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A theorem of Hermann Weyl (see [1]) states that if α1, . . . , αn are irra-
tional, then the set

{(α1x, α2x
2, . . . , αnxn) mod Z : x ∈ N}

is dense in (R/Z)n. (The condition that the αj all be irrational is also clearly
necessary; for instance, if α1 = p/q ∈ Q, then the points (α1x, . . . , αnxn) all
lie on the hyperplanes (1/q)Z × Rn−1.) Weyl’s proof of his theorem relied
on another well-known theorem of his. Say that the sequence {yn : n ∈ N}
is uniformly distributed mod 1 if for every interval [a, b] ⊆ [0, 1],

lim
n→∞

1
n

Card{yj : j ≤ n and yj ∈ Z + [a, b]} = b− a.

That is, for every interval I, the probability of an element in the first n
terms of the sequence belonging to I mod 1 converges to the length of I.
Weyl proved that if P (x) =

∑∞
j=1 αjx

j is a polynomial such that at least
one of the αj is irrational, then {P (1), P (2), . . .} is uniformly distributed.

This paper is concerned with similar results in the case where α1, . . . ,αn

are in the adeles A (over the rationals), x takes on values in Q, and we are
interested in the compact group A/Q. The result analogous to Weyl’s first
theorem is:

Theorem 1. Let α1, . . . ,αn be non-rational elements of A. Then the set
{(α1x,α2x

2, . . . ,αnxn) mod Q : x ∈ Q} is dense in (A/Q)n.

This theorem is useful in the following setting: let G be the discrete group
of Q-rational points of a nilpotent algebraic group defined over Q. The Lie
algebra g corresponding to G is a Q-vector space, and it is natural to consider
coadjoint orbits in the dual of g. A consequence of Theorem 1 is that the
closure of any such orbit is “flat” (a coset of the annihilator of a subspace
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of g). We will show in a future paper how this can be used in studying the
representations of G; Theorem 1 appears to have some independent interest,
however. We prove it below.

It is harder to give a precise analogue to Weyl’s theorem on uniform
distributions, because Q, unlike N, does not have a natural order. (It is true
that if a countable set R is dense in a separable compact group G, then R
can be arranged in a sequence so that it is uniformly distributed; a proof
is given on pp. 185–186 of [4]. However, the proof says nothing about the
order, and, of course, such a result does not help us to prove anything about
density.) Weyl used the following criterion: {yn} is uniformly distributed
⇔ limN→∞N−1

∑N
n=1 e2πiryn = 0 for all non-zero r ∈ Z. In our procedure,

a similar role is played by:

Proposition 1. Let G be any compact Abelian group. The countable set
R is dense in G if for any finite set {X1, . . . , Xk} of non-trivial characters
of R and every ε > 0, there is a finite subset {z1, . . . , zN(ε)} of R such that

1
N(ε)

∣∣∣ N(ε)∑
n=1

Xj(zn)
∣∣∣ < ε, 1 ≤ j ≤ k.

P r o o f. Let dx be normalized Haar measure on G. If R is not dense
in G, then there is a continuous non-negative function φ on G such that∫

G
φ(x) dx=1 and R∩suppφ=0. By Stone–Weierstrass, we can find a func-

tion f(x) =
∑n

j=1 cjχj(x) (χj ∈ Ĝ, ∀j) such that ‖φ− f‖∞ < 1/3. Then∣∣∣ ∫
G

(f(x)− φ(x)) dx
∣∣∣ ≤ ∫

G

|f(x)− φ(x)| dx < 1/3.

Let χ1 be the trivial character. Since
∫

G
χj(x) dx = 0 for j > 1, we have

|c1 − 1| < 1/3 , |c1| > 2/3.

The hypothesis says that for f1 = f − c1χ1, there exists a finite subset
{z1, . . . , zN} of R such that

N−1
∣∣∣ N∑

n=1

f1(zn)
∣∣∣ < 1/3.

Then

N−1
∣∣∣ N∑

n=1

f(zn)
∣∣∣ ≥ c1 − 1/3 > 1/3.

However, φ(zn) = 0 for all n and ‖f − φ‖ < 1/3; hence

N−1
∣∣∣ N∑

n=1

f(zn)
∣∣∣ ≤ 1/3,

a contradiction. This proves Proposition 1.
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We now consider the case where G = (A/Q)n. A standard reference for
the facts we need about harmonic analysis on A is Tate’s thesis, in [2]. We re-
call that A = R×

∏′
p prime(Qp; Zp); this means that a typical element of A is

x = (x∞, x2, x3, . . .),
x∞ ∈ R, xp ∈ Qp, xp ∈ Zp except for finitely many p.

We write A = R×Af , Af =
∏′

p prime(Qp; Zp);Af is topologized by decree-
ing that

∏
p prime Zp is open. Then A is a topological ring. We embed Q in

A diagonally, by x 7→ (x, x, . . .). Then Q is discrete and cocompact in A.
We define fundamental characters χp on Qp (where Q∞ = R) by

χ∞(x) = e−2πix; χp(a/pn) = e2πia/pn

for a ∈ Z; χp = 1 on Zp .

Define χ ∈ Â by

χ(x) =
∏
p

χp(xp).

(All but finitely many terms in the product are 1.) A fundamental result is:

Theorem ([2]). (a) The map y 7→ χy, χy(x) = χ(xy), is a topological
isomorphism of A onto Â.

(b) Under this identification of A with Â, Q⊥ = Q. Therefore (A/Q)∧ '
Q. Similarly , ((A/Q)n)∧ ' Qn; for x = (x1, . . . , xn) ∈ (A/Q)n and q =
(q1, . . . , qn) ∈ Qn, χq(x) =

∏n
j=1 χqj (xj).

We now apply Proposition 1 (and its corollary) to prove Theorem 1.
Since any character χ′ of (A/Q)n satisfies χ′((ar,ar2, . . . ,arn)) = χ(f(r))
for some non-trivial polynomial f : Q → A without constant term and with
at least one non-rational coefficient, it suffices to show that if f1, . . . , fk are
such polynomials and χ is the standard character, then for every positive
integer n there is a subset Rn ⊆ Q such that

|Rn|−1
∣∣∣ ∑

x∈Rn

χ(fj(x))
∣∣∣ < n−1 for all j = 1, . . . , k.

The coefficients of the polynomials are determined mod Q; we normalize
most of them by letting the real components be 0 whenever they are rational.
We assume that all real components of fj are 0 for 1 ≤ j ≤ k1 and that
some real component is irrational for j > k1; we deal with the j ≤ k1 first.
The estimates that we need are consequences of the following statements,
all easy to verify:

(a) Write fp,j for the Qp-component of fj . Suppose that χp,j is not triv-
ial; then for every m ≥ 0 there is an M > 0 such that χp(fp,j(a/pm+pM )) =
χp(fp,j(a/pm)), for all a ∈ Z. (For χp is trivial on Zp, and Taylor’s Theorem
shows that one can choose M such that fp,j(a/pm +pM )−fp,j(a/pm) ∈ Zp.)
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(b) Let m,M be as in (a), and let q be prime to p. Then for any b ∈ Z,

pM∑
a=1

χp

(
fp,j

(
a

pm

))
=

pM∑
a=1

χp

(
fp,j

(
a

pm
+

b

q

))
.

(For there is an integer r such that b/q − r ∈ (p)M+m; from (a), we may
replace b/q in the sum with r. But it is also clear from (a) that the sum is
independent of r.)

(c) Write

A(j; p, m,M) =
∣∣∣∣p−(m+M)

pm+M∑
a=1

χp

(
fp,j

(
a

pm

))∣∣∣∣,
where m,M are related as in (a). Let S = {p1, . . . , pν} be a finite set of
primes (with ∞ 6∈ S) such that p ∈ S if fp,j has a coefficient not in Zp. For
pσ ∈ S, let mσ, Nσ correspond as in (a), let pm

S =
∏

pσ∈S pmσ
σ (and similarly

for pM
S , pm+M

S ). Then

(pM+m
S )−1

pm+M
S∑
a=1

χ

(
fj

(
a

pm
S

))
=

∏
σ∈S

A(j; pσ,mσ,Mσ).

(For if p 6∈ S, then fp,j(a/pm
S ) ∈ Zp and χp|Zp

≡ 1. Therefore χ(fj(a/pm
S ))

=
∏

σ∈S χpσ (fpσ,j(a/pm
S )). Now the claim follows from (b).)

Since A(j; pσ,mσ,Mσ) ≤ 1 in any case, we can make

A(j;S, m,M) =
∣∣∣∣(pM+m

S )−1

pm+M
S∑
a=1

χ

(
fj

(
a

pm
S

))∣∣∣∣
smaller than any prescribed ε > 0 by making one A(j; pσ,mσ,Mσ) ≤ 1 for
each j. This is possible by a theorem of Hua [3]: for any integer n > 0 and
any δ > 0, there is a constant Cn,δ such that if ϕ(x) =

∑n
j=1 ajx

j , with
aj ∈ Z for all j, and if q ∈ Z satisfies (a1, . . . , an, q) = 1, then

q−1
∣∣∣ q∑

x=1

exp(2πiϕ(x)/q)
∣∣∣ < Cn,δq

δ−1/n.

The application to the present setting is immediate.
We still need to deal with the fj such that j > k1 (so that the real charac-

ter is non-trivial). The simplest procedure seems to be the following: given ε,
suppose that we have selected S, m, and M such that A(j;S, m,M) < ε for
all j ≤ k1. We may now choose the coefficients of each fj with j > k1 such
that fj,p(a/pm

S ) ∈ Zp for all finite p when j > k1. (Recall that we are free to
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change each coefficient by an element of Q.) Then for all l ∈ Z and j > k1,

χ

(
fj

(
a

pm
S

+ lpm
S

))
= χ∞

(
fj,∞

(
a

pm
S

+ lpm
S

))
.

From Weyl’s original result, we know that there is a K such that

K−1

∣∣∣∣ K∑
l=1

χ∞

(
fj,∞

(
a

pm
S

+ lpm
S

))∣∣∣∣ < ε for 1 ≤ a ≤ pm+M
S , j > k1,

since the above expression tends to 0 as K →∞. Hence

(Kpm+M
S )−1

∣∣∣∣ K∑
l=1

pm+M
S∑
a=1

χ

(
fj

(
a

pm
S

+ lpm
S

))∣∣∣∣ < ε if j > k1.

For j < k1,

(Kpm+M
S )−1

∣∣∣∣ K∑
l=1

pm+M
S∑
a=1

χ

(
fj

(
a

pm
S

+ lpm
S

))∣∣∣∣ = A(j;S, m,M) < ε,

by (a) and the previous assumption. Thus the hypotheses of Proposition 1
are satisfied, and Theorem 1 is proved.

In the course of the proof, we have also proved the first part of the
following theorem, and the second part has the same proof as Theorem 1:

Theorem 2. (a) Let f : A → A be a polynomial with adelic coefficients,
and assume that at least one coefficient other than the constant term is not
in Q. Then the set {f(x) mod Q : x ∈ Q} is dense in A/Q.

(b) Let f1, . . . , fn : A → A be linearly independent polynomials without
constant term, each with a non-rational coefficient. Then the set {(f1(x), . . .
. . . , fn(x)) mod Q : x ∈ Q} is dense in (A/Q)n.
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