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0. Introduction. In his lectures “Characteristic properties of quasidisks” [8],
F. W. Gehring proved the following.

Theorem. Let f : Ĉ → Ĉ be a K-qc (K-quasiconformal) homeomorphism
with f(∞) = ∞. If zj , j = 0, 1, 2, are three distinct points in C and z′j = f(zj),
then

|z1 − z0| ≤ |z2 − z0| implies |z′1 − z′0| ≤ e8K |z′2 − z′0| .

Our initial aim was to extend this theorem to K-qc homeomorphisms between
Riemann surfaces. It was an immediate observation that Gehring’s theorem may
be rewritten by means of Evans–Selberg potential or the Sario capacity function
and we shall use the latter to cover both the parabolic and the hyperbolic cases. In-
deed, the Sario capacity function of C with respect to z0 is pC(z, z0) = log |z−z0|.
On the other hand, f may be interpreted by restriction as a K-qc homeomorphism
f |C : C → C, so that if we denote pC(z, z0) by τ and pC(z′, z′0) by τ ′, Gehring’s
theorem takes the form:

Let f : C→C be a K-qc homeomorphism, zj , j = 0, 1, 2, distinct points in C,
z′j = f(zj), τk = pC(zk, z0) and τ ′k = pC(z′k, z

′
0), k = 1, 2. Then

(0.1) τ1 ≤ τ2 implies τ ′1 ≤ τ ′2 + 8K .
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In [4] we succeeded in extending this theorem to the class Rp of Riemann
surfaces. The proof was based on a theorem of normal families [5], I, and on
results about the behaviour of the level lines of the capacity function under K-qc
homeomorphisms [6], which led us further to other distortion problems [7]. The
present paper is a renewed synthesis of this research.

1. Compactness of families of K-qc homeomorphisms between Rie-
mann surfaces

1.1. In what follows we consider Riemann surfaces endowed with the metric
corresponding to the conformal type of their universal coverings and the l.u.
(locally uniform, [11], p. 14) convergence with respect to this metric. Points on
Riemann surfaces and local parameters will be denoted by the same letters, e.g.
z, z′.

Theorem 1.0. Let R and R′ be Riemann surfaces not conformally equivalent
to C and Ĉ, M and M ′ compact subsets of R and R′ respectively , and F the
family of K-qc homeomorphisms f : R→ R′ for which

(1.1) f(M) ⊂M ′ .
If F 6= ∅, then F is normal and closed. The same result holds if condition (1.1)
is replaced by

(1.2) f(M) = M ′ .

As in [5], I and II, we prove this theorem in two steps: first we lift the family F
to the universal coverings (R̂, π,R) and (R̂′, π′, R′) with a convenient normaliza-
tion and show in Theorem 1.1 that the lifted family F̂ is normal and closed, and
then we deduce in Theorem 1.2 from these properties of F̂ the same properties
for F .

1.2. In order to establish these theorems we use the following propositions.

Proposition 1.1. Let {fn}, n ∈ N∗, be a sequence of homeomorphisms be-
tween Riemann sufraces, fn : R→ R′, and for each n, let f̂n : R̂→ R̂′ be a lifting
of fn with respect to the universal coverings (R̂, π,R) and (R̂′, π′, R′) such that
the sequence {f̂n} converges l.u. to a homeomorphism f̂0 : R̂→ R̂′. Then

(i) f̂0 is the lifting of a homeomorphism f0 : R→ R′ and
(ii) the sequence {fn} converges l.u. to f0.

P r o o f. (i) Consider the covering groups G and G′ of (R̂, π,R) and (R̂′, π′, R′)
respectively. To prove the existence of the homeomorphism f0 it is necessary and
sufficient to verify that for each T ∈ G there exists T ′ ∈ G′ such that f̂0T f̂−1

0 = T ′

([11], p. 145). For every index n, there exists T ′n ∈ G′ with f̂nT f̂−1
n = T ′n. Let ẑ′

be an arbitrary but fixed point in R̂′. The sequence {T ′nẑ′}, being convergent and
contained in the discrete orbit G′ẑ′, must be stationary and, as G′ is a fixed point
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free group, T ′n = T ′ for sufficiently large n and a certain T ′ ∈ G′. By passing to
the limit in f̂nT f̂

−1
n = T ′ one obtains f̂0T f̂−1

0 = T ′.
(ii) follows easily from the l.u. convergence of {f̂n} and the properties of the

metric: d(fn(ξ), f0(ξ)) ≤ d(f̂n(ξ̂), f̂0(ξ̂)), for any ξ ∈ R, ξ̂ ∈ π−1(ξ), where d

denotes the distance in the metric on R and R̂ respectively.

Proposition 1.2. If in Proposition 1.1 the fn are K-qc, then so are f̂n, f̂0
and f0.

1.3. Theorem 1.1. Under the hypotheses of Theorem 0.1 and with the above
notations fix arbitrary points z0 ∈ M and ẑ0 ∈ π−1(z0), and a compact set M̂ ′

with π′(M̂ ′) ⊃M ′. The family F̂ of all homeomorphisms f̂ : R̂→ R̂′ such that f̂
is the lifting of a homeomorphism f ∈ F normalized by the condition f̂(ẑ0) ∈ M̂ ′,
is normal and closed.

P r o o f f o r b o t h c a s e s (1.1) a n d (1.2). The hyperbolic case: R̂ = R̂′ = D

the unit disc. The family F̂ is normal by Theorem 5.1.1 of [12], since each f̂ ∈ F̂
omits Ĉ \D.

Consider a l.u. convergent sequence {f̂n} ⊂ F̂ , n ∈ N∗. According to The-
orem 5.5 of [12], f̂0 = limn→∞ f̂n is a K-qc homeomorphism D → D, for
f̂0(ẑ0) ∈ M̂ ′ ⊂ D. By Propositions 1.1 and 1.2 it follows that f̂0 is the lifting
of a K-qc homeomorphism f0 : R → R′ and if fn ∈ F corresponds to f̂n, the
sequence {fn} l.u. converges to f0. Then one easily sees that f0 ∈ F , therefore
f̂0 ∈ F̂ .

Case of the torus: R = C/Zω1 + Zω2 and R′ = C/Zω′1 + Zω′2, ωj , ω′j ∈ C∗,
j = 1, 2, Im(ω2/ω1) > 0 and Im(ω′2/ω

′
1) > 0, R̂ = R̂′ = C.

If f : R→ R′ is a homeomorphism and f̂ : C→ C a lifting of f , then

(1.3) f̂(ẑ +mω1 + nω2) = f̂(ẑ) +mω̂′1 + nω̂′2 ,

where ω̂′j = f̂(ξ̂ + ωj), ξ̂ = f̂−1(0) and m,n ∈ Z.
Let f be K-qc. Take the parallelogram P with vertices ẑ0, ẑ0+ω1, ẑ0+ω1+ω2,

ẑ0+ω2 and denote by Cj the family of segments in P which are parallel to the side
ẑ0, ẑ0 + ωj , by P ′ the image f̂(P ) and by A′ the area of the parallelogram with
vertices 0, ω′1, ω′1+ω′2, ω′2, which is equal to the area of P ′, since ω̂′j = m′jω

′
1+n′jω

′
2

and m′1n
′
2−m′2n′1 = 1. It follows that |ω̂′j |2 ≤ KA′/ModCj , i.e. we have obtained

an upper bound for |ω̂′j |, say %, depending only on R, R′ and K.
The family F̂ in Theorem 1.1 is normal by Theorem 5.1.2 of [12] since every

f̂ ∈ F̂ omits∞ and f̂(ẑ0+ωj) = ẑ′0+ω̂′j with ẑ′0 = f̂(ẑ0) ∈ M̂ ′ and ω̂′j ∈ clD(0, %).
Consider again a l.u. convergent sequence {f̂k} ⊂ F̂ , k ∈ N∗. According

to Theorems 5.2 and 5.3 in [12], f̂0 = limk→∞ f̂k is a K-qc homeomorphism
C → C, since it takes an infinity of values. Indeed, set as before ξ̂k = f̂−1

k (0)
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and ω̂′jk = f̂k(ξ̂k + ωj); clearly ω̂′jk 6= 0 and ω̂′jk ∈ Zω′1 + Zω′2. By passing to
the limit one obtains from the relation f̂k(ẑ + ωj) = f̂k(ẑ) + ω̂′jk the existence of
ω̂′j0 = limk→∞ ω̂′jk 6= 0, and from (1.3) written for f̂k the equality f̂0(ẑ0 +mω1 +
nω2) = f̂0(ẑ0) +mω̂′10 + nω̂′20.

The closedness of F̂ follows as in the hyperbolic case.

Case of R = R′ = C∗. One proceeds as for the torus (by using the universal
covering (C, exp,C∗) one obtains instead of (1.3) the relation f̂(ẑ + 2πni) =
f̂(ẑ)± 2πni) or even directly as in [5], I.

1.4. Propositions 1.1 and 1.2 imply

Theorem 1.2. Let F be a family of homeomorphisms (in particular of K-qc
homeomorphisms) f : R → R′ between two Riemann surfaces R and R′, and F̂
a family consisting of at least a lifting f̂ : R̂ → R̂′ with respect to the universal
coverings (R̂, π,R) and (R̂′, π′, R′) for every f ∈ F . If F̂ is normal and closed ,
then F is also normal and closed.

1.5. R e m a r k 1.1. A special case of Theorem 1.0 and 1.1 is given by M={z0}
and M ′ = {z′0} (see [5], I). Of course sometimes it is useful to consider the case
M = {z0}, M ′ an arbitrary compact in R′ (see [5], II).

R e m a r k 1.2. Case R = R′ = C. If M = {z0}, the family F is not normal
as the example {n(z − z0)}, n ∈ N∗, shows. However, if M contains at least two
distinct points, then F is normal and closed in the case (1.2), and normal but not
closed in the case (1.1) as follows from the example {z/n}, n ∈ N∗, M = M ′ = D
(see [5], II).

2. Distortion of the level lines of some principal functions under
K-qc homeomorphisms

2.1. Let R be an open Riemann surface, Γ its ideal boundary, M a compact
subset in R upon which we shall set other conditions in particular cases.

We shall deal with a harmonic function t : R \M → (τ0, T0) ⊂ R tending to
constant limits τ0 as z ∈ R\M tends to ∂M and T0 as z → Γ , τ0, T0 ∈ [−∞,+∞],
with the properties:

(i) The level lines cτ := {z ∈ R\M : t(z) = τ} are compact in R\M and they
define regular exhaustions of R by means of Πτ := M ∪ {z ∈ R \M : t(z) < τ},
τ ∈ (τ0, T0).

(ii)
∫
cτ
∗ dt = a for some constant a > 0, such that if τ1 < τ2, τj ∈ (τ0, T0),

the family of level lines cτ1τ2 := {cτ : τ ∈ [τ1, τ2]} is an extremal family for the
modulus of Πτ1τ2 := cl(Πτ2 \ Πτ1) with respect to its boundary partition given
by cτ1 and cτ2 . Namely for this modulus, denoted by ModΠτ1τ2 , which is equal
by definition to the modulus of the family of curves in Πτ1τ2 separating cτ1 from
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cτ2 , we have (see [2])

(2.1) ModΠτ1τ2 = Mod cτ1τ2 = (τ2 − τ1)/a .

Different functions t are characterized by adding other conditions (as in the
examples discussed below in 2.4) but only these general ones are involved in our
results.

On the other hand, the existence of a function t depends on R and M (a more
precise notation for t should be e.g. tR( ,M)), and we shall denote by Rt the class
of those open Riemann surfaces on which such a function t exists.

Setting of the problem. Let R and R′ be Riemann surfaces of class Rt, Γ
and Γ ′ their ideal boundaries, M and M ′ compact sets in R and R′ respectively ,
such that there are functions t= tR( ,M) and t′ = tR′( ,M ′). Suppose that f :
R→ R′ is a K-qc homeomorphism with f(M) = M ′. We ask about a connection
between fcτ and the level lines c′τ ′ = {z′ ∈ R′ \M ′ : t′(z′) = τ ′}.

In what follows we introduce for t′ on R′ the notations c′τ ′
1τ

′
2
, Π ′τ ′ and Π ′τ ′

1τ
′
2

similar to those for t on R.

2.2. First we shall consider a single homeomorphism f and define two auxiliary
functions

τ ′0(τ, f) = min{τ ′ = t′(z′) : z′ ∈ fcτ}
and

T ′0 (τ, f) = max{τ ′ = t′(z′) : z′ ∈ fcτ} .
Thus fcτ is included in Π ′τ ′

0(τ,f)T ′
0 (τ,f) or reduces to c′τ ′ when

τ ′ = τ ′0(τ, f) = T ′0 (τ, f) .

In the first case the distortion of fcτ from the level lines c′τ ′ could be measured
by

Mod c′τ ′
0(τ,f)T ′

0 (τ,f) = (T ′0 (τ, f)− τ ′0(τ, f))/a .

Theorem 2.1. The functions τ ′0(τ, f) and T ′0 (τ, f) are strictly increasing in
τ , and if τ1 ≤ τ2 then

(2.2) K−1[τ ′0(τ2, f)− T ′0 (τ1, f)] ≤ τ2 − τ1 ≤ K[T ′0 (τ2, f)− τ ′0(τ1, f)] .

P r o o f. T ′0 (τ, f) is strictly increasing . Let τ1 < τ2 and note that R′ \ c′T ′
0 (τ2,f)

decomposes into two disjoint open sets Π ′T ′
0 (τ2,f) = M ′ ∪ {z′ ∈ R′ \M ′ : t′(z′) <

T ′0 (τ2, f)} and {z′ ∈ R′ \M ′ : t′(z′) > T ′0 (τ2, f)}. Since Π ′T ′
0 (τ2,f) ⊃ fΠτ2 ⊃ fcτ1

and c′T ′
0 (τ1,f) ∩ fcτ1 6= ∅ it follows that T ′0 (τ1, f) < T ′0 (τ2, f).

The proof for τ ′0(τ, f) is similar.
P r o o f o f (2.2). By using (2.1) and Grötzsch’s inequalities we can write

a−1[T ′0 (τ2, f)− τ ′0(τ1, f)] = ModΠτ ′
0(τ,f)T ′

0 (τ2,f) ≥ Mod fcτ1τ2
≥ K−1 Mod cτ1τ2 = K−1a−1(τ2 − τ1) .
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Further, if τ ′0(τ2, f)−T ′0 (τ1, f) ≤ 0, the left hand side of (2.2) is trivial. Suppose
that τ ′0(τ2, f)−T ′0 (τ1, f) > 0. Then the family c′T ′

0 (τ1,f)τ ′
0(τ2,f) separates fcτ1 from

fcτ2 hence its modulus

a−1(τ ′0(τ2, f)− T ′0 (τ1, f)) ≤ Mod fΠτ1τ2 ≤ K ModΠτ1τ2 = Ka−1(τ2 − τ1) .

As in [6] and [7] one can discuss equality cases in (2.2) which appear when fcτ =
c′τ ′ and the characteristic ellipses of f have a special orientation (are tangent or
orthogonal) with respect to the level lines.

2.3. Now we shall consider the family F of all K-qc homeomorphisms f : R→
R′ with f(M) = M ′, and, by adding in the case R = R′ = C the hypothesis that
M contains at least two points, we obtain inequalities valid for the whole family.
To this end we define

τ ′0(τ) = inf{τ ′0(τ, f) : f ∈ F} and T ′0 (τ) = sup{T ′0 (τ, f) : f ∈ F} .

Proposition 2.1. There are extremal functions f0τ and F0τ in F such that

τ ′0(τ) = τ ′0(τ, f0τ ) and T ′0 (τ) = T ′0 (τ, F0τ ) .

P r o o f o f t h e e x i s t e n c e o f f0τ . By the definition of τ ′0(τ) there exists
a sequence {fn} ⊂ F such that τ ′0(τ, fn) → τ ′0(τ) as n → ∞. Theorem 1.0 (or
Remark 1.2 for C) implies that there is a subsequence of {fn}, denoted again
by {fn}, which l.u. converges to f0 ∈ F . Take a sequence {zn} ⊂ cτ such that
for z′n = fn(zn) we have t′(z′n) = τ ′0(τ, fn). Selecting a subsequence from {zn},
denoted again by {zn}, we can suppose that zn → z∗ ∈ cτ . One easily verifies
that z′n → f0(z∗) := z∗′. Thus t′(z′n) → t′(z∗′), i.e. τ ′0(τ) = t′(z∗′) ≥ τ ′0(τ, f0),
and by definition of τ ′0(τ) this implies τ ′0(τ) = τ ′0(τ, f0), i.e. f0τ := f0.

The proof for F0τ is similar.

Theorem 2.2. The functions τ ′0 and T ′0 are strictly increasing and satisfy for
τ1 < τ2 the inequalities

(2.3) K−1[τ ′0(τ2)− T ′0 (τ1)] ≤ τ2 − τ1 ≤ K[T ′0 (τ2)− τ ′0(τ1)] .

P r o o f. If τ1 < τ2 then T ′0 (τ1) = T ′0 (τ1, F0τ1) < T ′0 (τ2, F0τ1) ≤ T ′0 (τ2).
Further, (2.3) follows from (2.2) taking into account that for every τ and every

f ∈ F , τ ′0(τ) ≤ τ ′0(τ, f) and T ′0 (τ) ≥ T ′0 (τ, f).

2.4. Examples of functions t

2.4.1. Sario capacity function ([15], [16], Ch. V, [17], p. 179, [18], Ch. III). Let
R be an open Riemann surface, z0 a point in R, z a l. parameter in a neighbour-
hood v of z0. The Sario capacity function pR( , z0) of R (or of its ideal boundary
Γ ) with respect to z0 and the l. parameter z is defined by the properties:

(i) pR( , z0) is harmonic on R \ {z0}.
(ii) pR(z, z0) = log |z − z0|+ h(z) in v, where h is harmonic and h(z0) = 0.
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(iii) In the family of functions {ϕ} onR with the properties (i) and (ii), pR( , z0)
minimizes the integral

∫
Γ
ϕ ∗ dϕ := limn→∞

∫
Γn
ϕ ∗ dϕ, where Γn = ∂Πn, Πn is

a regular region of R, the sequence {Πn} forms an exhaustion of R and Π0 3 z0.
The integral

∫
Γ
pR ∗ dpR = kΓ is the Robin constant of Γ with respect to z0 and

z, and cΓ = e−kΓ the capacity of Γ . We have kΓ =∞ or kΓ <∞ according as R
is of parabolic or hyperbolic type.

The class Rp of open Riemann surfaces for which the level lines cτ = {z ∈ R :
pR(z, z0) = τ} are compact has been studied by M. Nakai [13], L. Sario and K.
Noshiro [17], p. 30, Ch. IV, §1, B. Rodin and L. Sario [14], p. 231, L. Sario and M.
Nakai [16], Ch. V, §3, 13B. By means of the Evans–Selberg potential, M. Nakai
proved that Rp > OG, but Rp also contains hyperbolic surfaces, e.g. all surfaces
which are the interior of a compact bordered Riemann surface.

Thus if we take R ∈ Rp and M = {z0}, pR( , z0) gives an example of a
function t with τ0 = −∞, T0 = kΓ , a = 2π, and Theorems 2.1 and 2.2 apply for
R,R′ ∈ Rp, M = {z0}, M ′ = {z′0} (except for Theorem 2.2 when R = R′ = C
and we have to choose a capacity function with two logarithmic poles). In [6],
beside the case of the capacity function, we treated the related case of the Green
function, of course for hyperbolic surfaces.

2.4.2. Jurchescu modulus function ([9], [10], [18], Ch. IV). Let M be the
closure of a regular region Π0 on the open Riemann surface R and Γ0 = ∂Π0.
The modulus function of Γ with respect to Γ0 is a continuous function uR( , Γ0) =
uΓ ( , Γ0) : R \Π0 → R with the properties:

(i) uR is harmonic in R \ clΠ0 and uR = 0 on Γ0.
(ii)

∫
Γ0
∗duR = 1.

(iii) uR minimizes the Dirichlet integral D(ϕ) =
∫∫
R\clΠ0 | gradϕ|2 dx dy in the

family of functions {ϕ} with the properties (i)–(ii).

The modulus function uR( , Γ0) gives another example of a function t, again
for the class Rp of Riemann surfaces, since this class may also be characterized
by the compactness of the level lines of uR( , Γ0), independently of Γ0 (see [3]).
In this case τ0 = 0, T0 = µΓ , the modulus of Γ with respect to Γ0, which is finite
or infinite according as R is hyperbolic or parabolic. Here again Theorems 2.1
and 2.2 apply for R,R′ ∈ Rp, M = clΠ0, M ′ = clΠ ′0. We studied this case in
[7], where we also consider the harmonic measure of Γ with respect to Γ0 in the
hyperbolic case.

2.4.3. Other examples of functions t to which the above results may be applied
are given by the capacity function or the modulus function of a part β ⊂ Γ , in
particular of an element of Γ .

3. An extension of Gehring’s Theorem. By applying the distortion theo-
rems in §2 to the capacity function 2.4.1, we can establish the following extension
of Gehring’s Theorem [4].
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Theorem 3.1. Let R and R′ be Riemann surfaces of class Rp which are not
conformally equivalent to C, z0 ∈ R, z′0 ∈ R′ and suppose that the family F of
K-qc homeomorphisms f : R→ R′ with f(z0) = z′0 is non-void. Let zj , j=1, 2, be
two distinct points in R\{z0} and for a homeomorphism f ∈ F define z′j = f(zj),
τj = pR(zj , z0) and τ ′j = pR′(z′j , z

′
0). If m ≤ τ1 ≤ τ2 ≤ M , m,M ∈ R, M ≤ kΓ ,

then

(3.1) τ ′1 ≤ τ ′2 +KC

with a positive constant C given by

(3.2) C = T0 ◦ T ′0 (M)− τ0 ◦ τ ′0(m) ,

where τ ′0 and T ′0 are the functions defined in 2.3 while τ0 and T0 correspond to
the inverse homeomorphisms: τ0(τ ′) = inf{τ0(τ ′, f−1) : f ∈ F}, τ0(τ ′, f−1) =
min{pR(f−1(z′), z0) : z′ ∈ c′τ ′} and similiarly for T0(τ ′), T0(τ ′, f−1).

P r o o f. If τ ′1 ≤ τ ′2, the inequality (3.1) is trivial. Suppose τ ′1 > τ ′2. Theorem
2.2 applied to the family of the inverse homeomorphisms f−1 with f ∈ F implies
τ ′1 − τ ′2 ≤ K[T0(τ ′1) − τ0(τ ′2)]. Further, from the definitions and monotonicity
properties, τ ′1 ≤ T ′0 (τ1) ≤ T ′0 (M) and τ ′2 ≥ τ ′0(τ2) ≥ τ ′0(m), so that T0(τ ′1) ≤
T0 ◦ T ′0 (M) and τ0(τ ′2) ≥ τ0 ◦ τ ′0(m).

R e m a r k 3.1. Theorem 3.1 also applies to compact Riemann surfaces S and
S′ which are not conformally equivalent to Ĉ, by choosing two points z∞ ∈ S,
z′∞ ∈ S′ and considering the family F of K-qc homeomorphisms f : S → S′ with
f(zh) = z′h, h = 0,∞. We consider the surfaces R = S \{z∞} and R′ = S′ \{z′∞}
of class Rp, the corresponding capacity functions pR( , z0) and pR( , z′0), and if
m ≤ τ1 ≤ τ2 ≤M we obtain again (3.1) with (3.2).
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nical Inst. Chişinau (1993), to appear.

[4] C. Andre ian Cazacu and V. Stanc iu, On a Gehring’s Theorem, to appear in the
volume dedicated to the centenary of Acad. N. Muskhelishvili by the Georgian Academy
of Sciences.

[5] —, —, Normal families of quasiconformal homeomorphisms I, II , An. Univ. Bucureşti
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[9] M. Jurchescu, Suprafeţe riemanniene cu frontiera absolut discontinuă, Disertaţie, Bu-
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