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A theorem of Hermann Weyl (see [1]) states that if o, ..., a, are irra-
tional, then the set

{(nz,02?, ..., apz™) mod Z : x € N}

is dense in (R/Z)™. (The condition that the o all be irrational is also clearly
necessary; for instance, if a; = p/q € Q, then the points (az,. .., a,z™) all
lie on the hyperplanes (1/q)Z x R™*~1.) Weyl’s proof of his theorem relied
on another well-known theorem of his. Say that the sequence {y, : n € N}
is uniformly distributed mod 1 if for every interval [a,b] C [0, 1],

1
lim —Card{y; : j <nandy; € Z+[a,b]} =b—a.
n—oo N

That is, for every interval I, the probability of an element in the first n
terms of the sequence belonging to I mod 1 converges to the length of I.
Weyl proved that if P(z) = E(j)i1 ajzd is a polynomial such that at least
one of the «; is irrational, then {P(1), P(2),...} is uniformly distributed.

This paper is concerned with similar results in the case where aq, ..., a,
are in the adeles A (over the rationals), = takes on values in Q, and we are
interested in the compact group A/Q. The result analogous to Weyl’s first
theorem is:

THEOREM 1. Let g, . .., a, be non-rational elements of A. Then the set
{(a1z, 0022, ..., yz™) mod Q : z € Q} is dense in (A/Q)™.

This theorem is useful in the following setting: let G be the discrete group
of QQ-rational points of a nilpotent algebraic group defined over . The Lie
algebra g corresponding to G is a Q-vector space, and it is natural to consider
coadjoint orbits in the dual of g. A consequence of Theorem 1 is that the
closure of any such orbit is “flat” (a coset of the annihilator of a subspace
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of g). We will show in a future paper how this can be used in studying the
representations of GG; Theorem 1 appears to have some independent interest,
however. We prove it below.

It is harder to give a precise analogue to Weyl’s theorem on uniform
distributions, because Q, unlike N, does not have a natural order. (It is true
that if a countable set R is dense in a separable compact group G, then R
can be arranged in a sequence so that it is uniformly distributed; a proof
is given on pp. 185-186 of [4]. However, the proof says nothing about the
order, and, of course, such a result does not help us to prove anything about
density.) Weyl used the following criterion: {y,} is uniformly distributed
S limy oo N1 ij:l e?™ryn = () for all non-zero r € Z. In our procedure,
a similar role is played by:

PROPOSITION 1. Let G be any compact Abelian group. The countable set
R is dense in G if for any finite set {X1,..., Xk} of non-trivial characters
of R and every € > 0, there is a finite subset {21,...,2n()} of R such that

N(e)

e, 1<j<k.

Proof. Let dx be normahzed Haar measure on G. If R is not dense
in G then there is a continuous non-negative function ¢ on G such that
Jnd ¢ ¢(z) dr=1 and RNsupp ¢=0. By Stone—Weierstrass, we can find a func-

tion f( ) =2 1cjxj( z) (x; € G, Vj) such that [|¢ — f|lee < 1/3. Then
( f dx) <f\f — ¢(2)|dz < 1/3.

Let x1 be the trivial character. Since fG X;j(x)dx =0 for j > 1, we have
‘61—1‘<1/3, |01’>2/3.

The hypothesis says that for fi; = f — c1x1, there exists a finite subset
{#1,...,2n} of R such that

<1/3.

N
_1’ Z f1(zn)
n=1

Then

Z C1 —]./3> ]./3

N
_1‘ Zf(zn)

However, ¢(z,) = 0 for all n and ||f — ¢|| < 1/3; hence

_1‘ if(zn)

a contradiction. This proves Proposition 1.

<1/3,
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We now consider the case where G = (A/Q)". A standard reference for
the facts we need about harmonic analysis on A is Tate’s thesis, in [2]. We re-
call that A = R x H; prime(Qp3 Zp); this means that a typical element of A is

X = (':Uooyx% Z3, .. ')7
Too €ER, z, € Q,, ), € Z, except for finitely many p.
We write A =R x Ag, Af = H;} prime (Qp;Zy); Ay is topologized by decree-
ing that Hp prime Zp 18 open. Then A is a topological ring. We embed Q in
A diagonally, by = — (x,z,...). Then Q is discrete and cocompact in A.
We define fundamental characters x, on Q, (where Q = R) by

—2mix,

Xoo(®) = €7 xp(a/p")
Define x € A by

= 2m/PY forae€Z; x,=1 onZ,.

X(x) = H Xp(2p)-

(All but finitely many terms in the product are 1.) A fundamental result is:

THEOREM ([2]). (a) The map y — Xy, Xy(X) = x(Xy), is a topological
isomorphism of A onto A.

(b) Under this identification of A with A, Q* = Q. Therefore (A/Q)" ~
Q. Similarly, (A/Q)™")" ~ Q"; for x = (x1,...,2,) € (A/Q)" and q =
(g1 an) € Q" Xq(x) = TT52y Xg, (25)-

We now apply Proposition 1 (and its corollary) to prove Theorem 1.

Since any character ' of (A/Q)™ satisfies x'((ar,ar?,...,ar™)) = x(f(r))
for some non-trivial polynomial f : Q — A without constant term and with
at least one non-rational coefficient, it suffices to show that if fq,..., fx are

such polynomials and x is the standard character, then for every positive
integer n there is a subset R,, C Q such that

\Rn|_1‘ 3 X(fj(x))’ <nl forallj=1,...,k

zER,

The coefficients of the polynomials are determined mod Q; we normalize
most of them by letting the real components be 0 whenever they are rational.
We assume that all real components of f; are 0 for 1 < j < k; and that
some real component is irrational for j > ki; we deal with the j < k; first.
The estimates that we need are consequences of the following statements,
all easy to verify:

(a) Write f, ; for the Q,-component of f;. Suppose that x, ; is not triv-
ial; then for every m > 0 there is an M > 0 such that x,(fp.;(a/p™+p™)) =
Xp([fp,j(a/p™)), for all a € Z. (For x,, is trivial on Z,, and Taylor’s Theorem
shows that one can choose M such that f, j(a/p™+pM)— f, ;(a/p™) € Zy,.)
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(b) Let m, M be as in (a), and let ¢ be prime to p. Then for any b € Z,

o ((5)) = (s (34 1))

(For there is an integer r such that b/q —r € (p)M*+™; from (a), we may
replace b/q in the sum with 7. But it is also clear from (a) that the sum is
independent of r.)

(c) Write

pmtM
. —(m a
a=1

where m, M are related as in (a). Let S = {p1,...,p,} be a finite set of
primes (with co ¢ S) such that p € S if f, ; has a coefficient not in Z,. For
P €5, let mg, N, correspond as in (a), let p§ =[], g5 (and similarly

for p2f, pg"+M). Then

)

m—+ M

Pg

my— a .

S0 (55 ) ) = TLAG: oo, ),
a=1 Ps oeS

(For if p ¢ S, then f, ;(a/p§) € Zy and xp|z, = 1. Therefore x(f;(a/p§))

=l cs Xpo (fp,,i(a/PE)). Now the claim follows from (b).)

Since A(j;ps,my, M,) < 1 in any case, we can make
ng—}—M "
A(j; S;m, M) = ‘(pgﬂm)_l > X<fj(m)>‘
a=1 pS
smaller than any prescribed € > 0 by making one A(j;py, my, M,) < 1 for
each j. This is possible by a theorem of Hua [3]: for any integer n > 0 and
any 6 > 0, there is a constant C,, 5 such that if ¢(x) = 2?21 a;z?, with
a; € Z for all j, and if ¢ € Z satisfies (a1, ...,a,,q) =1, then

q
0| Y exo2mip(e) fa)] < Coaa’ ",
rx=1

The application to the present setting is immediate.

We still need to deal with the f; such that j > k; (so that the real charac-
ter is non-trivial). The simplest procedure seems to be the following: given ¢,
suppose that we have selected S, m, and M such that A(j;S,m, M) < e for
all j < ki. We may now choose the coefficients of each f; with j > k; such
that f; ,(a/p¥) € Z, for all finite p when j > k;. (Recall that we are free to
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change each coefficient by an element of Q.) Then for all [ € Z and j > kq,

() =+~ (3 )

From Weyl’s original result, we know that there is a K such that

<fjoo< +lp5>)’<€ f0r1<a<pm+M g > k1,

since the above expression tends to 0 as K — oo. Hence

m—+ M

K Pg
(Kpg ™M) Z Z ( (cjn+lpg”>>‘<s if j > k.
I=1 a=1 Ps
For j < kq,
K pgtM "
(Fpm 13 S ( (w+1p?))‘=A<j;S,m,M><a
=1 a=1 S

by (a) and the previous assumption. Thus the hypotheses of Proposition 1
are satisfied, and Theorem 1 is proved.

In the course of the proof, we have also proved the first part of the
following theorem, and the second part has the same proof as Theorem 1:

THEOREM 2. (a) Let f: A — A be a polynomial with adelic coefficients,
and assume that at least one coefficient other than the constant term is not
in Q. Then the set {f(x) mod Q : x € Q} is dense in A/Q.

(b) Let f1,..., fn: A — A be linearly independent polynomials without
constant term, each with a non-rational coefficient. Then the set {(fi(x),...

o fo(x)) mod Q : x € Q} is dense in (A/Q)™.
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