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Abstract. In this paper we study the controllability property of invariant control systems
on Lie groups. In [1], the authors state: “If there exists a real function strictly increasing on the
positive trajectories, then the system cannot be controllable”. To develop this idea, the authors
define the concept of symplectic vector via the co-adjoint representation. We are interested in
finding algebraic conditions to determine the existence of symplectic vectors in nilpotent Lie
algebras. In particular, we state a necessary and sufficient condition for controllability in the
simply connected nilpotent case.

1. Introduction. The aim of this paper is to find algebraic conditions which
give information about the controllability for a particular class of systems, invari-
ant control systems Σ = (G,D) for which the state space is a connected Lie group
G and the dynamics D, which is a subset of the Lie algebra g̃ of G, is determined
by the specification of the following data:

ġ = X(g) +
k∑
j=1

µjY
j(g)

where g ∈ G and X, Y j ∈ g̃, 1 ≤ j ≤ k. We consider the elements of g̃ as
left-invariant vector fields on G and without loss of generality we require that Σ
satisfies the rank condition, [9], i.e.,

spanL.A.{X,Y 1, . . . , Y k} = g̃.

The class U = U(k) of unrestricted admissible controls is the class of all piecewise
constant functions µ : [0,∞)→ Rk and D is the family of vector fields associated
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with Σ, i.e.

D =
{
X +

k∑
j=1

µjY
j | µ ∈ Rk

}
.

The systems Σ = (G,D) are interesting not only from the theoretical point of
view but also for their applications, [3], [7].

For each Z ∈ D, we denote by (Zt)t∈R the 1-parameter group of diffeomor-
phisms on G generated by the vector field Z.

The rank condition means that Σ is transitive, i.e. the group

GΣ = {Z1
t1 ◦ Z

2
t2 ◦ . . . ◦ Z

r
tr | Z

j ∈ D, tj ∈ R, r ∈ N}
acts transitively on G. Since D is a family of invariant vector fields, Σ is control-
lable if and only if the semigroup

SΣ = {Z1
t1 ◦ Z

2
t2 ◦ . . . ◦ Z

r
tr | Z

j ∈ D, tj ≥ 0, r ∈ N}
satisfies SΣ(e) = G.

Many people have dealt with this problem under various assumptions on G
and D, [2], [5], [6], [8].

In [1], the following idea is given:
“If there exists a function f : G → R which is strictly increasing on the

positive trajectories of Σ, i.e., on each ϕ ∈ SΣ , then Σ cannot be controllable”.
To develop this idea the authors define the concept of symplectic vector for

invariant vector fields by using the co-adjoint representation of g̃ obtaining a
necessary condition for the controllability of Σ. This idea works because, if Σ is
controllable and g ∈ G there exist ϕ,ψ ∈ SΣ such that g = ϕ(e) and e = ψ(g).
But, the function f must be strictly increasing on ψ ◦ϕ. Therefore, the existence
of this type of functions is an obstruction to the controllability of invariant control
systems. In section 2, we review some of the standard facts on co-adjoint orbits and
we look for algebraic conditions that guarantee the existence of symplectic vectors.
An important class that fit in this situation is the class of nilpotent systems, i.e.
invariant control systems on nilpotent Lie groups. In the third section, we analize
the controllability of nilpotent systems and give a characterization for the simply
connected case. In section 4, we compute an example on the Heisenberg group.

1.1. Main results. We obtain the following results:

I. Existence of symplectic vectors

Theorem 2.2 Let G be a nilpotent simply connected Lie group with Lie algebra
g̃ and let h̃ be an ideal of g̃ such that g̃/h̃ is not an Abelian algebra. If π : g̃ → g̃/h̃

is the canonical projection and there exists Z ∈ g̃ such that π(Z) ∈ Z(g̃/h̃) is not
a null vector field , then there exists a symplectic vector λ for Z.

II. Controllability. Given any invariant control system Σ = (G,D) we denote
by Z(g̃) the center of g̃, by h̃ the Lie subalgebra generated by the control vectors,
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i.e.
h̃ = spanL.A.{Y 1, Y 2, . . . , Y k}

and by
Zt(h̃) = {w ∈ g̃ | [w, ξ] = 0,∀ξ ∈ h̃}

the centralizer of h̃.
Let G be a nilpotent simply connected Lie group. Then we prove:

Theorem 3.1. If Z(g̃)  Zt(h̃) then Σ cannot be controllable.

Theorem 3.6 Σ is controllable ⇔ h̃ = g̃.

Moreover, we give in Proposition 3.3 a result closely related to Theorem 7.3
in [6].

2. Existence of symplectic vectors. Let G be a Lie group with Lie algebra
g̃. The adjoint representation % ofG is the homomorphism % : G→ Aut(g̃) defined
as follows: for each g ∈ G, the analytic map ig : G → G, ig(h) = ghg−1, is an
automorphism on G, and its derivative at e is an automorphism of g̃. Then

% : G→ Aut(g̃), g → %(g) = dig|e,
is a linear representation of G in g̃.

The derivative d% at each w ∈ g̃ is given by

d%(w)(·) = [w, ·].
The co-adjoint representation %∗ (the contragradient representation of %) is the
linear representation of G in the dual space g̃∗ of g̃ and may be obtained by the
action

G× g̃∗ → g̃∗, (g, λ)→ %∗(g)(λ),
defined by

%∗(g)(λ)(w) = λ(%(g−1)w), w ∈ g̃,
and its derivative is given by bracket evaluation. In fact, the diagram

g̃
d%−→ End(g̃)

exp ↓ ↓ e
G

%−→ Aut(g̃)

is commutative, and d%(w) ∈ End(g̃) for every w ∈ g̃, thus

%(exp(tw)) =
∞∑
n=0

tn

n!
(d%(w))n.

Then, if ξ ∈ g̃ and λ ∈ g̃∗ we have

d%∗(w)(λ)(ξ) =
d

dt

∣∣∣∣
t=0

λ(%(exp(−tw)))(ξ).
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Taking the term by term derivative of the series %(exp(−tw)) it follows that the
linear map d%∗ : g̃ → End(g̃∗) is given by

d%∗(w)(λ)(ξ) = −λ[w, ξ], ξ ∈ g̃.
Let λ ∈ g̃∗. Then the co-adjoint orbit θλ of λ by the %∗ action, i.e.

θλ = %∗(G)(λ)

is a submanifold of g̃, [4]. In fact, consider the analytic map

%∗λ : G→ θλ, %∗λ(g) = %∗(g)(λ).

For every w ∈ g̃∗ and g ∈ G,

d%∗λ|g(w) =
d

dt

∣∣∣∣
t=0

%∗λ(g exp(tw)) = %∗(g)(d%∗(w))(λ).

Since %∗(g) ∈ Aut(g̃∗), the subalgebra

eλ = {w ∈ g̃|d%∗(ω)(λ) = 0}
satisfies rank(d%∗λ|g) = dim(g̃)−dim(eλ) for any g ∈ G. In particular, the rank of
d%∗λ is constant on G. On the other hand, the stabilizer by the %∗ action,

Eλ = {g ∈ G | %∗(g)(λ) = λ},
is a closed Lie subgroup of G with Lie algebra eλ.

Therefore, %∗λ induces a diffeomorphism %̃∗λ on the homogeneous space G/Eλ
such that the diagram

G
%∗λ−→ θλ ⊂ g̃∗

π ↘ ↗ %̃∗
λ

G/Eλ

is commutative. It is clear that d̃%
∗
λ|gEλ is an isomorphism between the tangent

spaces TgEλ(G/Eλ) and T%∗
λ
(g)θλ for every g ∈ G. In particular, d%∗(g̃)(λ)∼=Tλθλ.

If Σ = (G,D) is an invariant control system, the co-adjoint representation %∗

induces a system %∗(Σ) defined by

%∗(Σ) := (%∗(G), d%∗(D)) where d%∗(D) = {d%∗(Z) | Z ∈ D}.
If we fix an initial condition λ ∈ g̃∗ the systems:

1. Σλ := (G/Eλ, dπ(D)), where π : G → G/Eλ is the canonical projection,
and

2. %∗λ(Σ) := (θλ, d%∗λ(D))

are equivalent.
In other words, these systems have the same dynamics for every admissible

control µ ∈ U . In particular,

SΣλ(Eλ) = G/Eλ ⇔ S%∗
λ
(Σ)(λ) = θλ.

In [1], the authors give the following definition:
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“λ ∈ g̃∗ is a symplectic vector for ω ∈ g̃ if the co-adjoint orbit θλ is not trivial
and β(w) > 0, ∀β ∈ θλ”.

The authors use this concept on invariant systems Σ = (G,D) with

ġ = X(g) +
k∑
j=1

µjY
j(g)

and obtain a necessary condition for the controllability of this type of systems
via the following result:

“If there is a vector field ξ belonging to the centralizer of the subalgebra h̃
such that the non-null vector field Z = [X, ξ] has a symplectic vector, then Σ
cannot be controllable”.

In fact, the existence of a symplectic vector λ for Z allows us to construct the
function

fξ : θλ → R, β → fξ(β) = −β(ξ),
such that for every j = 1, 2, . . . , k the directional derivatives of fξ related to the
vector fields generating d%∗(D) satisfy for each β ∈ θλ and j = 1, 2, . . . , k,

d%∗(Y j).fξ(β) = − d

dt

∣∣∣∣
t=0

(%∗(exp(tY j)(β))(ξ)

= −β
(
d

dt

∣∣∣∣
t=0

%(exp(−tY j))(ξ)
)

= β[Y j , ξ] = 0.

Analogously,
d%∗(X).fξ(β) = β(Z) > 0.

Therefore, for each µ ∈ U and β ∈ θλ,

d%∗
(
X +

k∑
j=1

µjY
j
)
.fξ(β) > 0.

In particular, fξ is strictly increasing on each ϕ ∈ S%∗
λ
(Σ). Thus, the system %∗λ(Σ)

cannot be controllable on θλ and consequently Σ is not controllable on G. In fact,
the controllability of Σ on G implies the controllability of Σλ on the homogeneous
space G/Eλ.

Now we analyze the existence of symplectic vectors.

Proposition 2.1. If g̃ is not an Abelian algebra and Z ∈ Z(g̃) is not a null
vector field , then there exists a symplectic vector for Z.

P r o o f. By definition, for each ω ∈ g̃ and g ∈ G, we have

%(g)(ω) =
d

dt

∣∣∣∣
t=0

g exp(tω)g−1.

In particular, every λ ∈ g̃∗ is constant over the adjoint orbit of elements w be-
longing to the center of g̃. We denote by A the union of the family of non-trivial
co-adjoint orbits θλ with λ ∈ g̃∗.
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We claim that A is an non-empty open subset of g̃∗. In fact, if ∆ ∈ End(g̃∗)
and ∆(λ) 6= 0, then by a continuity argument there is a neighbourhood V = V (λ)
such that ∆(β) 6= 0, ∀β ∈ V . If g̃ is not Abelian, there exist w ∈ g̃ such that
the endomorphism d%(w) is not trivial. Since g̃∗ separates points, there exists an
element λ ∈ g̃∗ such that the map

β(·) = λ[w, ·] ∈ g̃∗

is not null. In particular, the orbit θλ is not trivial, and this property is valid in
a neighbourhood of λ. This proves our claim.

Now we suppose that for each λ ∈ g̃∗,
{λ}  θλ ⇒ β(Z) = 0,∀β ∈ θλ.

We consider Z as a linear map defined on the dual of g̃ by evaluation, i.e.

Z : g̃∗ → R, Z(λ) = λ(Z).

Then it is clear that A ⊂ ker(Z), but this is a contradiction since Z 6= 0 and
therefore Ker(Z) is a hyperplane in g̃∗. So, ∃λ ∈ g̃∗ such that β(Z) 6= 0, for some
β ∈ θλ. Now, Z belongs to the centre of g̃, and we obtain

λ(%(g)Z) = λ(Z), ∀g ∈ G.
Consequently, the orbit θλ must be constant on the vector field Z. Therefore λ
(or −λ) is a symplectic vector for Z.

It is possible to generalize Proposition 2.1 to nilpotent simply connected Lie
groups. First, we give some general results on this kind of groups. Let G be a
connected nilpotent Lie group and g̃ its Lie algebra. If exp : g̃ → G denotes the
exponential map, then

d = {w ∈ Z(g̃) | exp(w) = e}
is a discrete additive subgroup of g̃ and exp induces an analytic diffeomorphism
ẽxp : g̃/d→ G from the manifold g̃/d onto G. Moreover, g̃ is a covering manifold
of G, where exp is the covering map and d is the fundamental group of G.

If G is simply connected, we have:

(i) exp : g̃ → G is an analytic diffeomorphism.
(ii) If H is a connected subgroup of G and h̃ is the corresponding subalgebra

of g̃, then

(a) Since h̃ is a nilpotent Lie algebra, H = exp(h̃).
(b) Since exp is a homeomorphism of g̃ onto G and h̃ is a closed simply

connected subset of g̃, H must be a closed simply connected subset of G.
(c) The irrational flow on the torus shows that if G is not simply connected

its (normal) Lie subgroups are not necessarily closed.

Theorem 2.2. Let G be a nilpotent simply connected Lie group with Lie algebra
g̃ and h̃ an ideal of g̃ such that g̃/h̃ is not an Abelian algebra. If π : g̃ → g̃/h̃ is
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the canonical projection and there exist Z ∈ g̃ such that π(Z) ∈ Z(g̃/h̃) is not a
null vector field , then there exists a symplectic vector λ for Z.

P r o o f. By Proposition 2.1 we obtain a symplectic vector λ̃ for the vector field
π(Z) in the quotient g̃/h̃. Since h̃ is an ideal, there exists a connected normal Lie
subgroup H of G with Lie algebra h̃. Since G is a nilpotent simply connected Lie
group, the exponential map is a diffeomorphism and H is closed. In particular,
G/H is a Lie group. We consider the commutative diagrams

g̃
%(g)−→ g̃

π ↓ ↓ π

g̃/h̃
%̃(gH)−→ g̃/h̃

and
g̃

λ−→ R
π ↘ ↗ λ̃

g̃/h̃

where g ∈ G and %̃ is the adjoint representation of G/H. Then, for any g ∈ G we
have

λ(%(g)Z) = λ̃(%̃(gH)π(Z)) = λ̃ ◦ π(Z).

By definition of λ̃, θ
λ̃

is not a trivial orbit and there exist g ∈ G such that
λ̃ ◦ %̃(gH) 6= λ̃. Since the map

(g̃/h̃)∗ −→ g̃∗, λ̃ −→ λ̃ ◦ π,

is injective, we obtain λ◦%(g) 6= λ and the proof is complete, because λ(%(g)Z) >
0,∀g ∈ G.

3. Nilpotent systems. Let Σ = (G,D) be a nilpotent system, i.e. Σ is an
invariant control system with

ġ = X(g) +
k∑
j=1

µjY
j(g)

such that the Lie algebra g̃ of G is nilpotent. Additionally, we assume G is simply
connected.

Theorem 3.1. If Z(g̃)  Zt(h̃) then Σ cannot be controllable.

P r o o f. Let ξ belong to Zt(h̃) \ Z(g̃) and let us define the vector field Z =
[X, ξ]. Since g̃ is nilpotent, the descending central series g̃(0) = g̃ and g̃(i+1) =
[g̃, g̃(i)], i ∈ N, satisfies: there exist n ∈ N such that

g̃ = g̃(0) ! g̃(1) ! . . . ! g̃(n−1) ! g̃(n) = 0.

Let
i0 = min{i | Z ∈ g̃(i) \ g̃(i+1)}.

Since Σ satisfies the rank condition, Z is not a null vector field. Thus Z ∈ g(1)\
g(n), and then 1 ≤ i0 ≤ n − 1. Moreover, by the definition of the descending
central series, for every i ∈ N, g̃(i) is an ideal of g̃ and the canonical projection
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π : g̃ → g̃/g̃(i0+1) satisfies

g̃(i0)/g̃(i0+1) = Z(g̃/g̃(i0+1)).

In fact, fix w1 and let w2 ∈ g̃. We have

[w1 + g̃(i0+1), w2 + g̃(i0+1)] = g̃(i0+1) ⇔ [w1, w2] ∈ g̃(i0+1) ⇔ w1 ∈ g̃(i0).

Since Z ∈ g̃(i0)\g̃(i0+1) the Lie algebra g̃/g̃(i0+1) is not Abelian. Moreover, π(Z) 6=
g̃(i0+1), so Theorem 2.2 gives the existence of a symplectic vector for Z and Σ is
not controllable.

R e m a r k 3.2. Now we study the case when h̃ has codimension 1 in the nilpo-
tent algebra g̃. For the sake of completeness we give a general result closely related
to Theorem 7.3 in [6].

Proposition 3.3. Let Σ = (G,D) be an invariant control system such that h̃
is an ideal of codimension 1 in g̃ and let H be the connected subgroup of G with
Lie algebra h̃.

1. If H is closed , then Σ is controllable ⇔ G/H ' S1.
2. If H is not closed , then Σ is controllable.

P r o o f. The subalgebra h̃ is an ideal, therefore H is a normal subgroup of G.
1. If H is closed, the homogeneous space G/H is a Lie group and we can

project Σ on an invariant control system π(Σ) = (G/H, {X + h̃}) on the 1-
dimensional manifold G/H. Suppose X ∈ h̃. Thus, since Σ is transitive, it will
also be controllable on the group G = H.

If X 6∈ h̃, we separate the analysis in two cases:
(a) Compact case: G/H ∼= S1. In this case Σ is controllable, [6].
(b) Non-compact case: G/H ∼= R+. Here Sπ(Σ)(1) = [1,+∞) and hence Σ

cannot be controllable.
2. Now suppose H is not closed. Therefore, the closure H̄ of H is a closed Lie

group with Lie algebra g̃. Then H is a dense subgroup.
Since U is the class of unrestricted admissable controls, we have H ⊂ SΣ(e).

In fact, for every j = 1, 2, . . . , k, t ∈ R and n ∈ N

exp t
(

1
n
X + Y j

)
∈ SΣ(e).

Then the positive orbit of the neutral point e is also dense in G, and Σ is con-
trollable, [6].

Proposition 3.4. Let Σ = (G,D) be a nilpotent system. If the subalgebra h̃
has codimension 1 in g̃ then the assertion of Proposition 3.3 is true.

P r o o f. In this case, it is possible to prove ([4]) that [g̃, g̃] ⊂ h̃. If not, let
w ∈ g̃ with

(i) g̃ = Rw
⊕
h̃,
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(ii) [ξ, w] = aw + ξ1, a 6= 0, for some ξ1 ∈ h̃. By induction on j = 1, 2, . . . ,

d%j(ξ)(w) = ajw + ξj ,

for some ξj ∈ h̃. But g̃ is a nilpotent Lie algebra, and thus there exist m∈N such
that −amw ∈ h̃, contrary to hypothesis. So, for every w ∈ g̃, [w, h̃] ⊂ h̃. Since h̃
has codimension 1, the proof is complete.

R e m a r k 3.5. If the drift vector field X belongs to the centre of g̃ then h̃
satisfies the hypothesis of Proposition 3.4.

Now we characterize the controllability of nilpotent systems when G is a (con-
nected) simply connected Lie group.

Theorem 3.6. Let Σ be a nilpotent system on the simply connected Lie group
G. Then Σ is controllable ⇔ h̃ = g̃.

P r o o f. It is evident that h̃ = g̃ is a sufficient condition for the controllability
of Σ. Conversely, we consider the ascending central series (h̃i)ki=0 of h̃ defined by

h̃(0) = 0, h̃(j) = {w ∈ h̃ | [w, h̃] ⊂ h̃(j−1)} for j = 1, 2, . . .

Since G is a nilpotent Lie group, h̃ is a nilpotent Lie algebra and there is n ∈ N
such that

0 = h̃(0)  h̃(1)  . . .  h̃(n−1) = h̃.

For every j ∈ {1, 2, . . . , n}, h̃(j) is an ideal for h̃.
We claim that if any h̃(j) is not an ideal of g̃, then Σ cannot be controllable.

In fact, if we denote

j0 = min{j | h̃(j) is not an ideal of g̃}

then h̃(j0−1) is an ideal of g̃ and since h̃(0) = 0, we obtain j0 ≥ 1. Let H0 be
the closed connected normal subgroup of G whose Lie algebra is h̃(j0−1). By
hypothesis G is simply connected and therefore P := G/H0 is a simply connected
Lie group with Lie algebra p̃ = g̃/h̃(j0−1). By the canonical projection π : G→ P
we can project Σ on an invariant system π(Σ) over P . So, the family of vector
fields dπ(D) generates p̃ and the subalgebra of the control vectors of π(Σ) is
h̃/h̃(j0−1).

By the construction of the ascending central series,

Z(h̃/h̃(j0−1)) = h̃(j0)/h̃(j0−1)

is not an ideal of p̃. This shows that

Z(p̃)  Zt(h̃/h̃(j0−1)).

In fact,
Z(h̃/h̃(j0−1)) ⊂ Zt(h̃/h̃(j0−1))

but
Z(h̃/h̃(j0−1)) ⊂ Z(p̃)
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is not possible by the construction of h̃. Therefore Proposition 3.1 applies and
thus π(Σ) is not controllable on P . Hence, Σ cannot be controllable on G and
this contradicts our hypothesis.

Therefore, for each j = 0, 1, . . . , n, h̃(j) is an ideal for g̃, in particular for
j = n. Since Σ is a transitive system, there are two possible cases:

1. h̃ = g̃, or
2. h̃ is an ideal of codimension 1 in g̃.

Proposition 3.4 shows that Σ is controllable ⇔ G/H ' S1. But G/H is a simply
connected Lie group. Thus, h̃ = g̃.

R e m a r k 3.7. (i) In this work, we consider the elements of g̃ as left-invariant
vector fields (it is possible to obtain the same results for right-invariant control
systems). If x0 ∈ Rn and P ∈Mn(R), the linear equation

(a) ẋ = Px, x(0) = x0

induces a matrix equation

(b) Ẋ = PX, X(0) = Id.

The solution etP of (b) gives the solution etP ·x0 of (a) by the action on the initial
condition. Therefore, it is possible to study controllability of bilinear systems B,

B =
{
ẋ = Ax+

∑k
j=1 µjAjx,

x ∈ Rn − {0}
via the right-invariant control system

Σ =
{
ġ = Ag +

∑k
j=1 µjAjg,

g ∈ G
where G is the connected subgroup of the group of non-singular real matrices,
with Lie algebra

g̃ = span
L.A.
{A,A1, . . . , Ak}.

In fact,
SB(x0) = SΣ(Id) · x0.

Therefore, when G is a nilpotent simply connected Lie group, the controllability
results of this paper can be used for bilinear systems.

4. An example. Let G be the Heisenberg group of dimension 2p + 1. The
Lie algebra g̃ of G is generated by the elements

X1, . . . , Xp, Y1, . . . , Yp, Z

with the following rules for non-null brackets:

[Xi, Yi] = Z, 1 ≤ i ≤ p.
It is well known that this algebra has a realization over the vector space of strictly
superior matrices of order p+2 with the commutator [A,B] = AB−BA. If δ(i, j)
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is the matrix of order p + 2 with 1 in the (i, j)-coordinate and zeros elsewhere,
we can identify for i, j ∈ {1, 2, . . . , p+ 2}:

Xi = δ(1, i+ 1), Yj = δ(j + 1, p+ 2) and Z = δ(1, p+ 2).

In this way we can identify the elements of G with linear combinations of Xi,
Yj and Z having 1’s on the diagonal.

So, g ∈ G has coordinates g = (x, y, z), x, y ∈ Rp, z ∈ R.
Now, we consider the dual of g̃,

g̃∗ = spanL.A.{X∗1 , X∗2 , . . . , X∗p , Y ∗1 , Y ∗2 , . . . , Y ∗p , Z∗}.
Each λ ∈ g̃∗ has coordinates λ = (a, b, c), a, b ∈ Rp, c ∈ R. A straightforward
calculation shows that the orbit of λ by the co-adjoint representation is

θλ = {(a+ cy, b− cx, c) | x, y ∈ Rp}.
In particular, for every a, b ∈ R, we have:

1. c = 0⇒ θ(a,b,0) is a trivial orbit.
2. c 6= 0⇒ θ(a,b,c) = {β ∈ g̃∗ | β(Z) = 0} ⊕ c · Z∗.

Therefore, no invariant system Σ of the type

Σ =
{
ġ = Xi0(g) +

∑
i6=i0 µiXi(g) +

∑p
j=1 µjYj(g),

u ∈ U = U(2p− 1)

can be controllable on G. In fact, Yi0 ∈ Zt(h̃) and Z = [Xi0 , Yi0 ] is the centre of
g̃ and therefore Theorem 3.1 is applicable. We have

1. Each vector λ = (a, b, c) with c > 0 is a symplectic vector for Z.
2. Since G is a simply connected Lie group, Theorem 3.6 can be applied

directly.

R e m a r k 4.1. Let G be a connected and simply connected Lie group. Then
Theorem 3.6 allows us to construct all the controllable systems on G.
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