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ON MUNTZ RATIONAL APPROXIMATION IN MULTIVARIABLES

BY

S. P. ZHOU (EDMONTON, ALBERTA)

The present paper shows that for any s sequences of real numbers, each

with infinitely many distinct elements, {\ }, j = 1,..., s, the rational com-
1 2 s
mo mg

binations of x; " x,™* ... xs™ are always dense in Cfs.

1. Introduction. Let C|p q) be the class of all real continuous functions
in [0, 1] For f € 0[071},

o(f.) =, max f(eth) - f()]
1911 = ma 1))

Given a subspace S of Cjg 13, let

R(S)={P(z)/Q(z) : P(x) € S, Q(x) € S, Q(z) >0, =z € (0,1]},
where we assume that lim, o+ P(z)/Q(x) = P(0)/Q(0) is finite in the case
Q(0) = 0. For a sequence of real numbers A = {\,,}°2,, write

R(A) = R(span{z*"}).

From Miintz’s theorem (cf. [2]), it is well-known that the combinations
of z*» for

(1) 0= X< A <A <...
are dense in Cg 1) if and only if
> 5 -
An
As to the rational case, in 1976, Somorjai [6] showed a beautiful result
that under (1), R(A) is always dense in Cjg ;7. In 1978, Bak and Newman

[1] proved that if \,, is a sequence of distinct positive numbers, then R(A) is
dense in Cjg ) as well. Recently, our work [7] showed that the above result
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also holds for any sequence of real numbers with infinitely many distinct
elements.

On the other hand, S. Ogawa and K. Kitahara [5] gave a generalization
of Miintz’s theorem to multivariable cases. They proved (1) that for two
given positive monotone sequences {;}, {B;}, the set {1} U {x®} U {y#i}
is complete in Cp2 if and only if 3777, 1/a; and 3777, 1/6; diverge, where

IP={X=(z1,...,25):0<z; <1, 1 <j <s},
and C7s is the class of all continuous functions on I°.
For many reasons, it is quite reasonable to conjecture that the conclusion

corresponding to that of [7] will hold for Miintz rational approximation in
the multivariable case, that is, for any s sequences of real numbers {\ },

j=1,...,s, each with infinitely many distinct elements, the rational com-
. AL 2 XS . . .
binations of {x;"™*x,™? ... 2™} are always dense in C7s. Since rational

combinations are not linear, it is not a trivial work.
The present paper will prove that this is true.

2. Result and proof

THEOREM. Let A7 ={M}, j=1,...,s, be s sequences of real numbers,
each with infinitely many distinct elements. Then R(A! x ... x A®) is dense
Z.n CIS .

We need the following lemmas from the univariable case, the first two
of which are due to Somorjai [6] and the author [7]. We will, however, give
the sketch of proofs here for the sake of completeness.

LEMMA 1 (Somorjai [6]). Let {\,} be a sequence of real numbers such
that A\, — +00 as n — oo. Given N > 1, for any f € Clp ), there are an
integer ny and an operator

(B Ze@) e
kZ:Of<N> Z(2) =11y (f,2) € R({A;}72))

with

0 < Zi(x) € span{z™ }"¥, Z(x) =

§=03 Zi(x)

IM-

such that
If = ()l = Ow(f,N7H).
Proof. We select a sequence {\, }}“:\’1 from A by induction. Let A,

be any element from A, and Zy(z) = z*#0. Choose A
properties:

with the following

Mj41

(1) For convenience, we only state their result for two variables.
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N
_ x
Jj+1

Anji1 . j
Zj+1(.’£) = < > <N Zj(x) for x < N,
Jj+2

Zj_;,_l(.’B) > NZJ(J}) for x > T

Define
N
k Z(x)
1 k
i =$o(2)
k=0 N Ziv:o Zy(z)
for f € Cjo,1;. Then by calculation

f@) =ry(f,2) = O(w(f,N7)). =
LEMMA 2 (Zhou [7]). Let {\,} be a sequence of real numbers such that

Ap — —00 asn — oco. Giwven N > 1, for any f € Clg ), there are an integer
ny and an operator

o (ENCu@) _ S
> 1() ey = i) € ROz
with
N
0 < Cy(z) € span{z? o Cla) = Z Cr(z)
k=0

such that
If =3 (Nl = O(f, N 1))

Proof. Similar to Lemma 1, let A, be any element from A, and Cf(x) =

x*n1. Choose An;,, satisfying

) N\ ) N—j—1
N—-7+2
(@) < NT'Ci(a)  for x> Tj+

For f € Cjp,y), define

2 x:N N-k+1\ Ci(2)
v ;f< N >Zi210;t(a:)'

Then the required result follows. =

LEMMA 3. Let {\,} be a sequence of real numbers with infinitely many
distinct elements such that A\, — | as n — 0o with —oco < | < 00. Given
N > 1 and € > 0, there are an integer ny and an operator

N
> pe VD) (£ € RN
k=0
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with Dy, (z), D(x) € span{x*i }iXo such that

1f =X (NIl < 20(g, N7V2) + | fle,

where g(u) = f(e'=/"). Precisely, we have

- %k(g — Gi(w) + Hy(a),
N . & 1 N—k
o aw=()(eme) (teea)
and
3
(4) Hy(@)l < =7

Proof. There are two possibilities: (i) There is a subsequence {\,, }
of {\,} which strictly increases to A < 400 (in symbols A, /" A < +00)
as k — oo; (ii) there is a subsequence {)\,,} which strictly decreases to
A > —oo (in symbols A, \, A > —o0) as k — oo. We will prove Lemma 3
in these two cases separately.

Case (i). For convenience, we still write A, as A,. So under the hy-
pothesis, A, /" A < +ooasn — co. Let ap < a1 < ..., and let Py (z) denote
the kth divided difference of (z/e)® at @ = agn_1,¥aN—2,...,aN_k—_1 for
k=0,1,...,N —1, that is,

Py(x) = Py(x,aan—1) = (x/e)*>N -1,
(x/e>a2N—l _ (x/e)QQN—2

Pi(z) = Pi(z,aan—1, 0N —2) = ,
QaN—1 — O2N -2

in general,
Py(r) = Py(x, 0N -1, -, 02N k1)

_ Pra(zr,0on-1,. .. 00N —k) — Pro1(z, 0082, .., QoN_k—1)

- )

QaN—-1 — O2N—k—1
0<k<N-1,
and
PN(Z‘) = PN(JI, AN,y ... ,Oé()).

By the mean value theorem

e Inf (x /e
() Pula) = AP

aoN_g—1 <Mmp <agn-1, k=0,1,...,N =1,
(z/e)"™ In™ (z/e)
N! ’

(6) Pn(z)=

ap <y < an.
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Now let f € Cloy. Then g(u) = F(e'1/%) € Cipy. Wite
()= gf@) ()t -0

SR T ()

-Sr(H) () per ()

For given N > 1, the well-known Bernstein theorem implies that
lg(w) — By (g, w)ll < §w(g, N~'/?),
that is,
(7) 1f(x) = Bn(g,—1/In(z/e))|| < Jw(g, N~'/?).
Choose sufficiently large m such that for & > m,
0< A=A <e/(4N(N +1)).

Set ax = Apyk, k=0,1,...,2N — 1. Define

N i . _

Sk (=DF RN = N Pyj(=)

- i F(erNE) (‘Z ) = N1Py (@)

Then 7%, (f, ) is a rational combination of {zs m+2N ! and by (5), (6),

=m

S S () et e

j=k
W1th770:O,0<77j SAmaN — A < A=A, 7=1,..., N. Now write

Ji 0 (320 (i) o
=3 (1) (i)
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Since for n > 0,

1—(x/e)"
H In(e/e) || ="
we have
1— (x/e)m . €
' In"(z/e) =M S 4N(N +1)

for k > 1. Consequently,
N
N —k €
D <4 NN+ <
Fils 4N E]Z;:(j—k>_2N(N+l)’

and thus (2)—(4) are proved. Now from (4), (7), together with Hy(z) =
N
(k)El’

1f () = % (f,)| < [If () = Bn(g, =1/ In(z/e))l| + 1 Y [Hi(x)]
k=0

< 5w(g, N2 + I flle,
that is, Lemma 3 holds true in Case (i).
Case (ii). We may assume that A, \, A > —o0 as n — oo. Take
Py(z) = Pe(z, Ay -+ -y Amtk), 0< k<N —1,
Py(x) = PN(Z, At N—15« - -y Am42N—1)s

and

N N 2j—k N (N—k
r x) = 1= N/k N\ 2= (=D (N_j)!(j—k)PN*j(x)

Similar to Case (i), for given ¢ > 0 and N > 1, we can prove (2)—(4) and
for sufficiently large m,

I () = 7% (F, )| < Sw(g, N7V2) + | fle-
The proof of Lemma 3 is now complete. =
Proof of the Theorem. Given a sequence with infinitely many

distinct elements {\,,}, there are three possibilities: (i) {A,} has at least
one finite cluster point; (ii) one cluster point of {\,} is +o0; (iii) one cluster
point of {\,} is —oco. Without loss of generality, we may assume

M — 4oo as n—oo, 1<j <,

/\%—>—oo as n—oo, r+1<j5 <t
and

N —1 as n—oo, t+1<j<s, —oo<I<4o00.
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For given N > 1 and € > 0, from Lemmas 1-3, we may select a common ny
such that

1/ (X)
1F(X)

—ry(fiz))ll = Olws, (f,N71), 1<j<m
=} (f,zj)ll = Ows, (f,N7Y), r+1<j<t,
and
1£(X) = By (g, —1/In(z;/€))|| = O(wa, (9, N"?)),  t+1<j<s,
hold at the same time, where
Wy (f,0)

= orél}?%(é‘f(xh” ST+ h iy, .,xs) — f(;l:'l,.. . ,a:j,xj+1,...,xs)|.

Define
rv(X) = Z Z f(‘]y\lf,...,?\tr,...,el_N/jt“,...,el_N/jS)

0<ji<N  0<js<N

o Zin(z)  Zy(z) Cjn(@rg1) Oy ()

Z(z)  Z(zr) Clzrs)  Clay)
Djt+1 (xt-i-l) Djs (.%'S)
D(xe1) — D(zs)
Evidently,
ry(X) € lli(span{:lz/\l1 Ny X spam{az’\l2 FIN XL span{a ).
From (2),
f(X) —rn(X)

- Z Z (f(X)_f<§\17,...,i’;,el_N/J'tﬂ,...,el_N/js>>

0<jii<N - 0<Zjs<N

Zjl (331) er (x'l") er+1 (‘TTJrl) Cjt (xt)
Z(x1)  Z(xr) Clzegr)  Clay)

X G (041) o+ Gy () & T = T + 5,
where by Lemma 3,

(8) [ Zs| < 4% flle

Because f(X) € Cfpe, there is a 6 > 0 such that for | X — Y| =
Vi —wy)? <,

If(X) = FY) <e,
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while for | X — Y| >4,
[f(X) = f(Y)] <267 2IIfIIE: i i)
therefore in any case

F(X) - f(Y) <e+267 2HfHZ i = ui)?

Now

\22!§e+252HfH< SRS Z(xz—)z

0<j1<N  0<j,<N i=1

i
CJJ(:C (351) . %&? G (ir1)... Gy, (azs))
et 2HfH<;]ZO( ) Z”(fj))

Noting that
N

> (-x) 5 :%(x_f;;gk(g)_<x2_§<;>2g(g>),

k=0

from Lemma 1 we deduce that
N 2
k Zy () -1
- — O(N~1Y?y.
2 (%) Fay =ow

The same results also hold for Zszo(x — k/N)2Cy(z)/C(x) and for
Zszo(ﬂf — e N/EY2@Gy (z) by applying Lemmas 2 and 3. Altogether we
have

(9) |Za] < &+ 25 7| FIO(N ),
thus combining (8) and (9) we get
/(X)) —rn(X)| = O(e) + O(N~/2),

which is the required result. =
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