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BOUNDARIES AND THE FATOU THEOREM FOR SUBELLIPTIC
SECOND ORDER OPERATORS ON SOLVABLE LIE GROUPS

BY

EWA D A M E K AND ANDRZEJ H U L A N I C K I (WROC LAW)

1. Introduction. This paper is a continuation of our paper [DH]. We
are going to study the behavior of the Poisson integrals on the Furstenberg–
Guivarc’h–Raugi boundaries for bounded functions harmonic with respect to
a second order, left-invariant, nonnegative, subelliptic differential operator
L on a solvable Lie group S = NA, which is a semidirect product of a
nilpotent Lie group N and an Abelian Lie group A acting diagonally on N .

In [DH] we have identified all such boundaries. A boundary is an S-space
X ' Rχ equipped with a probability measure ν (see Section 2 for a precise
definition of S) such that the Poisson integral

F (s) =
∫

X

f(sx) dν(x) = Pf(s)

of a function f in Lp(Rχ), 1 ≤ p ≤ ∞, is an L-harmonic function on S.
The main point of the present paper is to prove the almost everywhere

admissible convergence of the Poisson integrals of functions f ∈ Lp, p > 1,
on an arbitrary boundary X, which is an analog of the Fatou theorem. The
admissible approach to the boundary in the general case is defined in very
much the same way as in the case when X is a group ([K], [St], [Sj] and [D]).

Our theorem will be proved under the additional assumption that A acts
rationally on N . In the case when the boundary X can be identified with a
subgroup or a factor group of N , this theorem has already been proved in
[D]. In the general case, however, a much more refined technique seems to
be necessary and only the methods developed by M. Christ [Chr] combined
with the older ones by P. Sjögren [Sj] have allowed us to obtain the result.

The rationality assumption, satisfied automatically in the case of sym-
metric spaces, i.e. when NA is the solvable part of the Iwasawa decomposi-
tion of a semisimple Lie group, was necessary in [D]. It is also crucial here.
It is a challenging problem to establish whether the Fatou theorem is valid
without it.
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The paper is organized as follows. After the preliminary Section 2 we
discuss the admissible convergence to the boundary in Section 3, where we
also formulate the main theorem and make some comments. The proof of the
main theorem consists of several steps. These are put in separate sections.

The authors are grateful to Michael Christ for very illuminating conver-
sations concerning his methods as described in [Chr]. Thanks are also due
to Fulvio Ricci for inspiration the authors have derived from his magnificent
TEMPUS lectures on maximal functions along curves held at the Institute
of Mathematics of Wroc law University in September 1991 ([R]).

2. Preliminaries. Let s be a solvable Lie algebra. We assume that s
is the direct sum of two subalgebras, s = n⊕ a, where n is nilpotent and a
Abelian. We assume that there exists a basis E1, . . . , En of n such that for
every H in a,

[H,Ej ] = 〈λj ,H〉Ej , λj ∈ a∗, j = 1, . . . , n.

We write {λ1, . . . , λn} = ∆. For λ in ∆ let

nλ = {Y ∈ n : adH Y = 〈λ,H〉Y for all H in a}.
We say that a subspace n′ of n is homogeneous if adHn′ ⊂ n′ for every H
in a.

Let
S = exp s, N = exp n and A = exp a.

Then S = NA is a semidirect product of the groups N and A, with A acting
on N by

(2.1) a exp
{∑

j

xjEj

}
a−1 = exp

{∑
j

xje
〈λj ,log a〉Ej

}
.

Let L be a second order, left-invariant, degenerate elliptic operator with-
out a constant term:

L = X2
1 + . . .+X2

m +X0.

We shall assume that X0, X1, . . . , Xm satisfy the Hörmander condition, i.e.
the smallest Lie subalgebra which contains X0, . . . , Xm is equal to s. We
write

(2.2) X0 = Y0 + Z0, Y0 ∈ n, Z0 ∈ a.

Now let
∆0 = {λ ∈ ∆ : 〈λ,Z0〉 ≥ 0}.

We define the subalgebra

n0(L) =
⊕

λ∈∆0

nλ
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and the corresponding subgroup N0(L) = exp n0(L). Let n0 be a homoge-
neous subalgebra of n containing n0(L) and let N0 = exp n0.

In [DH] we have shown that the boundaries of the pair S,L are precisely
the S-spaces X = S/N0A = N/N0. To be more precise, we write S ×X 3
(s, u) 7→ su ∈ X for the natural action of S on X. We select a point e in X
and we define the map p : S 3 s 7→ se ∈ X. For a measure ν on X and a
bounded measure or a distribution with compact support µ on S we write
µ ∗ ν for the natural convolution corresponding to this action. We say that
(X, ν) is a boundary for the pair S,L if X is an S-space, ν a probability
measure on X and

(2.3) L̆ ∗ ν = 0, or equivalently, µ̆t ∗ ν = ν for each t > 0,

where {µ̆t}t>0 is the semigroup of probability measures on S whose infinites-
imal generator is L̆ = X2

1 + . . .+X2
m −X0, and

(2.4) stν tends weak* to a point mass on X as t → ∞, for almost all
trajectories st of the diffusion process on S generated by L.

Conversely, any locally compact Hausdorff S-space for which there exists
a probability measure ν such that (2.3) and (2.4) hold is of the form S/N0A,
for some homogeneous subalgebra n0 = logN0 of n containing n0(L) [DH].

Let f be a function on X and suppose f ∈ Lp(Rχ) for some p, 1 ≤ p ≤ ∞.
Then (2.3) implies that the function

(2.5) F (s) =
∫

X

f(sx) dν(x)

on S is L-harmonic. We call (2.5) the Poisson integral of f . As is proved
in [DH], ν is the weak* limit of p(µt) as t→∞. Let us list some properties
of ν proved in [DH].

(2.6) ν has a smooth density dν(x) = P (x) dx.

The function P is called the Poisson kernel for the boundary X. Let ‖ · ‖
be a norm in X.

(2.7) There exists η > 0 such that
∫

X
‖y‖ηP (x) dx <∞.

Consequently,

(2.8) P ∈ Lβ for some β < 1.

(2.9) For every multiindex I there are constants c, M such that

|∂IP (y)| ≤ c(1 + ‖y‖)M .

(2.10) There exist c, ε > 0 such that P (y) ≤ c(1 + ‖y‖)−ε.

3. Almost everywhere admissible convergence. Now we fix
a boundary X = S/N0A with N0 = exp n0. Let n1 be a homogeneous
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subspace of n1 such that n = n1 ⊕ n0. Without loss of generality we may
assume that E1, . . . , Eχ is a linear basis of n1. Let

∆1 = {λ1, . . . , λχ}.
For a given compact subset K of S, and y ∈ N , let ΓK

y = {yaz : a ∈ A, z ∈
K}. We say that s tends admissibly to the boundary X, s ∈ S, and we write
s→ X, if s ∈ ΓK

y and

lim〈λ, log a(s)〉 = −∞ for every λ ∈ ∆1,

where a(s) is the image of s under the canonical homomorphism of S onto
A = S/N . A simple verification shows that (2.1) implies

lim
s→X

sz · x = p(s)

uniformly for x in a compact subset in X and z in a compact subset of S.
Consequently, for f ∈ Cc(X) and every compact subset K of S we have

(3.1) lim
ya→X

∫
X

f(yazx)P (x) dx = f(p(y))

uniformly in z ∈ K. We shall use the abbreviation

Pf(s) =
∫

X

f(sx)P (x) dx.

A natural generalization of (3.1) to the almost everywhere convergence of
Pf(s) to f(p(s)) for f in Lp(X) could be the following: For every function
f in Lp(X), 1 < p ≤ ∞, there is a set X0 ⊂ X such that |X\X0| = 0 and

if p(y) ∈ X0, then lim
ya→X

∫
X

f(yazx)P (x) dx = f(p(y)).

This is true if p is one-to-one on N (see [D]). Then the maximal function

Mf(y) = sup
a∈A, z∈K

∫
X

f(yazx)P (x) dx

is bounded on Lp(N). If, however, N0 6= e, then Mf has no chance of being
in Lp(N), since if e.g. N0 is a normal subgroup of N , then Mf is constant
on cosets of N0. To formulate our almost everywhere convergence theorem
for the admissible convergence as defined above, we consider a selector from
the cosets and redefine the maximal function appropriately.

Let as above n1 be a homogeneous subspace of n such that n = n1⊕n0.
In view of the easy Proposition (1.25) of [DH], if N1 = exp n1, then

(3.2) N1 ×N0 3 (y, z) 7→ yz ∈ N1N0 = N

is a diffeomorphism such that if x = yz, then y and z depend polynomially
on x in the coordinates given by exp on N1, N0 and N , respectively. Clearly
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X ' N1 ' Rχ for some natural number χ. Thus, N1 is a selector from the
cosets N/N0 = X. We transfer the action of S on X to the action on N1:
let π : S → N1 be defined as follows. For s in S we write s uniquely as
s = yza with y ∈ N1, z ∈ N0, a ∈ A and we put π(s) = y. Then

(3.3) π(s1π(s2y)) = π(s1s2y) for s1, s2 ∈ S, y ∈ N1.

This defines an action of S on N1 : S ×N1 3 (s, y) 7→ π(sy) ∈ N1, and, of
course, p|N1 is an isomorphism between the S-spaces N1 and X.

We shall also consider a group of transformations of N1 “from the right”
generated by the mappings N1 3 x 7→ π(xu) ∈ N1 for u in N1, and we
shall prove that this is a (finite-dimensional) nilpotent group. Of course
this group is equal to N1 if N1 is a subgroup of N , but the latter does not
hold in general.

Our main theorem will be proved under the following

(3.4) Rationality assumption. There exists a basis E1, . . . , Eχ of
n1 and a basis H1, . . . ,Hk of a such that the corresponding functionals
λ1, . . . , λχ take integral values on H1, . . . ,Hk.

Let y0 ∈ N0 and K be a compact subset of S. We consider the maximal
function

MK
y0
f(y1) = sup

a∈A,z∈K

∫
X

|f |(y1y0azx)P (x) dx.

We are going to prove the following

(3.5) Theorem. Under the rationality assumption, for p > 1 for a
constant C = CK,y0,p we have

‖MK
y0
f‖Lp(N1) ≤ C‖f‖Lp(X).

Theorem (3.5) has an immediate consequence:

(3.6) Main Theorem. Let f ∈ Lp(X) for some p > 1. For every y0 in
N0 there is a subset Xy0 in X such that the Lebesgue measure of X \Xy0 is 0
and such that for every compact subset K of S, if y = y1y0 and p(y) ∈ Xy0

we have
lim

〈λ,log a〉→−∞, λ∈∆1

Pf(y1y0az) = f(p(y))

uniformly for z ∈ K.

R e m a r k s.

(3.7) If y0 = e and N1 is a subgroup of N this is precisely the “almost
every admissible convergence theorem” of [D] and if also S is the NA part
of the Iwasawa decomposition of a semisimple Lie group with L being the
Laplace–Beltrami operator on the symmetric space S, it is the main theorem
of [Sj].
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(3.8) It is an open question whether the set Xy0 can be selected inde-
pendently of y0. Certainly the existence of such a universal set would be
implied by a more general version of the approach to the boundary. Indeed,
let us say that s in S tends to the boundary X strongly admissibly s → X
if for a compact subset K0 of N and a compact subset K of S,

s ∈
⋃

p(y)=x, y∈K0

yAK

and lim〈λ, log a〉 = −∞ for every λ ∈ ∆1. Then for every compact subset
C of X, sx→ p(s) uniformly in x ∈ C. Hence

(3.9) lim
ya→X

∫
X

f(yazx)P (x) dx = f(p(y))

for f ∈ C0(X). It is not true, however, that (3.9) holds for almost all
p(y) ∈ X, even for f in L∞(X) (see [S]).

4. Reduction to lacunary dilations. By the rationality assumption
we see that the set

Γ =
{
H ∈ a : H =

∑
ajHj , aj ∈ Z

}
has the property that

(4.1) 〈λ, γ〉 ∈ Z for γ ∈ Γ, λ ∈ ∆1.

Let U be a subset of a with compact closure such that every H in a can be
written uniquely in the form

H = u+ γ, u ∈ U, γ ∈ Γ.

For a in A we write [a] for the unique γ in Γ such that log a = u + γ with
γ in Γ , u in U .

For a compact subset K of S let K ′ = exp(UK). By the Harnack
inequality, there is a constant c such that

max
s∈K′

F (s) ≤ cF (e)

for every nonnegative harmonic function F . Consequently, since L is left-
invariant,

P |f |(xas) ≤ cP |f |(x[a]) for s ∈ K ′, x ∈ N.
Therefore, for a fixed compact subset K of S and y0 ∈ N0,

MK
y0
f(y1) ≤ c sup

a∈A
P |f |(y1y0[a])

≤ c sup
log a∈Γ

P |f |(y1y0a) = cMf(y1), y1 ∈ N1.
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As p establishes an isomorphism of the S-spaces X and N1 ((3.3)), the
maximal function M can be considered as a function from Lp(N1) into
Lp(N1). For u ∈ N1 we write u = exp{

∑χ
j=1 ujEj}. Consequently,

(4.2) Mf(y1) = sup
γ∈Γ

∫
N1

|f |
(
π
(
y1y0 exp

{ χ∑
j=1

uje
〈γ,λj〉Ej

}))
P (u) du.

Now we proceed as in [Sj]. In view of (2.10), there exist two constants c and
ξ such that

(4.3) P (u) ≤ cmin{1, |uj |−ξ : j = 1, . . . , χ}.
Let Em = {u : P (u) > 2−m}, m = 0, 1, . . . By (4.3), for some c1, c2 and all
m ≥ 0,

(4.4) Em ⊂ {u : |uj | ≤ c12c2m, j = 1, . . . , χ}.
Moreover, since ∇P grows at most polynomially (see (2.9)), there is a % > 0
such that

(4.5) dist(Em, Ec
m+1) ≥ 2−%m.

We divide N1 into disjoint cubes of size 2−%m. Let Qm,j , j = 1, . . . , jm, be
those cubes whose intersection with Em is not empty. By (4.5), we have

(4.6) Qm,j ⊂ Em+1.

Hence jm ≤ 2%mχ|Em+1|, where χ = dimN1. But, since P ∈ Lβ for some
β < 1 (see (2.8)), by the Chebyshev inequality we have |Em+1| ≤ c2m(1−β)

and so
jm ≤ 2%mχ+m(1−β).

Let now

Mm,jf(y1) = sup
γ∈Γ

∫
Qm,j

|f |
(
π
(
y1y0 exp

{ χ∑
k=1

uke
〈γ,λk〉Ek

}))
P (u) du.

Then

Mf(y1) ≤ c

∞∑
m=1

jm∑
j=1

Mm,jf(y1).

Thus the estimate

(4.7) ‖Mm,jf‖Lp ≤ c2−%mχmp‖f‖Lp , j = 1, . . . , jm,

to be proved below, implies

‖Mf‖Lp ≤ c

∞∑
m=1

2−mjm2−%mχmp‖f‖Lp = c

∞∑
m=1

2−mβmp‖f‖Lp .

The rest of the paper is devoted to the proof of (4.7). We are going to
prove the following
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(4.8) Theorem. Let o1, . . . , oχ ∈ R and r1, . . . , rχ be positive real num-
bers and

(4.9) Mf(y1) = sup
γ∈Γ

(r1 . . . rχ)−1
∫

|uj−oj |<rj ,j=1,...,χ

|f |(π(y1y0δγ(u))) du,

where for u = exp{
∑χ

j=1 ujEj},

(4.10) δγ(u) = exp
{ χ∑

j=1

uje
〈γ,λj〉Ej

}
.

Then for every p > 1 there exist constants cp and C independent of o1, . . . , oχ

and r1, . . . , rχ such that

(4.11) ‖Mf‖Lp ≤ cp

(
1 + log+ max |oj |

min rj

)C

‖f‖Lp .

The center (o1, . . . , oχ) of the cube Qm,j belongs to Em+1, so, by (4.4),
max |ok| ≤ c12c2(m+1), while rk = 2−%m, k = 1, . . . , χ. Thus Theorem (4.8)
implies (4.7). Because of homogeneity of the right hand side of (4.11), it
is sufficient to prove Theorem (4.8) for r1 = . . . = rχ = 1 and arbitrary
o1, . . . , oχ.

5. A nilpotent group of transformations. The aim of this section
is to show that the transformations

(5.1) N1 3 x 7→ π(xy) ∈ N1, y ∈ N,

generate a nilpotent group of transformations acting transitively on N1. Let
E1, . . . , Eχ be a basis of n1 such that [H,Ej ] = 〈λj ,H〉Ej , λj ∈ ∆1. We
define a natural family of dilations {δr}r>0 on N1 by

δrx = exp
{ χ∑

j=1

r〈Z0,λj〉xjEj

}
,

where x = exp{
∑χ

j=1 xjEj} and Z0 is as in (2.2). We order the basis
E1, . . . , Eχ in such a way that if 〈λj , Z0〉 = dj , then d1 ≤ . . . ≤ dχ. Of
course we may assume d1 = 1.

For a polynomial in the variables x1, . . . , xχ we define a degree by putting

deg xj = dj ,(5.2)

if I = (i1, . . . , iχ) is a multiindex, then deg xI =
∑

ijdj ,(5.3)

deg
∑

cIx
I = max{deg xI}.(5.4)

A mapping φ from N1 into a nilpotent Lie group G is called a polynomial
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if for a basis X1, . . . , XM of the Lie algebra of G we have

φ
(

exp
{ χ∑

j=1

xjEj

})
= exp

{∑
j

Wj(x)Xj

}
,

where the Wj are polynomials.

(5.5) Theorem. The mappings (5.1) generate a subgroup G of a homo-
geneous group G such that for a fixed y0 in N0 the mapping φ : N1 → G
defined by

(5.6) π(xy0u) = φ(u)x

is a polynomial and φ(e) = e.

P r o o f. In view of Proposition (1.22) in [DH] there are polynomials
P1, . . . , Pχ such that if u ∈ N1, then

(π(xu))i = xi + ui + Pi(x, u),(5.7)
Pi depends only on x1, . . . , xi−1, u1, . . . , ui−1,(5.8)

Pi(x, 0) = Pi(0, u) = 0,(5.9)
degx Pi < di,(5.10)

Pi(δrx, δru) = rdiPi(x, u).(5.11)

Therefore for x 7→ π(xy) = π(xπ(y)), y ∈ N, we have

(5.12) π(xy)i = xi + P ′i (x, y),

where degx P
′
i < di, P ′i depends only on x1, . . . , xi−1 and P ′i (x, y0) = 0 for

y0 ∈ N0.
Let Vi be the linear span of the polynomials in x1, . . . , xi−1 of degree

at most di − 1. We form a group G with underlying set V1 ⊕ . . . ⊕ Vχ.
Let P = (P1, . . . , Pχ) be a generic element of G. Then P acts on N1 as a
transformation TP defined by

(5.13) (TPx)i = xi + Pi(x1, . . . , xi−1).

The mapping P 7→ TP is injective. We have to show that for P and R in G
there is an element PR in G such that TPR = TP �TR, and T−1

P = TP−1 for
some P−1 in G. In fact, since

(TPTRx)i = (TRx)i + Pi((TRx)1, . . . , (TRx)i−1)

and
(TRx)j = xj +Rj(x1, . . . , xj−1)

with Rj ∈ Vj , j = 1, . . . , i, Pi ∈ Vi, there are Wi ∈ Vi, i = 1, . . . , χ, such
that (TPTRx)i = xi +Wi(x1, . . . , xi−1). Similarly, if

(5.14) yi = xi + Pi(x1, . . . , xi−1),



130 E. DAMEK AND A. HULANICKI

we solve (5.14) for xi and obtain

(T−1
P y)i = yi + P−1

i (y),

where P−1
i is a polynomial in y1, . . . , yi−1 and

(5.15) P−1
i (y) = Pi(y1 + P−1

1 (y), . . . , yi−1 + P−1
i−1(y)).

From (5.15) we prove by induction that degP−1
i < di.

Putting for r > 0, δr = δ(log r)Z0 and

(5.16) δrP (x) = (rd1P1(δr−1x), . . . , rdχPχ(δr−1x))

we easily verify that

Tδr(PR) = TδrP � TδrR,

so {δr}r>0 is a group of automorphic dilations of G.
To complete the proof of Theorem (5.5) we take the natural basis of

monomials, xα,i = (. . . , xα, . . .), i = 1, . . . , χ, |α| < di, in V1 ⊕ . . .⊕ Vχ. We
order it in the following way. We place xα,i before xβ,j whenever i < j or
if i = j and |α| > |β|. If i = j and |α| = |β| the order is irrelevant. Let
(y1, . . . , yM ) be the coordinates in G with respect to this basis. In these
coordinates the multiplication in G is given by

(5.17) (yy′)i = yi + y′i +Wi(y, y′),

where Wi is a polynomial which depends on y1, . . . , yi−1, y′1, . . . , y
′
i−1 and

such that Wi(0, y′) = Wi(y, 0) = 0. Now we identify V1 ⊕ . . .⊕ Vχ with the
Lie algebra of G and the ordered basis X1, . . . , XM of monomials becomes
a basis of the Lie algebra. By (5.17), the transformation of coordinates
y = (y1, . . . , yM ) 7→ (z1, . . . , zM ), where y = exp{

∑M
i=1 ziXi}, is triangular,

i.e. zi = yi +Ri(y), where the polynomial Ri depends only on y1, . . . , yi−1.
Now, by (5.12) we have

π(xy)i = xi + P ′i (x, y) = xi +
∑
α

( ∑
β

ai
α,βy

β
)
xα,i.

Hence, if y = y0u, u ∈ N1 and

φ(u) =
( ∑

α

( ∑
β

a1
α,βy

β
)
xα,1, . . . ,

∑
α

( ∑
β

aχ
α,βy

β
)
xα,χ

)
∈ G,

then in view of (5.17), φ(u) = exp{
∑M

j=1Wj(u)Xj}, where Wj are polyno-
mials. Moreover, we see that π(xy0u) = Tφ(u)x and the proof is complete.

Now we transfer our maximal function (4.9) to the group G and use
the transference principle (see [CW]). This means that we define a maximal
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function on Lp(G) by

Mf(x) = sup
γ∈Γ

∫
|uk−ok|≤1, k=1,...,χ

|f |
(
x exp

{ M∑
j=1

Wj(δγu)Xj

})
du,

and we are going to prove

‖M‖Lp→Lp ≤ cp(1 + log+{max |ok|})C .

Expanding Wj(u) as sums of monomials uα and rearranging the basis Xj ,
possibly multiplying by constants, we rewrite the maximal function M as

Mf(x) = sup
γ∈Γ

∫
|uk−ok|≤1, k=1,...,χ

|f |
(
x exp

{ ∑
α∈A

(δγu)αXα

})
du,

where A ⊂ Nχ is a finite set of multiindices α = (α1, . . . , αχ), which does
not contain the multiindex (0, . . . , 0). Thus it suffices to prove the following

(5.18) Theorem. Let G be a connected , simply connected nilpotent Lie
group and A a finite subset of Nχ\{(0, . . . , 0)}. For each α ∈ A let Xα be
an element of the Lie algebra of G. Consider a maximal function on Lp(G)
defined by

Mf(x) = sup
γ∈Γ

∫
|uk−ok|≤1, k=1,...,χ

|f |
(
x exp

{ ∑
α∈A

(δγu)αXα

})
du.

Then there exist constants cp and C independent of o1, . . . , oχ such that

(5.19) ‖M‖Lp→Lp ≤ Cp(1 + log+{max |ok|})C .

6. Maximal function after M. Christ [Chr]. The maximal function
Mf in Theorem (5.18) is bounded on Lp(G) as proved by M. Christ [Chr].
What we need here is the estimate (5.19) of its norm. This is attained by a
careful examination of the proof given in [Chr]. We introduce appropriate
dilations both in N1 identified with Rχ and in the free nilpotent group G
whose algebra is freely generated by Xα, α ∈ A. To put these two things
together we rewrite the main steps of Christ’s arguments here adapted to
our situation.

As in [Chr], we begin by recalling the transference principle again to
replace the group G by the nilpotent free group G whose Lie algebra is
generated by Xα, α ∈ A. For every sequence J = {Jα}α∈A with Jα ∈ Z,
i.e. J ∈ ZA = P, we define a unique dilation on G by

dJXα = eJαXα.

Let ψ ∈ C∞c (Rχ) with ψ(u) = 1 for u in {u : ∀k=1,...,χ |uk − ok| ≤ 1} and
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suppψ ⊂ {u : ∀k=1,...,χ |uk − ok| < 2}. We define a measure µ on G by∫
G

f dµ =
∫

Rχ

f
(

exp
{ ∑

α∈A
uαXα

})
ψ(u) du

and the dilated measures µJ by∫
G

f dµJ =
∫

Rχ

f
(

exp
{ ∑

α∈A
eJαuαXα

})
ψ(u) du.

As in Christ [Chr], we deduce Theorem (5.18) from the following theorem
which we are going to prove now.

(6.1) Theorem. There is a constant cp independent of max |ok| such
that the maximal function

Mf(y) = sup
J∈P

|f | ∗ µJ(y)

is bounded on Lp(G) with

‖M‖Lp→Lp ≤ Cp(1 + log+{max |ok|})q,

where q is a constant depending only on G (see Proposition (6.4)).

The proof follows closely the proof of the main theorem of [Chr]. We
recall here the main steps to show how we obtain the required estimate
Cp(1 + log+ max |ok|)q. Obviously we may assume that max |ok| ≥ 1.

Let {δr}r>0 be the unique family of automorphic dilations of G such
that

δrXα = r|α|Xα.

For a measure ν on G we define δrν by 〈f, δrν〉 = 〈f ◦ δr, ν〉. Now we put

r = max |ok|.
For each I in P+ = (Z+)|A| \ {0} we let

gI = {Y ∈ g : dJY = e〈I,J〉Y for all J ∈ P},
where 〈I, J〉 =

∑
α∈A IαJα. For each K in P+ we define maxK = max{Kα :

α ∈ A} and |K| =
∑

αKα.
Let gα be the sum of the gI such that Iα 6= 0. Then gα is the ideal in

g spanned by Xα. Let dα = dim gα. We fix a bα in C∞c (gα) with
∫
bα = 1.

For k in N+ let

bα,k(u1, . . . , udα) = ekdαbα(eku1, . . . , e
kudα).

We define measures σα,k and λα,k by

σα,k = exp∗(bα,k(u)du), λα,k = σα,k − σα,k−1, k ≥ 1,

where exp∗ denotes the push-forward of a measure.
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We choose a linear ordering of A which will remain fixed. For K in P+

we define
ΛK =

∏
α∈A

λα,Kα ,

where
∏

denotes the convolution product of measures taken according to
the ordering. For a subset E of A we define

τE =
∏
α∈E

σα,0,

where the convolution product is taken according to the order of A. We
write

σr
α,k = δrσα,k, λr

α,k = δrλα,k, ΛK,r = δrΛ
K , τE,r = δrτ

E .

The Dirac measure concentrated at a point x is denoted by ex, and e is
the measure concentrated at the identity of G. We decompose e as

e =
∏
α∈A

[(e− σr
α,0) + σr

α,0] =
∏
α∈A

(e− σr
α,0) +

∑
∅6=E⊆A

cEτ
E,r,

where the cE are integers. Expanding e− σr
α,0 =

∑
k>0 λ

r
α,k for each α, we

have

µ =
∑

K∈P+

µ ∗ ΛK,r +
∑

∅6=E⊆A

cEµ ∗ τE,r,

and dilating gives

µJ =
∑

K∈P+

µJ ∗ ΛK,r
J +

∑
∅6=E⊆A

cEµJ ∗ τE,r
J .

Thus to prove Theorem (6.1) we consider two operators

(6.2) M1 : f 7→ sup
J∈P

∣∣∣f ∗ ∑
K∈P+

µJ ∗ ΛK,r
J

∣∣∣
and

(6.3) M2 : f 7→ sup
J∈P

∣∣∣f ∗ ∑
∅6=E⊆A

cEµJ ∗ τE,r
J

∣∣∣,
and we prove that they satisfy the appropriate bounds on Lp. First we prove

(6.4) Proposition. For every p > 1 we have

‖M1‖Lp→Lp ≤ Cp(1 + log+{max |ok|})q,

where q = |A|+
∑

α∈A dα.

For a fixed K we define

(6.5) MK,rf(x) = sup
J∈P

|f | ∗ µJ ∗ ΛK,r
J (x).
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Now we are going to prove the following propositions:

(6.6) Proposition. There are ζ, C, ε > 0 such that for every r,

‖MK,r‖L2→L2 ≤ Crζe−ε|K|.

(6.7) Proposition. For every p > 1 there exists a constant Cp such that
for every r,

‖MK,r‖Lp→Lp ≤ Cp(1 + |K|)Σα∈Adα .

P r o o f o f P r o p o s i t i o n (6.6). For a fixed K we define

SKf(x) =
( ∑

J∈P

|f ∗ µJ ∗ ΛK,r
J (x)|2

)1/2

.

Of course,

sup
J∈P

|f ∗ µJ ∗ ΛK,r
J | ≤

( ∑
J∈P

|f ∗ µJ ∗ ΛK,r
J (x)|2

)1/2

= SKf(x).

We write

TJf = f ∗ µJ ∗ ΛK,r
J and T =

∑
J∈P

±TJ

with an arbitrary choice of signs. We are going to prove that

(6.8) ‖T‖L2→L2 ≤ Crζe−ε|K|,

where the constant is independent of the choice of signs. This will give the
same bound on ‖SK‖L2→L2 and so the desired estimate on ‖MK,r‖L2→L2 .

First notice that
‖TJ‖L2→L2 ≤ C

uniformly in J in P, K in P+ and r > 0, since the norms of the measures
µJ and ΛK,r

J are uniformly bounded.
We will prove that there are ε, ζ, c > 0 such that

(6.9) ‖T ∗I TJ‖L2→L2 + ‖TIT
∗
J ‖L2→L2 ≤ crζe−ε|I−J|−ε|K|

for all I, J ∈ P and K ∈ P+. This, by the Cotlar–Stein lemma, implies

‖T‖L2→L2 ≤ Crζe−ε|K|
∑
I∈P

e−ε|I|

and so (6.8) follows. Thus it suffices to prove (6.9). To do this we write
〈f, µr

J〉 = 〈f ◦ δr−1 , µJ〉. Then

〈f, µr
J〉 =
∫

Rχ

f
(

exp
{ ∑

α∈A
eJαuαXα

})
ψr(u) du,

where ψr(u) = rχψ(ru1, . . . , ruχ). Moreover, µJ ∗ ΛK,r
J = δr(µr

J ∗ ΛK
J ).

We prove (6.9) where the operators TJ are replaced by the operators
f 7→ f ∗ µr

J ∗ ΛK
J . The support of the measure µr

J ∗ ΛK
J does not depend on
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r any more and the estimate (6.9) is just Lemmas (4.3) and (4.4) of [Chr]
except that the dependence on r is not explicit. To show that in fact it is as
in (6.9) we examine carefully the proof of Lemma (4.5) in [Chr] and Lemma
(3.4) in [Ch], which are the main tools in the proof of (4.3) and (4.4) in
[Chr].

We reformulate Lemma (4.5) in [Chr] to emphasize the dependence of
the estimate on ‖ψr‖C1 .

For two natural numbers n ≥ D, with D = dim G, we consider a family
F of functions F : Rn → RD which satisfy the following conditions:

The coordinate functions Fi, i = 1, . . . , D, are homogeneous polynomials
(with respect to the usual dilations in Rn) whose degrees are uniformly
bounded by a number M , and for a compact set K ⊂ Rn,

sup{‖F‖C∞(K) : F ∈ F} = C <∞.

For a subset E of {1, . . . , n} with |E| = D, the Jacobian determinant

JE = (∂F/∂xξ)ξ∈E

is a homogeneous polynomial. We assume that for every F in F there is a
set EF and a multiindex γF such that ∂γF JEF

/∂xγF is a constant and

inf
F∈F

|∂γF JEF
/∂xγF | > 0.

Finally, let φ ∈ C∞c (Rn), suppφ ⊂ K, and let ξF = F∗(φdx) be the
push-forward measure and K′ a fixed compact set in G = RD.

(6.10) (Reformulation of Lemma (4.5) of [Chr]). Under the assumptions
above there are constants C, ε > 0 such that for every measure σ supported
in K′, every % > 0, every measure ν supported in a set of diameter % such
that

∫
G
dν = 0 and F ∈ F ,

‖ξF ∗ σ ∗ ν‖L1 ≤ C%ε‖φ‖C1‖σ‖L1‖ν‖L1 .

As in [Chr] we apply the above lemma to the function

φ =
D∏

j=1

4∏
i=1

ψr(xi
j), xi

j ∈ Rχ,

which satisfies
‖φ‖C1 ≤ Cr4Dχ+1,

and proceeding as in [Chr] we obtain (6.9). This completes the proof of
Proposition (6.6).

To prove the Lp estimate, p > 1, we recall the following

(6.11) Lemma (cf. [St], [NS], [Sj]). Let N be a nilpotent group and E1, . . .
. . . , En a basis of its Lie algebra. For every p > 1 there exists a constant cp
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such that for the operator T defined by

Tf(x) = sup
m∈Zn

(r1 . . . rn)−1
∫

|yi−oi|<ri, i=1,...,n

f
(
x

n∏
i=1

exp(yie
miEi)

)
dy

we have

‖T‖Lp→Lp ≤ cp

n∏
i=1

(
1 + log+

|oi|
ri

)
.

P r o o f o f P r o p o s i t i o n (6.7). Since µ =
∫
|ui−oi|<1

δF (u)ψ(u) du, it
is enough to prove

‖ sup
J
|f | ∗ (eF (u) ∗ ΛK,r)J‖Lp ≤ Cp(1 + |K|)Σα∈Adα .

For that consider the measure

eδr−1F (u) ∗ ΛK = δr−1(eF (u) ∗ ΛK,r).

Writing δr−1F (u) =
∏

α∈A xα, where xα ∈ exp gα, we have

eδr−1F (u) ∗ ΛK =
∏
α∈A

να,

where

να = exα ∗ e(Πβ>αxβ) ∗ λα,Kα ∗ e(Πβ>αxβ)−1

and all xα belong to a compact set independent of r, u and K. Since exp gα is
a normal subgroup, να is a smooth measure supported in exp gα. Moreover,
there are c, c1, . . . , cdα

independent of r, u and K such that the density of
να is dominated by |BKα |−11BKα

, where BKα = {x =
∏dα

i=1 exp(xiEi) :
|xi − ci| < ce−Kα}. Therefore the operator

Mαf(x) = sup
J
f ∗ (δrνα)J(x)

both on exp gα and G is dominated by the operator T of Lemma (6.11) with
|oi|/ri ≤ |ci|ceKα , i = 1, . . . , dα. Therefore

‖Mα‖Lp→Lp ≤ C(1 +Kα)dα .

Finally, the operator

sup
J
|f | ∗ (eF (u) ∗ ΛK,r)J = sup

J
|f | ∗

( ∏
α∈A

δrνα

)
J

is dominated by the composition of the operators Mα, α ∈ A, and Proposi-
tion (6.7) follows.

P r o o f o f P r o p o s i t i o n (6.4). To complete the proof of Proposition
(6.4), we argue as in [Chr]. We take p′ such that 1 < p′ < p < 2 and we
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interpolate between the L2 estimate of Proposition (6.6) and the Lp′estimate
of Proposition (6.7) to obtain

(6.12) ‖ sup
J
|f | ∗ µJ ∗ ΛK,r

J ‖Lp ≤ Cpr
ζe−ε|K|‖f‖Lp .

Consequently,

‖M1‖Lp→Lp ≤
∑
K∈P

‖MK,r‖Lp→Lp

≤ Cp

∑
{K:max K<ε−1(ζ log r+1)}

(1 + |K|)Σα∈Adα

+ Cp

∑
{K:max K>ε−1(ζ log r+1)}

rζe−ε|K|

≤ C ′p(1 + log r)q,

which completes the proof of Proposition (6.4).

P r o o f o f T h e o r e m (6.1). To complete the proof of Theorem (6.1)
it suffices to show that for M2 as defined in (6.3) we have

(6.13) ‖M2‖Lp→Lp ≤ C(1 + log r)q.

This will be proved as follows. First we prove our Theorem (6.1) for |A| = 1,
i.e. when G = R. Then we assume that the theorem is true for everyA0 ⊂ A
with A0 6= A. Under this assumption we prove (6.13) and thus complete
the proof of Theorem (6.1).

If |A| = 1, then G = R and our maximal operator is of the form

Mf(x) = sup
γ∈Z

∫
Rχ

|f(x+ eγuα1
1 . . . uαn

n )|ψ(u1 . . . un) du1 . . . dun.

First we fix uα2
2 . . . uαn

n = b 6= 0. Since γ runs over all integers, we may
assume 1/2 ≤ b ≤ 1 and so

Mf(x) ≤ 21/α1
∫

|uk−ok|<2,k 6=1

(
sup
γ∈Z

∫
|u1−o′1|<2

|f(x+eγuα1
1 )| du1

)
du2 . . . dun,

where o′1 = b1/α1o1. Now we consider the one-dimensional operator

Mf = sup
γ∈Z

∫
|u−o|<2

|f(x+ eγuα1)| du,

and we prove that

‖M‖Lp→Lp ≤ Cp(1 + log+ |o|).
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If |o| > 3 we change the variable uα1 → v and we see that

Mf(x) ≤ sup
γ∈Z

1
α1

∫
|v−oα1 |<c(|o|+2)α1−1

|f(x+ eγv)|v−(α1−1)/α1 dv

≤ sup
1
α1

(|o| − 2)−α1+1
∫

|v−oα1 |<c(|o|+2)α1−1

|f(x+ eγv)| dv,

whence for f ∈ Lp by Lemma (6.11),

‖Mf‖Lp ≤ Cp(1 + log+ |o|)‖f‖Lp .

If |o| < 3, then

Mf(x) ≤ sup
γ∈Z

∫
|u|<4

|f(x+ eγuα1)| du,

which is bounded by C‖f‖Lp , as proved in [Chr].
Now we are going to prove the induction step. We show that for every

E ⊂ A we have

(6.14) ‖ sup
J
f ∗ µJ ∗ τE,r

J ‖Lp ≤ C(1 + log r)q‖f‖Lp .

We fix E and we split g as g = g0 ⊕ g∞, where

g0 = span{gα : α ∈ E}, g∞ = span{gI : ∀α Iα = 0}.

Then g0 is an ideal in g and g∞ is the free nilpotent Lie algebra of the same
step as g on |A| − |E| generators.

Let G0 = exp g0 and G∞ = exp g∞. Every element x in G admits a
unique representation

x = wv, w ∈ G∞, v ∈ G0,(6.15)
x = v′w′, w′ ∈ G∞, v′ ∈ G0.(6.16)

Since G0 is a normal subgroup, F (u) = F∞(u)F0(u) with F∞(u) =
exp(

∑
α6∈E u

αXα). Therefore

µ ∗ τE,r =
∫

eF∞(u) ∗ (eF0(u) ∗ τE,r)ψ(u) du.

Let | · | be a norm on G homogeneous with respect to the dilations δr and
let BR = {x ∈ G0 : |x| < R}. Since δr−1F (suppψ) and δr−1F∞(suppψ) are
contained in a bounded set, so does δr−1F0(suppψ), i.e. F0(suppψ) ⊂ Bc1r.
Also supp τE,r ⊂ Bc2r, whence

supp(eF0(u) ∗ τE,r) ⊂ Bcr for u ∈ suppψ.

Since τE,r has smooth density on G0 and

‖τE,r‖L∞ ≤ |Br|−1‖τE,1‖L∞ ,
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there exists a constant C independent of r such that

eF0(u) ∗ τE,r ≤ C|Bcr|−11Bcr

and so
µ ∗ τE,r ≤ C

(∫
eF∞(u)ψ(u) du

)
∗ |Bcr|−11Bcr .

The measure µ′ =
∫

eF∞(u)ψ(u) du is supported in G∞ and has the same
properties as µ. Also both G0 and G∞ are invariant under the dilations dJ ,
J ∈ ZA. Therefore our maximal function is estimated by the composition
of two operators,

M1f(x) = sup{f ∗ µ′I(x) : I ∈ ZA\E},
where µ′I is defined in the same way as µJ at the beginning of this section,
and

N1f(x) = sup{f ∗ dJ(δrν)(x) : r ∈ R+, J ∈ ZA}
≤ sup{f ∗ dJν(x) : J ∈ ZA} = N2f(x)

where ν = |Bc|−11Bc . In view of (6.15) and (6.16) it is sufficient to prove

(6.17) ‖M1f‖Lp(G∞) ≤ C(1 + log r)|A\E|+Σα∈A\Edα‖f‖Lp(G∞)

and

(6.18) ‖N2f‖Lp(G0) ≤ C‖f‖Lp(G0).

But (6.17) is just our inductive hypothesis and (6.18) is proved by a simple
iteration argument (Lemma (6.11)).
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