VOL. LXVIII 1995 FASC. 1

ON THE DENSITY OF SETS IN $(\mathbf{A}/\mathbb{Q})^n$ DEFINED BY POLYNOMIALS

BY

LAWRENCE CORWIN AND

CAROLYN PFEFFER (NEW BRUNSWICK, NEW JERSEY)

A theorem of Hermann Weyl (see [1]) states that if $\alpha_1, \ldots, \alpha_n$ are irrational, then the set

$$\{(\alpha_1 x, \alpha_2 x^2, \dots, \alpha_n x^n) \bmod \mathbb{Z} : x \in \mathbb{N}\}$$

is dense in $(\mathbb{R}/\mathbb{Z})^n$. (The condition that the α_j all be irrational is also clearly necessary; for instance, if $\alpha_1 = p/q \in \mathbb{Q}$, then the points $(\alpha_1 x, \dots, \alpha_n x^n)$ all lie on the hyperplanes $(1/q)\mathbb{Z} \times \mathbb{R}^{n-1}$.) Weyl's proof of his theorem relied on another well-known theorem of his. Say that the sequence $\{y_n : n \in \mathbb{N}\}$ is uniformly distributed mod 1 if for every interval $[a, b] \subseteq [0, 1]$,

$$\lim_{n\to\infty} \frac{1}{n} \operatorname{Card}\{y_j : j \le n \text{ and } y_j \in \mathbb{Z} + [a,b]\} = b - a.$$

That is, for every interval I, the probability of an element in the first n terms of the sequence belonging to I mod 1 converges to the length of I. Weyl proved that if $P(x) = \sum_{j=1}^{\infty} \alpha_j x^j$ is a polynomial such that at least one of the α_j is irrational, then $\{P(1), P(2), \ldots\}$ is uniformly distributed.

This paper is concerned with similar results in the case where $\alpha_1, \ldots, \alpha_n$ are in the adeles **A** (over the rationals), x takes on values in \mathbb{Q} , and we are interested in the compact group \mathbf{A}/\mathbb{Q} . The result analogous to Weyl's first theorem is:

THEOREM 1. Let $\alpha_1, \ldots, \alpha_n$ be non-rational elements of **A**. Then the set $\{(\alpha_1 x, \alpha_2 x^2, \ldots, \alpha_n x^n) \mod \mathbb{Q} : x \in \mathbb{Q}\}$ is dense in $(\mathbf{A}/\mathbb{Q})^n$.

This theorem is useful in the following setting: let G be the discrete group of \mathbb{Q} -rational points of a nilpotent algebraic group defined over \mathbb{Q} . The Lie algebra \mathfrak{g} corresponding to G is a \mathbb{Q} -vector space, and it is natural to consider coadjoint orbits in the dual of \mathfrak{g} . A consequence of Theorem 1 is that the closure of any such orbit is "flat" (a coset of the annihilator of a subspace

¹⁹⁹¹ Mathematics Subject Classification: Primary 11K41. Research of the first author supported by NSF Grant DMS91-05789.

of \mathfrak{g}). We will show in a future paper how this can be used in studying the representations of G; Theorem 1 appears to have some independent interest, however. We prove it below.

It is harder to give a precise analogue to Weyl's theorem on uniform distributions, because \mathbb{Q} , unlike \mathbb{N} , does not have a natural order. (It is true that if a countable set R is dense in a separable compact group G, then R can be arranged in a sequence so that it is uniformly distributed; a proof is given on pp. 185–186 of [4]. However, the proof says nothing about the order, and, of course, such a result does not help us to prove anything about density.) Weyl used the following criterion: $\{y_n\}$ is uniformly distributed $\Leftrightarrow \lim_{N\to\infty} N^{-1} \sum_{n=1}^N e^{2\pi i r y_n} = 0$ for all non-zero $r \in \mathbb{Z}$. In our procedure, a similar role is played by:

PROPOSITION 1. Let G be any compact Abelian group. The countable set R is dense in G if for any finite set $\{X_1, \ldots, X_k\}$ of non-trivial characters of R and every $\varepsilon > 0$, there is a finite subset $\{z_1, \ldots, z_{N(\varepsilon)}\}$ of R such that

$$\frac{1}{N(\varepsilon)} \Big| \sum_{n=1}^{N(\varepsilon)} X_j(z_n) \Big| < \varepsilon, \quad 1 \le j \le k.$$

Proof. Let dx be normalized Haar measure on G. If R is not dense in G, then there is a continuous non-negative function ϕ on G such that $\int_G \phi(x) \, dx = 1$ and $R \cap \sup \phi = 0$. By Stone–Weierstrass, we can find a function $f(x) = \sum_{j=1}^n c_j \chi_j(x)$ $(\chi_j \in \widehat{G}, \forall j)$ such that $\|\phi - f\|_{\infty} < 1/3$. Then

$$\left| \int_{G} (f(x) - \phi(x)) dx \right| \le \int_{G} |f(x) - \phi(x)| dx < 1/3.$$

Let χ_1 be the trivial character. Since $\int_G \chi_j(x) dx = 0$ for j > 1, we have $|c_1 - 1| < 1/3$, $|c_1| > 2/3$.

The hypothesis says that for $f_1 = f - c_1 \chi_1$, there exists a finite subset $\{z_1, \ldots, z_N\}$ of R such that

$$N^{-1} \Big| \sum_{n=1}^{N} f_1(z_n) \Big| < 1/3.$$

Then

$$N^{-1} \Big| \sum_{n=1}^{N} f(z_n) \Big| \ge c_1 - 1/3 > 1/3.$$

However, $\phi(z_n) = 0$ for all n and $||f - \phi|| < 1/3$; hence

$$N^{-1} \Big| \sum_{n=1}^{N} f(z_n) \Big| \le 1/3,$$

a contradiction. This proves Proposition 1.

We now consider the case where $G = (\mathbf{A}/\mathbb{Q})^n$. A standard reference for the facts we need about harmonic analysis on \mathbf{A} is Tate's thesis, in [2]. We recall that $\mathbf{A} = \mathbb{R} \times \prod'_{p \text{ prime}}(\mathbb{Q}_p; \mathbb{Z}_p)$; this means that a typical element of \mathbf{A} is

$$\mathbf{x} = (x_{\infty}, x_2, x_3, \ldots),$$

$$x_{\infty} \in \mathbb{R}, \ x_p \in \mathbb{Q}_p, \ x_p \in \mathbb{Z}_p \text{ except for finitely many } p.$$

We write $\mathbf{A} = \mathbb{R} \times \mathbf{A}_f$, $\mathbf{A}_f = \prod_{p \text{ prime}}'(\mathbb{Q}_p; \mathbb{Z}_p)$; \mathbf{A}_f is topologized by decreeing that $\prod_{p \text{ prime}} \mathbb{Z}_p$ is open. Then \mathbf{A} is a topological ring. We embed \mathbb{Q} in \mathbf{A} diagonally, by $x \mapsto (x, x, \ldots)$. Then \mathbb{Q} is discrete and cocompact in \mathbf{A} .

We define fundamental characters χ_p on \mathbb{Q}_p (where $\mathbb{Q}_{\infty} = \mathbb{R}$) by

$$\chi_{\infty}(x) = e^{-2\pi i x}; \quad \chi_p(a/p^n) = e^{2\pi i a/p^n} \quad \text{for } a \in \mathbb{Z}; \quad \chi_p = 1 \quad \text{on } \mathbb{Z}_p.$$

Define $\chi \in \widehat{A}$ by

$$\chi(\mathbf{x}) = \prod_{p} \chi_p(x_p).$$

(All but finitely many terms in the product are 1.) A fundamental result is:

THEOREM ([2]). (a) The map $\mathbf{y} \mapsto \chi_{\mathbf{y}}$, $\chi_{\mathbf{y}}(\mathbf{x}) = \chi(\mathbf{x}\mathbf{y})$, is a topological isomorphism of \mathbf{A} onto $\widehat{\mathbf{A}}$.

(b) Under this identification of \mathbf{A} with $\widehat{\mathbf{A}}$, $\mathbb{Q}^{\perp} = \mathbb{Q}$. Therefore $(\mathbf{A}/\mathbb{Q})^{\wedge} \simeq \mathbb{Q}$. Similarly, $((\mathbf{A}/\mathbb{Q})^n)^{\wedge} \simeq \mathbb{Q}^n$; for $\mathbf{x} = (x_1, \dots, x_n) \in (\mathbf{A}/\mathbb{Q})^n$ and $q = (q_1, \dots, q_n) \in \mathbb{Q}^n$, $\chi_q(\mathbf{x}) = \prod_{j=1}^n \chi_{q_j}(x_j)$.

We now apply Proposition 1 (and its corollary) to prove Theorem 1. Since any character χ' of $(\mathbf{A}/\mathbb{Q})^n$ satisfies $\chi'((\mathbf{a}r, \mathbf{a}r^2, \dots, \mathbf{a}r^n)) = \chi(f(r))$ for some non-trivial polynomial $f: \mathbb{Q} \to \mathbf{A}$ without constant term and with at least one non-rational coefficient, it suffices to show that if f_1, \dots, f_k are such polynomials and χ is the standard character, then for every positive integer n there is a subset $R_n \subseteq \mathbb{Q}$ such that

$$|R_n|^{-1} \Big| \sum_{x \in R_n} \chi(f_j(x)) \Big| < n^{-1} \quad \text{ for all } j = 1, \dots, k.$$

The coefficients of the polynomials are determined mod \mathbb{Q} ; we normalize most of them by letting the real components be 0 whenever they are rational. We assume that all real components of f_j are 0 for $1 \leq j \leq k_1$ and that some real component is irrational for $j > k_1$; we deal with the $j \leq k_1$ first. The estimates that we need are consequences of the following statements, all easy to verify:

(a) Write $f_{p,j}$ for the \mathbb{Q}_p -component of f_j . Suppose that $\chi_{p,j}$ is not trivial; then for every $m \geq 0$ there is an M > 0 such that $\chi_p(f_{p,j}(a/p^m + p^M)) = \chi_p(f_{p,j}(a/p^m))$, for all $a \in \mathbb{Z}$. (For χ_p is trivial on \mathbb{Z}_p , and Taylor's Theorem shows that one can choose M such that $f_{p,j}(a/p^m + p^M) - f_{p,j}(a/p^m) \in \mathbb{Z}_p$.)

(b) Let m, M be as in (a), and let q be prime to p. Then for any $b \in \mathbb{Z}$,

$$\sum_{a=1}^{p^M} \chi_p \left(f_{p,j} \left(\frac{a}{p^m} \right) \right) = \sum_{a=1}^{p^M} \chi_p \left(f_{p,j} \left(\frac{a}{p^m} + \frac{b}{q} \right) \right).$$

(For there is an integer r such that $b/q - r \in (p)^{M+m}$; from (a), we may replace b/q in the sum with r. But it is also clear from (a) that the sum is independent of r.)

(c) Write

$$A(j; p, m, M) = \left| p^{-(m+M)} \sum_{a=1}^{p^{m+M}} \chi_p \left(f_{p,j} \left(\frac{a}{p^m} \right) \right) \right|,$$

where m, M are related as in (a). Let $S = \{p_1, \ldots, p_{\nu}\}$ be a finite set of primes (with $\infty \notin S$) such that $p \in S$ if $f_{p,j}$ has a coefficient not in \mathbb{Z}_p . For $p_{\sigma} \in S$, let m_{σ}, N_{σ} correspond as in (a), let $p_S^m = \prod_{p_{\sigma} \in S} p_{\sigma}^{m_{\sigma}}$ (and similarly for p_S^M, p_S^{m+M}). Then

$$(p_S^{M+m})^{-1} \sum_{a=1}^{p_S^{m+M}} \chi \left(f_j \left(\frac{a}{p_S^m} \right) \right) = \prod_{\sigma \in S} A(j; p_\sigma, m_\sigma, M_\sigma).$$

(For if $p \notin S$, then $f_{p,j}(a/p_S^m) \in \mathbb{Z}_p$ and $\chi_p|_{\mathbb{Z}_p} \equiv 1$. Therefore $\chi(f_j(a/p_S^m)) = \prod_{\sigma \in S} \chi_{p_\sigma}(f_{p_\sigma,j}(a/p_S^m))$. Now the claim follows from (b).)

Since $A(j; p_{\sigma}, m_{\sigma}, M_{\sigma}) \leq 1$ in any case, we can make

$$A(j; S, m, M) = \left| (p_S^{M+m})^{-1} \sum_{a=1}^{p_S^{m+M}} \chi \left(f_j \left(\frac{a}{p_S^m} \right) \right) \right|$$

smaller than any prescribed $\varepsilon > 0$ by making one $A(j; p_{\sigma}, m_{\sigma}, M_{\sigma}) \leq 1$ for each j. This is possible by a theorem of Hua [3]: for any integer n > 0 and any $\delta > 0$, there is a constant $C_{n,\delta}$ such that if $\varphi(x) = \sum_{j=1}^{n} a_j x^j$, with $a_j \in \mathbb{Z}$ for all j, and if $q \in \mathbb{Z}$ satisfies $(a_1, \ldots, a_n, q) = 1$, then

$$q^{-1} \Big| \sum_{x=1}^{q} \exp(2\pi i \varphi(x)/q) \Big| < C_{n,\delta} q^{\delta - 1/n}.$$

The application to the present setting is immediate.

We still need to deal with the f_j such that $j > k_1$ (so that the real character is non-trivial). The simplest procedure seems to be the following: given ε , suppose that we have selected S, m, and M such that $A(j; S, m, M) < \varepsilon$ for all $j \leq k_1$. We may now choose the coefficients of each f_j with $j > k_1$ such that $f_{j,p}(a/p_S^m) \in \mathbb{Z}_p$ for all finite p when $j > k_1$. (Recall that we are free to

change each coefficient by an element of \mathbb{Q} .) Then for all $l \in \mathbb{Z}$ and $j > k_1$,

$$\chi\left(f_j\left(\frac{a}{p_S^m} + lp_S^m\right)\right) = \chi_\infty\left(f_{j,\infty}\left(\frac{a}{p_S^m} + lp_S^m\right)\right).$$

From Weyl's original result, we know that there is a K such that

$$K^{-1} \left| \sum_{l=1}^{K} \chi_{\infty} \left(f_{j,\infty} \left(\frac{a}{p_S^m} + l p_S^m \right) \right) \right| < \varepsilon \quad \text{ for } 1 \le a \le p_S^{m+M}, \ j > k_1,$$

since the above expression tends to 0 as $K \to \infty$. Hence

$$(Kp_S^{m+M})^{-1} \left| \sum_{l=1}^K \sum_{a=1}^{p_S^{m+M}} \chi \left(f_j \left(\frac{a}{p_S^m} + l p_S^m \right) \right) \right| < \varepsilon \quad \text{if } j > k_1.$$

For $j < k_1$,

$$(Kp_S^{m+M})^{-1} \left| \sum_{l=1}^K \sum_{a=1}^{p_S^{m+M}} \chi \left(f_j \left(\frac{a}{p_S^m} + lp_S^m \right) \right) \right| = A(j; S, m, M) < \varepsilon,$$

by (a) and the previous assumption. Thus the hypotheses of Proposition 1 are satisfied, and Theorem 1 is proved.

In the course of the proof, we have also proved the first part of the following theorem, and the second part has the same proof as Theorem 1:

THEOREM 2. (a) Let $f : \mathbf{A} \to \mathbf{A}$ be a polynomial with adelic coefficients, and assume that at least one coefficient other than the constant term is not in \mathbb{Q} . Then the set $\{f(x) \bmod \mathbb{Q} : x \in \mathbb{Q}\}$ is dense in \mathbf{A}/\mathbb{Q} .

(b) Let $f_1, \ldots, f_n : \mathbf{A} \to \mathbf{A}$ be linearly independent polynomials without constant term, each with a non-rational coefficient. Then the set $\{(f_1(x), \ldots, f_n(x)) \mod \mathbb{Q} : x \in \mathbb{Q}\}$ is dense in $(\mathbf{A}/\mathbb{Q})^n$.

REFERENCES

- [1] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957.
- [2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [3] L.-K. Hua, Sur une somme exponentielle, C. R. Acad. Sci. Paris 210 (1940), 520–523; see also: On an exponential sum, J. Chinese Math. Soc. 2 (1940), 301–312.
- [4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903, U.S.A.

Reçu par la Rédaction le 21.10.1992