifolds.
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Theorem 4 [BI]. A real analytic submanifold M of ∂D is (LPH) if and only
if M is complex-tangential.

P r o o f. If dimM =n−1, it follows by proposition 2 that M is the leaf of an
n-dimensional submanifold M ′ of ∂D which admits a foliation by complex-tan-
gential submanifolds. By theorem 3 M ′ is (LMH) and by the proof of proposition
4 it follows that M is (LPH). The general case follows by applying proposition 2.

6. Real analyticity for smooth maximum modulus manifolds

Theorem 5 [NR]. Let D be a strictly pseudoconvex domain with real analytic
boundary and E a (LMA2). Then, for every ζ ∈ E, there exist a neighborhood U
of ζ and a C1 map G on U , holomorphic in D ∩ U, such that G(z) = z on E.

P r o o f. Let us suppose that in a neighborhood V of z we have D ∩ V =
{z ∈ V | ρ(z)< 0} where ρ is strictly plurisubharmonic on V . Let Σ = {(z, ξ) ∈
Cn × CPn−1 | z ∈ ∂D ∩ V, ξ = [∂ρ(z)]} where CPn−1 is the complex projective
space of dimension n − 1, and [∂ρ(z)] is the point in CPn−1 which has homo-
geneous coordinates (∂ρ/∂z1, . . . , ∂ρ/∂zn). By [WEB] it follows that Σ is a real
analytic totally real submanifold of dimension 2n− 1 of Cn ×CPn−1. We denote
by χ = (χ1, χ2) the antiholomorphic reflection across Σ.

Let z ∈ E and f a holomorphic function in a neighborhood U of z, U ⊂ V,
such that |f | = 1 on E ∩U and |f | < 1 on D∩U\E. By the Hopf lemma we have
[∂ρ(z)] = [∂f(z)] for every z ∈ E. We denote G(z) = χ1(z, [∂f(z)]). Since χ is
antiholomorphic and χ(Σ) = Σ it follows that G is a C1 map on U , holomorphic
in D ∩ U , and if z ∈ E, we have

G(z) = χ1(z, [∂f(z)]) = χ1(z, [∂ρ(z)] = z.

Corollary 4 [NR]. Let D be a strictly pseudoconvex domain with real analytic
boundary in Cn and M a C1 submanifold of dimension n of ∂D which is (LMA2).
Then M is real analytic.

P r o o f. Let p ∈ E. By theorem 5 there exist a neighborhood U of p and a
C1 map G on U , holomorphic on D ∩ U such that G(z) = z. Then G is a C1

diffeomorphism in a neighborhood of p and the maps G(z) and F (z) = G−1(z)
are extensions of the restriction of z to M . But F and G are holomorphic on
opposite wedges with edge M , so by the edge of the wedge theorem for C1 man-
ifolds [R], it follows that the restriction of z to M has a holomorphic extension
Φ = (Φ1, . . . ,Φn) to some neighborhood of p. Then from the 2n equations

Re Φj = Re zj , Im Φj = − Im zj , j = 1, . . . , n

we can extract n independent equations which define the n dimensional mani-
fold M .

Example 4 [NR]. This example will give a smooth curve transverse to the
complex-tangent space in the boundary of the unit ball B2 in C2 which is locally
a maximum modulus set for A∞(B2) and it is not real analytic.
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Let D be the unit disk in C, h ∈ A∞(D), such that h(z)− (1− z) vanishes to
infinite order at 1 but h(z)− (1− z) does not vanish identically. If ε > 0 is small
enough, the set Γε = {(z1, z2) ∈ ∂B2 | z2 = εh(z1)} is a smooth curve in ∂B2

which has contact to infinite order at (1, 0) with the circle {|z1| = 1, z2 = 0}. So,
Γε is not real analytic. The curve Γε can be parametrized by (z1, θ(z1)) where z1
belongs to a smooth simple closed curve γε in the z1 plane. We consider a smooth
extension of θ to the bounded component Ωε of C\γε that we still denote by θ
and we shall denote Ω = {(z1, θ(z1)) | z1 ∈ Ωε}. Let us consider the holomorphic
vector field

Z =
−εh(z1)

1− εz2h(z1)
∂

∂z1
+

∂

∂z2
.

Since z2 = εh(z1) and z1 = (1− z2εh(z1))/z1 on Γε, Z is tangent to ∂B2 along Γε
and it defines a holomorphic foliation of the ball near (1, 0). For ε small enough,
Z is close to ∂/∂z2, so we may consider new real variables (x1, y1, x2, y2) in a
neighborhood of (1, 0) such that Z = ∂/∂x2 + i∂/∂y2.

Since for ε small the change of variables is close to the identity and Z is tangent
to ∂B2 at the points of Γε, the points in Ω may be parametrized by (x1, y1), so each
leaf of the foliation defined by Z has a unique point of intersection with Ω. So there
exists a retraction G of the neighborhood of (1, 0) in B2 in a neighborhood of (1, 0)
in Ω such that the points in B2\Γε correspond to points in Ω. Using G, we can de-
fine an almost complex structure J on Ω induced by the complex structure in C2.
This structure is integrable because of the complex dimension 1. So there exists a
conformal transformation f from (Ω, J) to D which extends smoothly to D. Then
in a neighborhood of (1, 0), we have |f ◦G| < 1 on B2\Γε and |f ◦G| = 1 on Γε.

Example 5 [NR]. We shall give an example of a smooth curve Γ in the bound-
ary of the unit ball B2 in C2 such that the restriction of z to Γ has a holomorphic
extension to B2, but Γ is not (LMA2).

Let D be the unit disk in C and h ∈ A∞(D) such that h vanishes to infinite
order at (1, 0). Let Γ = {(z1, z2) ∈ ∂B2 | z2 = 2z2 + h(z1)}. Since Γ has contact
to infinite order at (1, 0) with {(z1, z2) | |z1| = 1, z2 = 0}, it follows that Γ is not
real analytic. On Γ we have

z1 =
1− 2z2

2 − z2h(z1)
z1

so the restriction of z to Γ has a holomorphic extension in a neighborhood of (1, 0).
Let us suppose that there exist a neighborhood U of (1, 0) and F ∈ A2(B2∩U)

such that |F | = 1 on Γ ∩ U and |F | < 1 on (B2\Γ) ∩ U. Using the Hopf
lemma as in the proof of proposition 3, we have ∂F

∂z1
(1, 0) 6= 0, ∂F

∂z2
(1, 0) = 0

and ( ∂F∂z2 (z),− ∂F
∂z1

(z)) ∈ T cz (∂B2) if z ∈ Γ. So, if z ∈ Γ, we have

∂F
∂z2
∂F
∂z1

=
z2

z1
=

z1(2z2 + h(z1))
1− 2z2

2 − z2h(z1)
.
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Let λ(t) = (λ1(t), λ2(t)) be the solution of the Cauchy problem

dλ

dt
=
(
−

∂F
∂z2
∂F
∂z1

(λ(t)), 1
)
, λ(0) = (1, 0).

By the form above of ∂F
∂z2

/ ∂F∂z1 , since Γ is not real analytic, we have λ1(t) = 1−t2+
o(t2). Since λ2(t) = t, we have |λ(t)| < 1 for t small enough, t 6= 0, so λ is a curve
in B2 through (1, 0) and λ(t) ∈ B2 if t 6= 0. But d

dt (F ◦ λ) = 0, so F is constant
on λ. It follows that |F | = 1 for some points in the ball, which is a contradiction.
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