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Abstract. This is a summary of recent work where we introduced a class of D-modules
adapted to study ideals generated by exponential polynomials.

0. Introduction. This is an expanded version of the lecture given by the first
author at the Banach Center, during the workshop on residues, November 1992.
We introduce a new method to study ideals generated by exponential polynomials,
inspired by the theory on D-modules [16, 17, 18]. Detailed proofs of some of the
statements of this paper can be found in [14]. We take the opportunity to thank
Professors Jakóbczak, Pleśniak, and Aizenberg for their hospitality.

Let us recall that an exponential polynomial f of n complex variables with
frequencies in a finitely generated subgroup Γ of Cn is a function of the form

f(z1, . . . , zn) = f(z) =
∑
γ∈Γ

pγ(z) exp(γ · z),

where the sum is finite, the pγ are polynomials, and γ · z = γ1z1 + . . . + γnzn.
Such a function belongs to the algebra Aφ(Cn) of entire functions F satisfying
the growth condition:

∃C > 0 |F (z)| ≤ C exp(Cφ(z)),
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where the weight φ can be taken as |z|, the Euclidean norm of z, or even better,
if we choose a system γ1, . . . , γN , of Q-linearly independent generators of Γ , as

φ(z) = max(|<(γj · z)| : j = 1, . . . , N) + log(1 + |z|2),

where <z denotes the real part of the complex number z. In the case that Γ ⊂
iRn, the exponential polynomials are just the Fourier transforms of distributions
supported by finitely many points in the lattice −iΓ , and Aφ is a subalgebra of the
Paley–Wiener algebra ̂E ′(Rn) of Fourier transforms of distributions of compact
support. In this case, the exponential polynomials are the Fourier transforms of
linear difference-differential operators with constant coefficients in Rn (sometimes
called transfer function, characteristic function, symbol, according to the area of
mathematics or engineering involved in the problem).

The motivation of our work is the study of the solutions of arbitrary systems of
difference-differential equations. When the dimension n=1, the spectral synthesis
theorem [24] guarantees that every C∞ (or distribution) solution of such a system
(more generally, any system of convolution equations of compact support) belongs
to the closure of the simplest solutions of the system, namely the exponential
polynomial solutions that have frequencies in the collection of common zeros of
the transfer functions of the original equations. It is less well-known that the
spectral synthesis does not hold for arbitrary systems of convolution equations
as soon as n ≥ 2, equivalently, not all ideals in the Paley–Wiener algebra are
localizable [20]. If an ideal is generated by polynomials then, it has been proved
by Ehrenpreis and Malgrange, that it is always localizable [19, 21]. The only
fairly general criterion to ensure localizability of a finitely generated ideal I is to
verify that the generators form a slowly decreasing sequence in the sense of [4].
Among other requirements, the generators must define a complete intersection.
The slowly decreasing condition is not too easy to check, especially when the
variety V of common zeros of the generators is not discrete. The only general
example given in [4] of a slowly decreasing sequence of exponential polynomials
is the following. Let P1, . . . , Pn be polynomials defining a discrete (hence, finite)
variety in Cn and k ≤ n, then the sequence of functions

(1) fj(z) = Pj(eiz1 , . . . , eizk , zk+1, . . . , zn) (1 ≤ j ≤ n)

is slowly decreasing, with discrete (but infinite) variety V of common zeros.
For these reasons, in one of our previous papers [7] we considered the case of

finitely generated ideals of exponential polynomials with frequencies in a group
Γ of rank exactly n and assumed that V was discrete. Even when Γ = iZn, we
could not find a general criterion for localizability of the ideals generated by such
exponential polynomials. Part of the problem is of an arithmetic nature, namely
localizability may depend not only on the geometry of V and Γ , but also on the
diophantine approximations of the coefficients of the generators of I. For example,
the ideal generated by cos(z1), cos(z2), z2 − αz1 is localizable if and only if α is
not a Liouville number. As we pointed out in [8], there is a deep relationship
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between the localizability issue and the following conjecture of Ehrenpreis on the
zeros of exponential polynomials of a single variable with algebraic coefficients
and frequencies.

Conjecture 0.1. Let a1, . . . , am ∈ Q[z] be non-zero, α1, . . . , αm be distinct
numbers in Q

⋂
R, and f be the exponential polynomial of a single variable given

by

f(z) =
m∑
j=1

aj(z)eiαjz .

In that case, there exist constants ε > 0, N ≥ 0 such that if z1, z2 are two different
zeros of f then

|z1 − z2| ≥
ε

(|z1|+ |z2|)N
.

In our more recent paper [14] we consider a situation that is fairly different
from that of [7]. Namely, the group Γ has very low rank, either one or two, and
the variety V might not be discrete or complete intersection. Using a convenient
generalization of the Weyl algebra, we have obtained some results that are very
simple to state. For instance, if rank(Γ ) = 1, any system of exponential polyno-
mials defining a complete intersection generates a localizable ideal in the space
Aφ. Another example of localizability occurs when the generators are of the type
(1) and define a non-discrete complete intersection. We have also studied prob-
lems related to global versions of the Nullstellensatz and of the Briançon–Skoda
theorem, which could be useful when solving the ubiquitous Bezout identity for
exponential polynomials without common zeros. The solution of the Ehrenpreis
conjecture mentioned earlier, is precisely equivalent to solving in general the Be-
zout identity.

The leitmotiv of our approach is to relate the division problems implicit in
the previous questions, to the study of the analytic continuation, as a function of
λ1, . . . , λm, of the distribution

z 7→ |f1(z)|λ1 . . . |fm(z)|λm ,

for exponential polynomials fj . In fact, the residues of this distribution-valued
meromorphic functions give the information needed to solve the Bezout equation
and other division problems. This idea originated in our previous work about
residue currents [2] and their applications to the effective solvability of the poly-
nomial membership problem [10, 11]. The reader can consult our forthcoming
monograph [3], for an overview of the ideas we use. The theory of D-modules,
as introduced by J. Bernstein [16], was precisely formulated to obtain an explicit
form of the analytic continuation in λ of the distribution |P (z)|λ when P is a poly-
nomial. Bernstein’s results were extended by Björk to the holomorphic setting in
[17]. The main point used in Bernstein’s work is that one deals with holonomic
D-modules, the new difficulty that arises for exponential polynomials is that the
D-modules one needs to consider are not holonomic.
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1. A generalization of the Weyl algebra. The ideas we present in this sec-
tion are clearly related to those about the Weyl algebra found in [17, Chapter 1],
to which we refer for further developments.

We denote by N the set of non-negative integers. For an index α ∈ Nn,
its length |α| = α1 + . . . + αn. We also let K be a field of characteristic zero,
n and m two positive integers, we define an extension En,m(K) of the Weyl alge-
bra An(K). It is an algebra of operators acting on the algebra of polynomials in
n+m variables over K as follows.

Consider the polynomial algebra K[x1, . . . , xn, y1, . . . , ym] and derivations
D1, . . . , Dn on this algebra such that

Dixj = δij (i, j = 1, . . . , n),
Diyj = δijyj (i = 1, . . . , n; j = 1, . . . ,m).

The algebra En,m(K) is the algebra of operators on K[x1, . . . , xn, y1, . . . , ym] gen-
erated by X1, . . . , Xn, Y1, . . . , Ym, D1, . . . , Dn, where Xi (resp. Yj) is the operator
of multiplication by xi (resp. yj). It is a Lie algebra, with the usual definition of
the Lie bracket [. , .] in terms of the composition of operators, i.e.,

[P,Q] = P ◦Q−Q ◦ P.
The Lie bracket satisfies the following commutator relations

[Xi, Xj ] = [Yi, Yj ] = [Xi, Yj ] = [Di, Dj ] = 0;
[Xi, Dj ] = −δij ; [Yi, Dj ] = −δijYi.

We note that for m = 0 our algebra coincides with the Weyl algebra. Every
element P of En,m(K) can be written in a unique way as a finite sum

(2) P =
∑
α,β,γ

cα,β,γX
αY βDγ ,

cα,β,γ ∈ K, α, γ ∈ Nn, β ∈ Nm. The integer max(|α| + |β| + |γ| : cα,β,γ 6= 0)
is denoted degP . It is convenient to introduce the operators ad(Q) acting on
En,m(K) by ad(Q)(P ) := [P,Q]. One has the following simple calculus rules.

Lemma 1.1. For any integers a, b ≥ 0, 1 ≤ k ≤ n, we have

[Dk, X
a
kY

b
k ] = aXa−1

k Y bk + bXa
kY

b
k .

Corollary 1.1. Let P (X,Y ) =
∑M
k=0X

k
1Pk(X ′, Y ) =

∑N
l=0 Y

l
1Ql(X,Y

′),
where X = (X1, X

′), Y = (Y1, Y
′). Then

[D1, P ] =
N∑
l=0

Y l1

(
∂Ql
∂X1

+ lQl

)
= XM

1 Y1
∂PM
∂Y1

+
M−1∑
k=0

Xk
1

{
(k+ 1)Pk+1 +Y1

∂Pk
∂Y1

}
.

These calculus rules are necessary to study the natural filtration Ev, defined
on En,m(K) by

Ev := {P ∈ En,m(K) : degP ≤ v}.
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It is a K-vector space of dimension
(

2n+m+v
v

)
≈ v2n+m. As usual [17], one intro-

duces the graded algebra gr(En,m(K)) by

gr(En,m(K)) := E0 ⊕ E1/E0 ⊕ . . .

The above lemma can be used to show this algebra is commutative. Moreover,
gr(En,m(K)) is isomorphic to a polynomial ring in 2n+m variables.

Let M be a (left) En,m(K)-module and Γv a filtration of M , i.e., an increasing
family of finite dimensional K-vector spaces Γv such that

(i)
⋃
v≥0 Γv = M ;

(ii) XiΓv ⊆ Γv+1, YiΓv ⊆ Γv+1, and DiΓv ⊆ Γv+1.

Let Γ (v) := Γv/Γv−1 and define gr(M) by

gr(M) := Γ0 ⊕ Γ1/Γ0 ⊕ . . . = Γ (0)⊕ Γ (1)⊕ . . .

Due to property (ii), this graded module is a module over gr(En,m(K)). One says
the filtration is a good filtration if gr(M) is of finite type over gr(En,m(K)). For
instance, if M is finitely generated over En,m(K) by a1, . . . , ar and we choose
Γv := Eva1 + . . . + Evar, then we have a good filtration. As in [17, Lemma 3.4],
one can prove the following lemma.

Lemma 1.2. Let (Γv)v, (Ωv)v be two filtrations of an En,m(K) module M ,
and assume that (Γv)v is a good filtration. Then there is an integer w such that
Γv ⊆ Ωv+w for all v ≥ 0.

If gr(M) is of finite type over gr(En,m(K)), there is a Hilbert polynomial
H ∈ Q[t] such that for all v � 1

H(v) = dimK Γv

(see [17, Theorem 3.1]). As a consequence of the last lemma, the degree and the
leading coefficient of H do not depend on the choice of the good filtration (Γv)v.
The degree d of H is called the dimension d(M) of gr(M) and the multiplicity
e(M) of gr(M) is the leading term of H times d!. In the case m = 0, i.e., for
the Weyl algebra An(K) one has the fundamental theorem of J. Bernstein that
asserts that, for any non-trivial An(K)-module M so that gr(M) is of finite type,

d(M) ≥ n.

An An(K)-module M such that d(M) = n is said to be holonomic.
One of the applications of the concept of holonomic modules is the existence

of the Bernstein–Sato functional equations [17, 25, 23], i.e., given polynomials
f1, . . . , fq in K[x1, . . . , xn] there are differential operators Qj in An(K[λ]), with
λ = (λ1, . . . , λq), and a non-zero polynomial b ∈ K[λ] such that the formal rela-
tions

Qj(fλ1
1 . . . f

λj+1
j . . . fλq ) = b(λ)fλ1

1 . . . fλq (j = 1, . . . , q)

hold.
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We are interested in the following En,m(K)-modules, with m≤n. Consider ex-
ponential polynomials P1, . . . , Pq of n variables with positive integral frequencies
and coefficients in a subfield K of C, that is, finite sums

Pj(x) =
∑
k∈Nm

cj,k(x)ek·x,

with cj,k ∈ K[x], j = 1, . . . , q. We consider a new field K(λ) = K(λ1, . . . , λq)
obtained from K by adjoining q indeterminates, and define the module M freely
generated by a single generator denoted Pλ = Pλ1

1 . . .Pλq
q , namely,

(3) M = M(P1, . . . , Pq) := K(λ)[x1, . . . , xn, e
x1 , . . . , exm ][1/P1, . . . , 1/Pq]Pλ,

where, to pick up the earlier notation, Xi (resp., Yj) operates as multiplication
by xi (resp., by exj ) and Dj acts as the differential operator ∇j , defined by

∇j(APλ) :=
(
∂A

∂xj
+A

q∑
k=1

λk
Pk

∂Pk
∂xj

)
Pλ.

The natural filtration of M is

Γv :=
{
R(λ, x, ex)
(P1 . . . Pq)v

Pλ : R ∈ K(λ)[x, ex],degx,ex R ≤ vd0

}
,

where d0 := 1 + degx,ex(P1 . . . Pq). This is a good filtration and

dimK(λ) Γv =
(
n+m+ vd0

vd0

)
.

Hence,

d(M) = n+m, e(M) = dn+m
0 .

It is natural to ask whether for every non-trivial En,m(K)-module (or
En,m(K(λ))-module) with m ≤ n, one has d(M)≥ n + m. Or, at least, to give
conditions that ensure this inequality occurs. One can give examples showing that
this may depend on the choice of field K.

In the case m = 1, as a substitute for Bernstein’s theorem we have the follow-
ing result.

Proposition 1.1. Let M be a finitely generated En,1(K)-module, then, either
d(M) ≥ n + 1 or for every element m0 ∈ M \ {0} there exist two non-zero
polynomials A,B ∈ K[s], and t ∈ N such that

Y t1A(X1)m0 = B(Y1)m0 = 0.

As an application of Proposition 1.1 to the module

M(P1, . . . , Pq) = K(λ)[x1, . . . , xn, e
x1 ][1/P1, . . . , 1/Pq]Pλ

defined by equation (2), where Pj ∈ K[x1, . . . , xn, e
x1 ], K a subfield of C, one can

prove the following proposition.
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Proposition 1.2. There are two non-zero polynomials A1, A2 of a single vari-
able s, with coefficients in K[λ], λ = (λ1, . . . , λq), and 2q linear differential opera-
tors, Qi,j (i = 1, 2; j = 1, . . . , q), with coefficients belonging to K[λ, x, ex1 , e−x1 ],
such that for every j,

A1(λ, x1)Pλ = Q1,j(λ, x, ex1 , e−x1 , ∂/∂x)PjPλ,(4)
A2(λ, ex1)Pλ = Q2,j(λ, x, ex1 , e−x1 , ∂/∂x)PjPλ.(5)

(To simplify the notation we have written ∂/∂x to denote (∂/∂x1, . . . , ∂/∂xn).)

2. Functional equations. As explained in [3], to study Bézout identities,
division problems, and the like, one needs to determine the principal part of
the Laurent development of |f |2λ for λ = −k, k ∈ N, where f is an exponen-
tial polynomial. The reason for this need will become clear later on. The fol-
lowing lemma, a consequence of Proposition 1.2, provides some of this informa-
tion.

Lemma 2.1. Let f be an exponential polynomial in En,1(K), k ∈ N, there is
an integer q ∈ N such that for any N ∈ N one can find a non-zero polynomial
RN ∈ K[x1] and a functional equation of the form

(6) (λ+ k)qRN |f |2λ = Qk,N (|f |2λfk+1) + (λ+ k)q+NvN |f |2λ,

where vN ∈ K[λ, x1] and Qk,N is a linear differential operator with coefficients in
K[λ, x, ex1 , e−x1 ].

More generally, one can obtain relations of the form

(7) (λ+ k)q̃SN (ex1)|f |2λ = Q̃k,N (|f |2λf2k+1) + (λ+ k)q̃+N ṽN |f |2λ,

where ṽN ∈ K[λ, ex1 ], SN (t) = SN,k(t) ∈ K[t], and Q̃k,N is a differential operator
with the same properties as Qk,N .

The way one uses these relations is the following. One knows a priori [1] that,
in a neighborhood of λ = −k, the distribution-valued meromorphic function |f |2λ
has the Laurent expansion

(8) |f |2λ =
∞∑

j=−2n

ak,j(λ+ k)j ,

with ak,j ∈ D′(Cn). The previous lemma allows us to compute explicitly the
products RN (x1)ak,j , SN (ex1)ak,j , for −2n ≤ j ≤ 0, if we let N = 2n + 1.
Namely, the polynomial vN in the statement of Lemma 2.1 can be expanded in
powers of λ+ k, i.e.,

(9) vN (λ, x1) =
m∑
l=0

vN,l(x1)(λ+ k)l.
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Let ϕ ∈ D′(Cn), then

(λ+ k)q〈|f |2λ, RN (x1)ϕ〉 =
∞∑

j=−2n

〈ak,j , RNϕ〉(λ+ k)q+j(10)

= 〈Qk,N (λ)(|f |2λf2k+1), ϕ〉

+
∞∑

j=−2n

〈ak,j , vNϕ〉(λ+ k)q+N+j

= 〈|f |2λf2k+1, Q′k,N (λ)ϕ〉

+
∑
j,l

〈ak,j , vN,lϕ〉(λ+ k)q+N+j+l,

where Q′k,N is the adjoint operator of Qk,N (obtained by integration by parts).
The first term of the last sum is holomorphic at λ =−k, and the series only

contains powers of λ + k bigger than or equal to q + 1, due to the choice of N .
Thus, the distribution-valued function (λ + k)qRN (x1)|f |2λ is holomorphic in a
neighboorhood of λ = −k. Moreover, if we denote

(11) (λ+ k)qRN (x1)|f |2λ =
∞∑
h=0

bk,h(λ+ k)h

its Taylor development, then, for 0 ≤ h ≤ q, the distributions bk,h are given by

(12) 〈bk,h, ϕ〉 =
1

2πi

∫
|λ+k|=ε

∫
Cn

|f(x)|2λf(x)2k+1Q′k,N (λ)(ϕ(x))dx
dλ

(λ+ k)h+1
,

where ε > 0 is chosen sufficiently small so that on a neighborhood of supp(ϕ),
the function x 7→ |f(x)|−2ε is integrable.

We can rewrite the last integral as

1
2πi

∫
|λ+k|=ε

∫
Cn

|f(x)|2(λ+k)f(x)(f(x)/f(x))kQ′k,N (λ)(ϕ(x))dx
dλ

(λ+ k)h+1

=
∞∑
j=0

1
j!

1
2πi

∫
|λ+k|=ε

∫
Cn

(log |f |2)jf(f/f)kQ′k,N (λ)(ϕ(x))dx (λ+ k)j−h−1dλ ,

which shows that the terms 〈bk,h, ϕ〉 are linear combinations of integrals of the
form

(13)
∫

Cn

(log |f |2)jf(f/f)kQι(ϕ)dx,

where j ∈ N (in fact, 0 ≤ j ≤ h + 1) and the Qι are differential operators with
coefficients in K[x, ex1 , e−x1 ]. Note that the term (f/f)k is bounded, and the same
holds locally for f(log |f |2)j .
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Since RN really depends now only on k we shall denote it Rk from now on.
Therefore, from (8) and (11) we obtain

Rk(x1)ak,j = 0 if q + j < 0,(14)
Rk(x1)ak,j = bk,q+j if 0 ≤ q + j ≤ q.(15)

One can introduce polynomials Sk in a similar way and compute explicitly
Sk(ex1)ak,j for the same values of j, −2n ≤ j ≤ 0. As a corollary one obtains

Proposition 2.1. Let f ∈ En,1(K) and k ∈ N, there exist non-zero polyno-
mials Rk,Sk of a single variable, with coefficients in K, Nk ∈ N, and positive
constants Ck, Dk such that the distributions ak,j , −2n ≤ j ≤ 0, defined by the
Laurent development

|f |2λ =
∞∑

j=−2n

ak,j(λ+ k)j

satisfy the estimates

(16) |〈Rk(x1)ak,j , ϕ〉|+ |〈Sk(ex1)ak,j , ϕ〉| ≤ Ck‖ϕ‖Nk
max

x∈supp(ϕ)
e(Dk%(x)),

where ϕ ∈ D(Cn), %(x) = log(1 + |x|) + |<x1|.

Corollary 2.1. If K ⊆ Q, there are integers mk ∈ N, and two constants
C ′k, D

′
k > 0 such that the estimate (16) implies

|〈xmk
1 ak,j , ϕ〉| ≤ C ′k‖ϕ‖Nk

max
x∈supp(ϕ)

e(D
′
k%(x))

In reality, one needs these estimates for the distributions involved in the
analytic continuation of distribution-valued holomorphic functions of the form
|f1|2λ1 . . . |fp|2λp/(|f1|2 + . . .+ |fp|2)m. These functions have already appeared in
our previous work [2, 10]. The existence of an analytic continuation as a mero-
morphic function of λ1, . . . , λp follows from Hironaka’s resolution of singularities,
but since we want to control the distributions that appear as coefficients in the
Laurent developments about some pole, that is, we would like to obtain estimates
similar to those of Proposition 2.1 and Corollary 2.1, we need to find some kind
of functional equation that provides the analytic continuation. Since it is easier
to provide functional equations for |f1|2λ1 . . . |fp|2λp , we need a technical trick to
reduce this kind of quotients of functions to products. It is based on a simple
lemma about the inverse Mellin transform. In order to simplify its writing let us
introduce the following notation.

For t1, . . . , tp > 0, µ1, . . . , µp ∈ C, we let

t∗µ := tµ1
1 . . . tµp

p .

Given s1, . . . , sp−1, β ∈ C, let

ds := ds1 . . . dsp−1, sp := β − s1 − . . .− sp−1, µ̃j := µj − sj (1 ≤ j ≤ p).

We also let s := (s1, . . . , sp−1), s̃ := (s1, . . . , sp), with sp as previously defined.
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Recall also the somewhat standard notation,

Γ [a] := Γ [a1, . . . , ak] := Γ (a1) . . . Γ (ak),

for complex values aj such that the Euler Gamma function is defined. Finally, as
long as there is no possibility of confusion, we shall use the following abbreviated
notation for multiple integrals on lines parallel to the imaginary axes. Let γ =
(γ1, . . . , γp−1) be a vector of real components, then, for any integrable function F ,

γ+i∞∫
γ−i∞

F (s)ds :=
γ1+i∞∫
γ1−i∞

. . .

γp−1+i∞∫
γp−1−i∞

F (s)ds1 . . . dsp−1

Lemma 2.2. Let t1, . . . , tp > 0, µ1, . . . , µp ∈ C, <β > 1, P ∈ C[µ1, . . . , µp],
then, with the previous notation,

(17) P (µ)
t∗µ

(t1 + . . .+ tp)β
=

1
(2πi)p−1Γ (β)

γ+i∞∫
γ−i∞

Γ [s̃]P (µ̃)t∗µ̃ds

for any γj > 0 such that γ1 + . . .+ γp−1 < <β − 1.

We apply this lemma to the study of the coefficients in the Laurent expansion
about µ = 0 of the analytic continuation of

(18) µ 7→ |f |∗2(µt−k)/‖f‖2m,
where t ∈ ]0,∞[p is a vector to be chosen below, µ ∈ C, k ∈ Z, k is the p-dimen-
sional vector (k, . . . , k), m ∈ N∗, fj ∈ En,1(K), ‖f‖2m = (|f1|2 + . . . + |fp|2)m,
and, keeping with the previous notation, |f |∗r = |f1|r1 . . . |fp|rp for any vector
r = (r1, . . . , rp) (similar meaning for f∗r).

From Proposition 1.2 we conclude that there is a polynomial A(λ, x1) and
differential operators Q1,j(λ, x, ex1 , e−x1 , ∂/∂x) such that

A(λ, x1)f1λ1 . . . fp
λp = Q1,j(λ)(f1λ1 . . . fj

λj+1 . . . fp
λp).

One can iterate this functional equation and restrict our attention to λ = µt.
After some work one obtains the following result.

Proposition 2.2. Let f1, . . . , fp ∈ En,1(K), then, for any t ∈ ]0, 1[p (outside
a countable union of K-algebraic hypersurfaces, which depend on the fj) and
any k ∈ Z,m ∈ N∗, there are polynomials Rk and Sk in K[u] and constants
Ck, Dk > 0, Nk ∈ N such that if ak,j ∈ D′(Cn) denote the coefficients of the
Laurent expansion

|f |∗2(µt−k)

‖f‖2m
=

∞∑
j=−2n

ak,jµ
j ,

then, for −2n ≤ j ≤ 0, ϕ ∈ D(Cn),

|〈Rk(x1)ak,j , ϕ〉|+ |〈Sk(ex1)ak,j , ϕ〉| ≤ Ck‖ϕ‖Nk
max

x∈supp(ϕ)
e(Dk%(x)),

where %(x) = log(1 + |x|) + |<x1|.
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Corollary 2.2. If K ⊆ Q, there is an integer νk ∈ N, and positive constants
C ′k, D

′
k such that

|〈xνk
1 ak,j , ϕ〉| ≤ C ′k‖ϕ‖Nk

max
x∈supp(ϕ)

e(D
′
k%(x)).

3. Localization of ideals and applications. In [7] we gave some sufficient
conditions, albeit sometimes hard to verify, so that if f1, . . . , fn are exponential
polynomials in n variables with integral frequencies whose variety of common
zeros V = {z ∈ Cn : f1(z) = . . . = fn(z) = 0} is discrete or empty, then the ideal
I generated by them in the space A%(Cn), %(z) = log(1+ |z|)+ |<z| coincides with
Iloc the ideal of those functions in A%(Cn) which can locally be obtained as linear
combinations of the fj with holomorphic coefficients. In particular, I is closed
and localizable (i.e., I = I = Iloc). In fact, the conditions given in [7] implied that
the n-tuple f1, . . . , fn was slowly decreasing in the sense of [4]. This has a certain
number of interesting consequences for the harmonic analysis of the solutions of
the system of difference-differential equations in Rn with symbol given by the fj .
In [6] we had proved that in case n = 2, the discreteness of V was enough to ensure
that the pair f1, f2 is slowly decreasing. This led to the conjecture in [7] that if
the coefficients of the fj are algebraic numbers, the discreteness of V should be
enough to prove that f1, . . . , fn is slowly decreasing or, at least, that I is closed
and localizable. Examples were given showing that this last statement could fail
if the algebraicity of the coefficients was not true. On the other hand, we show
in this section that if f1, . . . , fp ∈ En,1(C) define a complete intersection variety,
that is dimV ≤ n−p, then I is closed and, moreover, I = Iloc. In the case V is not
a complete intersection we show that the local algebraic closure Î and the radical√
I are closed. That is, these theorems are valid without any restrictions on the

coefficients, whereas to extend them to exponential polynomials with two main
frequencies one needs to impose arithmetic restrictions both on the frequencies
and the coefficients.

The first harmonic analysis result that follows from the statements of the pre-
vious section is a localization theorem. The proof depends on the use of Henkin–
Andersson–Berndtsson type integral representations [15] and analytic continua-
tion of powers as proposed in [2].

Theorem 3.1. Let f1, . . . , fp ∈ En,1(C) define a complete intersection vari-
ety V . The ideal I generated by them in A%(Cn), %(z) = log(1 + |z|) + |<z1| is
localizable.

What can one say when we do not assume the ideal is either complete intersec-
tion or its variety is discrete? There are several ideals containing I = I(f1, . . . , fp).
First, let us recall that

√
I, the radical of I, is the set of all elements F ∈ A%(Cn)

such that F k ∈ I for some k ∈ N. Second, let Î, the local integral closure of I,
be the set of all elements F ∈ A%(Cn) such that for every point x0 ∈ Cn there is
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a neighborhood U and a constant Cx0 > 0 such that

|F (x)| ≤ Cx0‖f(x)‖ = Cx0(
p∑
j=1

|fj(x)|2)1/2, ∀x ∈ U.

For W open in Cn, let IW denote the ideal generated by f1, . . . , fp in H(W ). It
follows from [22] that F ∈ Î if and only if for every x0 ∈ Cn there is an open
neighborhood W , a positive integer N , and functions ϕ1, . . . , ϕN such that

FN + ϕ1F
N−1 + . . .+ ϕN = 0 in W, and ϕj ∈ IjW .

Finally, let I(V )={F ∈ A%(Cn) : F |V = 0}. Note that for a function F to belong
to Iloc means that it vanishes on the points of the variety V with some multiplicity,
whereas in I(V ) the common multiplicities of f1, . . . , fp are disregarded. It is
obvious that I(V ) is a closed ideal, and we recall that the same is true for Iloc.
Some inclusions between these ideals are clear:

I ⊆ Iloc ⊆ Î ⊆ I(V ),
√
I ⊆ I(V ).

It is also clear that, in general, we do not have Iloc = I(V ). We are now ready to
state two important results.

Theorem 3.2. Let I be the ideal in A%(Cn) generated by f1, . . . , fp ∈ En,1(C),
V = {x ∈ Cn : f1(x) = . . . = fp(x) = 0}. Then

√
I = I(V ).

Theorem 3.3. Let I be the ideal of the previous theorem and let m be given
by m = inf(p+ 1, n), then Î2m ⊆ I.

One of the remarkable consequences of Theorem 3.3 is the conclusion that
sometimes the variety of common zeros is interpolating (see [4, 5] for background
information on this question.)

Proposition 3.1. Let f1, . . . , fn ∈ En,1(C) be such that dimV = 0 and J(x) 6=
0 for every x ∈ V , where J is the Jacobian determinant of the fj. Then there is
a constant C > 0 such that

(19) |J(x)| ≥ exp(−C(|<x1|+ log(2 + |x|))) ∀x ∈ V.
Thus, V is an interpolating variety in the space Aσ(Cn) for any weight σ ≥
|<x1|+ log(2 + |x|).

In fact, one has a stronger result. Let f1, . . . , fp ∈ En,1(C) be such that
dimV = k and assume that, at every point x ∈ V , there is a k × k minor of
the Jacobian matrix Df of f1, . . . , fp, which does not vanish. Then, the variety
V is an interpolation variety for any weight ≥ |<x1|+ log(2 + |x|). Namely, if we
let J1, . . . , Jl denote all the k × k minors of Df , then

|J1(x)|+ . . .+ |Jl(x)| ≥ exp(−C(|<x1|+ log(2 + |x|))).
From [5, Theorem 1], one obtains that V is an interpolating variety.

We conclude this short summary of some of our recent results with an indica-
tion of some simple applications to harmonic analysis that can be obtained from
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the above statements and the methods of [4]. For that purpose, let us recall that
a linear differential operator P (D) with constant coefficients and commensurable
time lags is a finite sum of the form

(20) (P (D)ϕ)(t, x) =
∑

pjk(Djϕ)(t− kT, x),

t ∈ R, x ∈ Rn, (n ≥ 0), D = (∂/∂t, ∂/∂x1, . . . , ∂/∂xn), j ∈ Nn+1, k ∈ Z, T > 0,
and pjk ∈ C. The symbol of this operator P (τ, ξ) is the element of En+1,1(C)
given by

(21) P (τ, ξ) := ei(tτ+x·ξ)P (D)e−i(tτ+x·ξ) =
∑

pjk(−iζ)jeikTτ ,

with ζ = (τ, ξ). (By the introduction of the new coordinate ξ0 = iT τ , we are in
the case of exponential polynomials considered at the beginning of this section.)

Theorem 3.4. Let P1(D), . . . , Pn+1(D) be differential operators with time lags
as in (20), with the property that the characteristic variety

V := {ζ ∈ Cn+1 : Pl(ζ) = 0, 1 ≤ l ≤ n+ 1}
is discrete and all the points of V are simple. Then, every solution ϕ ∈ E(Rn+1)
(resp., ϕ ∈ D′(Rn+1)) of the overdetermined system

(22) P1(D)ϕ = . . . = Pn+1(D)ϕ = 0

can be represented in a unique way in the form of a series of exponential solutions
of the system (22), namely ,

ϕ(t, x) =
∑
ζ∈V

cζe
i(tτ+x·ξ) .

This series is convergent in the topology of E(Rn+1) (resp., D′(Rn+1)).
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