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ON MÜNTZ RATIONAL APPROXIMATION IN MULTIVARIABLES

BY

S. P. ZHOU (EDMONTON, ALBERTA)

The present paper shows that for any s sequences of real numbers, each
with infinitely many distinct elements, {λj

n}, j = 1, . . . , s, the rational com-

binations of x
λ1

m1
1 x

λ2
m2

2 . . . x
λs

ms
s are always dense in CIs .

1. Introduction. Let C[0,1] be the class of all real continuous functions
in [0, 1]. For f ∈ C[0,1],

ω(f, t) = max
0<h<t,x∈[0,1−h]

|f(x + h)− f(x)|,

‖f‖ = max
x∈[0,1]

|f(x)|.

Given a subspace S of C[0,1], let

R(S) = {P (x)/Q(x) : P (x) ∈ S, Q(x) ∈ S, Q(x) > 0, x ∈ (0, 1]},

where we assume that limx→0+ P (x)/Q(x) = P (0)/Q(0) is finite in the case
Q(0) = 0. For a sequence of real numbers Λ = {λn}∞n=0, write

R(Λ) = R(span{xλn}).

From Müntz’s theorem (cf. [2]), it is well-known that the combinations
of xλn for

(1) 0 = λ0 < λ1 < λ2 < . . .

are dense in C[0,1] if and only if
∞∑

n=1

1
λn

= ∞.

As to the rational case, in 1976, Somorjai [6] showed a beautiful result
that under (1), R(Λ) is always dense in C[0,1]. In 1978, Bak and Newman
[1] proved that if λn is a sequence of distinct positive numbers, then R(Λ) is
dense in C[0,1] as well. Recently, our work [7] showed that the above result
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also holds for any sequence of real numbers with infinitely many distinct
elements.

On the other hand, S. Ogawa and K. Kitahara [5] gave a generalization
of Müntz’s theorem to multivariable cases. They proved (1) that for two
given positive monotone sequences {αi}, {βj}, the set {1} ∪ {xαi} ∪ {yβj}
is complete in CI2 if and only if

∑∞
i=1 1/αi and

∑∞
j=1 1/βj diverge, where

Is = {X = (x1, . . . , xs) : 0 ≤ xj ≤ 1, 1 ≤ j ≤ s},
and CIs is the class of all continuous functions on Is.

For many reasons, it is quite reasonable to conjecture that the conclusion
corresponding to that of [7] will hold for Müntz rational approximation in
the multivariable case, that is, for any s sequences of real numbers {λj

n},
j = 1, . . . , s, each with infinitely many distinct elements, the rational com-

binations of {x
λ1

m1
1 x

λ2
m2

2 . . . x
λs

ms
s } are always dense in CIs . Since rational

combinations are not linear, it is not a trivial work.
The present paper will prove that this is true.

2. Result and proof

Theorem. Let Λj = {λj
n}, j = 1, . . . , s, be s sequences of real numbers,

each with infinitely many distinct elements. Then R(Λ1× . . .×Λs) is dense
in CIs .

We need the following lemmas from the univariable case, the first two
of which are due to Somorjai [6] and the author [7]. We will, however, give
the sketch of proofs here for the sake of completeness.

Lemma 1 (Somorjai [6]). Let {λn} be a sequence of real numbers such
that λn → +∞ as n → ∞. Given N ≥ 1, for any f ∈ C[0,1], there are an
integer nN and an operator

N∑
k=0

f

(
k

N

)
Zk(x)
Z(x)

=: r1
N (f, x) ∈ R({λj}nN

j=0)

with

0 ≤ Zk(x) ∈ span{xλj}nN
j=0, Z(x) =

N∑
k=0

Zk(x)

such that
‖f − r1

N (f)‖ = O(ω(f,N−1)).

P r o o f. We select a sequence {λnj}
nN
j=1 from Λ by induction. Let λn0

be any element from Λ, and Z0(x) = xλn0 . Choose λnj+1 with the following
properties:

(1) For convenience, we only state their result for two variables.
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Zj+1(x) =
(

N

j + 1
x

)λnj+1

≤ N−1Zj(x) for x <
j

N
,

Zj+1(x) > NZj(x) for x >
j + 2
N

.

Define

r1
N (f, x) =

N∑
k=0

f

(
k

N

)
Zk(x)∑N

v=0 Zv(x)
for f ∈ C[0,1]. Then by calculation

f(x)− r1
N (f, x) = O(ω(f,N−1)).

Lemma 2 (Zhou [7]). Let {λn} be a sequence of real numbers such that
λn → −∞ as n →∞. Given N ≥ 1, for any f ∈ C[0,1], there are an integer
nN and an operator

N∑
k=0

f

(
k

N

)
Ck(x)
C(x)

=: r2
N (f, x) ∈ R({λj}nN

j=0)

with

0 ≤ Ck(x) ∈ span{xλj}nN
j=0, C(x) =

N∑
k=0

Ck(x)

such that
‖f − r2

N (f)‖ = O(ω(f,N−1)).
P r o o f. Similar to Lemma 1, let λn1 be any element from Λ, and C∗1 (x) =

xλn1 . Choose λnj+1 satisfying

C∗j+1(x) =
(

N

N − j
x

)λnj+1

≥ NC∗j (x) for x <
N − j − 1

N
,

C∗j+1(x) < N−1C∗j (x) for x >
N − j + 2

N
.

For f ∈ C[0,1], define

r2
N (f, x) =

N∑
k=1

f

(
N − k + 1

N

)
C∗k(x)∑N

v=1 C∗v (x)
.

Then the required result follows.

Lemma 3. Let {λn} be a sequence of real numbers with infinitely many
distinct elements such that λn → l as n → ∞ with −∞ < l < ∞. Given
N ≥ 1 and ε > 0, there are an integer nN and an operator

N∑
k=0

f(e1−N/k)
Dk(x)
D(x)

=: r3
N (f, x) ∈ R({λj}nN

j=0)
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with Dk(x), D(x) ∈ span{xλj}nN
j=0 such that

‖f − r3
N (f)‖ ≤ 2ω(g,N−1/2) + ‖f‖ε,

where g(u) = f(e1−1/u). Precisely , we have

(2)
Dk(x)
D(x)

= Gk(x) + Hk(x),

(3) Gk(x) =
(

N

k

)(
−1

ln(x/e)

)k(
1 +

1
ln(x/e)

)N−k

,

and

(4) |Hk(x)| ≤ ε

N + 1
.

P r o o f. There are two possibilities: (i) There is a subsequence {λnk
}

of {λn} which strictly increases to λ < +∞ (in symbols λnk
↗ λ < +∞)

as k → ∞; (ii) there is a subsequence {λnk
} which strictly decreases to

λ > −∞ (in symbols λnk
↘ λ > −∞) as k → ∞. We will prove Lemma 3

in these two cases separately.

C a s e (i). For convenience, we still write λnk
as λn. So under the hy-

pothesis, λn ↗ λ < +∞ as n →∞. Let α0 < α1 < . . . , and let Pk(x) denote
the kth divided difference of (x/e)α at α = α2N−1, α2N−2, . . . , α2N−k−1 for
k = 0, 1, . . . , N − 1, that is,

P0(x) = P0(x, α2N−1) = (x/e)α2N−1 ,

P1(x) = P1(x, α2N−1, α2N−2) =
(x/e)α2N−1 − (x/e)α2N−2

α2N−1 − α2N−2
,

in general,

Pk(x) = Pk(x, α2N−1, . . . , α2N−k−1)

=
Pk−1(x, α2N−1, . . . , α2N−k)− Pk−1(x, α2N−2, . . . , α2N−k−1)

α2N−1 − α2N−k−1
,

0 ≤ k ≤ N − 1,

and

PN (x) = PN (x, αN , . . . , α0).

By the mean value theorem

(5) Pk(x) =
(x/e)ηk lnk(x/e)

k!
,

α2N−k−1 ≤ ηk ≤ α2N−1, k = 0, 1, . . . , N − 1,

(6) PN (x) =
(x/e)ηN lnN (x/e)

N !
, α0 ≤ ηN ≤ αN .
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Now let f ∈ C[0,1]. Then g(u) = f(e1−1/u) ∈ C[0,1]. Write

BN (f, x) =
N∑

k=0

f

(
k

N

)(
N

k

)
xk(1− x)N−k

=
N∑

k=0

f

(
k

N

)(
N

k

) N−k∑
j=0

(−1)j

(
N − k

j

)
xj+k

=
N∑

k=0

f

(
k

N

)(
N

k

) N∑
j=k

(−1)j−k

(
N − k

j − k

)
xj .

For given N ≥ 1, the well-known Bernstein theorem implies that

‖g(u)−BN (g, u)‖ < 3
2ω(g,N−1/2),

that is,

(7) ‖f(x)−BN (g,−1/ ln(x/e))‖ < 3
2ω(g,N−1/2).

Choose sufficiently large m such that for k ≥ m,

0 < λ− λk < ε/(4N (N + 1)).

Set αk = λm+k, k = 0, 1, . . . , 2N − 1. Define

r3
N (f, x) =

N∑
k=0

f(e1−N/k)
(

N

k

)∑N
j=k(−1)2j−k(N − j)!

(
N−k
j−k

)
PN−j(x)

N !PN (x)
.

Then r3
N (f, x) is a rational combination of {xλj}m+2N−1

j=m , and by (5), (6),

r3
N (f, x) =

N∑
k=0

f(e1−N/k)
(

N

k

) N∑
j=k

(−1)j−k

(
N − k

j − k

)(
−1

ln(x/e)

)j

(x/e)η∗j

with η∗0 = 0, 0 < η∗j ≤ λm+N − λm ≤ λ− λm, j = 1, . . . , N . Now write

N∑
j=k

(−1)j−k

(
N − k

j − k

)(
−1

ln(x/e)

)j

(x/e)η∗j

=
N∑

j=k

(−1)j−k

(
N − k

j − k

)(
−1

ln(x/e)

)j

+
N∑

j=k

(−1)j−k

(
N − k

j − k

)(
−1

ln(x/e)

)j

((x/e)η∗j − 1)

=
(

−1
ln(x/e)

)k(
1 +

1
ln(x/e)

)N−k

+ Σ1.
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Since for η > 0, ∥∥∥∥1− (x/e)η

ln(x/e)

∥∥∥∥ ≤ η,

we have ∥∥∥∥1− (x/e)η∗k

lnk(x/e)

∥∥∥∥ ≤ η∗k ≤
ε

4N (N + 1)
for k ≥ 1. Consequently,

|Σ1| ≤ 4−N (N + 1)−1ε

N∑
j=k

(
N − k

j − k

)
≤ ε

2N (N + 1)
,

and thus (2)–(4) are proved. Now from (4), (7), together with Hk(x) =(
N
k

)
Σ1,

‖f(x)− r3
N (f, x)‖ ≤ ‖f(x)−BN (g,−1/ ln(x/e))‖+ ‖f‖

N∑
k=0

|Hk(x)|

≤ 3
2ω(g,N−1/2) + ‖f‖ε,

that is, Lemma 3 holds true in Case (i).

C a s e (ii). We may assume that λn ↘ λ > −∞ as n →∞. Take

Pk(x) = Pk(x, λm, . . . , λm+k), 0 ≤ k ≤ N − 1,

PN (x) = PN (x, λm+N−1, . . . , λm+2N−1),

and

r3
N (f, x) =

N∑
k=0

f(e1−N/k)
(

N

k

)∑N
j=k(−1)2j−k(N − j)!

(
N−k
j−k

)
PN−j(x)

N !PN (x)
.

Similar to Case (i), for given ε > 0 and N ≥ 1, we can prove (2)–(4) and
for sufficiently large m,

‖f(x)− r3
N (f, x)‖ ≤ 3

2ω(g,N−1/2) + ‖f‖ε.
The proof of Lemma 3 is now complete.

P r o o f o f t h e T h e o r e m. Given a sequence with infinitely many
distinct elements {λn}, there are three possibilities: (i) {λn} has at least
one finite cluster point; (ii) one cluster point of {λn} is +∞; (iii) one cluster
point of {λn} is −∞. Without loss of generality, we may assume

λj
n → +∞ as n →∞, 1 ≤ j ≤ r,

λj
n → −∞ as n →∞, r + 1 ≤ j ≤ t,

and
λj

n → l as n →∞, t + 1 ≤ j ≤ s, −∞ < l < +∞.
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For given N ≥ 1 and ε > 0, from Lemmas 1–3, we may select a common nN

such that

‖f(X)− r1
N (f, xj)‖ = O(ωxj (f,N−1)), 1 ≤ j ≤ r,

‖f(X)− r2
N (f, xj)‖ = O(ωxj

(f,N−1)), r + 1 ≤ j ≤ t,

and

‖f(X)−BN (g,−1/ ln(xj/e))‖ = O(ωxj
(g,N−1/2)), t + 1 ≤ j ≤ s,

hold at the same time, where

ωxj
(f, δ)

= max
0≤h≤δ

|f(x1, . . . , xj + h, xj+1, . . . , xs)− f(x1, . . . , xj , xj+1, . . . , xs)|.

Define

rN (X) =
∑

0≤j1≤N

. . .
∑

0≤js≤N

f

(
j1
N

, . . . ,
jt

N
, . . . , e1−N/jt+1 , . . . , e1−N/js

)

× Zj1(x1)
Z(x1)

. . .
Zjr

(xr)
Z(xr)

Cjr+1(xr+1)
C(xr+1)

. . .
Cjt

(xt)
C(xt)

×
Djt+1(xt+1)

D(xt+1)
. . .

Djs(xs)
D(xs)

.

Evidently,

rN (X) ∈ R(span{xλ1
i }nN

i=0 × span{xλ2
i }nN

i=0 × . . .× span{xλs
i }nN

i=0).

From (2),

f(X)− rN (X)

=
∑

0≤j1≤N

. . .
∑

0≤js≤N

(
f(X)− f

(
j1
N

, . . . ,
jt

N
, e1−N/jt+1 , . . . , e1−N/js

))

× Zj1(x1)
Z(x1)

. . .
Zjr (xr)
Z(xr)

Cjr+1(xr+1)
C(xr+1)

. . .
Cjt(xt)
C(xt)

×Gjt+1(xt+1) . . . Gjs
(xs) + Σ3 := Σ2 + Σ3,

where by Lemma 3,

(8) |Σ3| ≤ 4s‖f‖ε.

Because f(X) ∈ CIs , there is a δ > 0 such that for |X − Y | =√∑s
j=1(xj − yj)2 < δ,

|f(X)− f(Y )| < ε,
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while for |X − Y | ≥ δ,

|f(X)− f(Y )| ≤ 2δ−2‖f‖
s∑

j=1

(xj − yj)2,

therefore in any case

|f(X)− f(Y )| ≤ ε + 2δ−2‖f‖
s∑

j=1

(xj − yj)2.

Now

|Σ2| ≤ ε + 2δ−2‖f‖
( ∑

0≤j1≤N

. . .
∑

0≤js≤N

t∑
i=1

(
xi −

ji

N

)2

×
s∑

i=t+1

(xi − e1−N/ji)2
Zj1(x1)
Z(x1)

. . .
Zjr (xr)
Z(xr)

×
Cjr+1(xr+1)

C(xr+1)
. . .

Cjt(xt)
C(xt)

Gjt+1(xt+1) . . . Gjs(xs)
)

= ε + 2δ−2‖f‖
( r∑

i=1

N∑
ji=0

(
xi −

ji

N

)2
Zji(xi)
Z(xi)

×
t∑

i=r+1

N∑
ji=0

(
xi −

ji

N

)2
Cji

(xi)
C(xi)

s∑
i=t+1

N∑
ji=0

(xi − e1−N/ji)2Gji
(xi)

)
.

Noting that
N∑

k=0

(
x− k

N

)2
Zk(x)
Z(x)

= 2x

(
x−

N∑
k=0

k

N

Zk(x)
Z(x)

)
−

(
x2 −

N∑
k=0

(
k

N

)2
Zk(x)
Z(x)

)
,

from Lemma 1 we deduce that
N∑

k=0

(
x− k

N

)2
Zk(x)
Z(x)

= O(N−1/2).

The same results also hold for
∑N

k=0(x − k/N)2Ck(x)/C(x) and for∑N
k=0(x − e1−N/k)2Gk(x) by applying Lemmas 2 and 3. Altogether we

have

(9) |Σ2| ≤ ε + 2δ−2‖f‖O(N−1/2),

thus combining (8) and (9) we get

|f(X)− rN (X)| = O(ε) + O(N−1/2),

which is the required result.
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