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PLANAR RATIONAL COMPACTA

BY
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1. Introduction. In this paper we consider rational subspaces of the
plane. A rational space is a space which has a basis of open sets with
countable boundaries. In the special case where the boundaries are finite,
the space is called rim-finite.

G. Nöbeling [8] has proved that the family of all rim-finite spaces does
not contain a universal element. The same is true even for the family of
planar rim-finite spaces. This fact is included in a wider result (see [1] and
[4]) concerning some families of planar rim-scattered spaces.

S. Iliadis [3] (see also [7]) proved that there exists a universal rational
space. Therefore there exists a rational space which contains topologically
all rational compacta.

In [6] J. Mayer and E. Tymchatyn constructed a planar continuum of
rim-type α+1 which is a containing space for all planar compacta of rim-type
≤ α, where α is a countable ordinal.

In this paper we give a simple, direct and visualized example of a planar
rational connected and locally connected space which is a containing space
for all planar rational compacta. This provides an affirmative answer to
Problem 5(2) of [2].

2. Definitions and notations. Let E2 be the plane with a system
Oxy of orthogonal coordinates. By a simple closed curve we mean a subset
of E2 which is homeomorphic to the set {(x, y) : x2 +y2 = 1}, and by a disk
a subset of E2 homeomorphic to {(x, y) : x2 +y2 ≤ 1}. An arc is a subset A
of E2 for which there exists a homeomorphism h of I ≡ [0, 1] onto A. The
points h(0) and h(1) are the endpoints of the arc and the set A \ h({0, 1})
is its interior .

Let G ⊆ D ⊆ E2. By ClD(G), IntD(G) and BdD(G) we denote the clo-
sure, interior, and boundary of G, respectively, in D. We omit the subscript
“D” if D = E2. For each ε > 0 we denote by N(G, ε) the set of all points of
E2 whose distance from G is less than ε. By ω we denote the set {0, 1, 2, . . .}
of all non-negative integers.
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A space Y is called a containing space for a family F of spaces if for
every X ∈ F , there exists a homeomorphism of X onto a subset of Y . If in
addition Y ∈ F , then Y is called a universal space for the family F .

We denote by Ln, n = 1, 2, . . . , the set of all ordered n-tuples i1 . . . in,
where it = 0 or 1, for every t = 1, . . . , n, and by L0 the set {∅}. By Iī,
where i = i1 . . . in ∈ Ln, n ≥ 1, we denote the set of all points of I ≡ [0, 1]
for which the kth digit of the dyadic expansion, k = 1, . . . , n, coincides with
ik. Also we set I∅ = I.

Let Wn = {Iī × Ij̄ : i, j ∈ Ln}, n ∈ ω. Obviously for every n ∈ ω the
family Wn is a finite closed covering of I2. If a is an endpoint of Iī and b is
an endpoint of Ij̄ , then the sets {a} × Ij̄ and Iī × {b} are called edges and
the point (a, b) ∈ E2 is called a vertex of Wn. The sets of all edges and of
all vertices of Wn are denoted by E(Wn) and V (Wn), respectively. We set
Bd(Wn) =

⋃
{Bd(F ) : F ∈ Wn} =

⋃
{e : e ∈ E(Wn)}.

Let D be a disk of the plane. A finite closed covering V of D is said
to be an n-subdivision (or subdivision) of D, where n ∈ ω, if there exists a
homeomorphism h of D onto I2 such that V = {h−1(F ) : F ∈ Wn}. Every
such homeomorphism is called a V-homeomorphism. The sets h−1(e), where
e ∈ E(Wn), are called edges of V and the points h−1(v), where v ∈ V (Wn),
are called vertices of V. We denote by E(V) and V (V) the sets of all edges
and of all vertices of V, respectively. We set Bd(V) =

⋃
{Bd(F ) : F ∈

V} =
⋃
{e : e ∈ E(V)} and mesh(V) = max{diam(F ) : F ∈ V}. Obviously

Bd(V) = h−1(Bd(W)). Also, for G ⊆ D we set

st(G,V) =
⋃
{F ∈ V : F ∩G 6= ∅}.

We say that a subdivision V of D is rational with respect to a set X ⊆ D
if for every edge e of V the set e∩X is a countable subset of the interior of
e. Note that in this case no point of X is a vertex of V.

Let n1, n2 ∈ ω, n1 ≤ n2. We say that an n2-subdivision V2 of D is
inscribed in an n1-subdivision V1 of D if: (α) each element of V2 is contained
in some element of V1 and (β) for every F ∈ V1 the set of all elements of
V2 which are contained in F is an (n2 − n1)-subdivision of the disk F . We
observe that in this case Bd(V1) ⊆ Bd(V2).

3. Containing space. Let

Q∆ = {p/2n ∈ I \ {0, 1} : p, n ∈ ω}, QT = {p/3n ∈ I : p, n ∈ ω}

and

Y = I2 \ (((I \QT )×Q∆) ∪ (Q∆ × (I \QT ))).

We shall prove that Y is a containing space for the family of all planar
rational compacta. It is easy to verify that I2 \

⋃
{Bd(Wn) : n ∈ ω} ⊆ Y .
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We observe that this remains true if Q∆ and QT are replaced by any pair
of disjoint countable dense subsets of I.

4. Lemma. The space Y is rational , connected and locally connected.

P r o o f. We observe that the set K ≡ (QT × I) ∪ (I ×QT ) is connected
and K ⊆ Y ⊆ I2 = Cl(K). So Y is connected.

For y ∈ Y and i ∈ ω we set

Ui(y) ≡ Y ∩ IntI2(st(y,Wi)).

It is easy to verify (as for the space Y ) that Ui(y) is connected. Moreover,
BdY (Ui(y)) is countable. Also it is easy to see that {Ui(y) : i ∈ ω} is a basis
of open neighbourhoods of y in Y . Thus Y is a planar rational connected
and locally connected space.

5. Lemma. Let D be a disk of the plane, a, b ∈ Bd(D), a 6= b, and
X ⊆ D \{a, b} be a rational compact space. Then there exists an arc A ⊆ D
with endpoints a, b such that A ∩X is countable.

P r o o f. Let A1, A2 be the arcs of D with endpoints a, b such that
A1 ∪ A2 = Bd(D). It is clear that X ∩ A1 and X ∩ A2 are closed disjoint
subsets of X ∩D. Thus there exists a closed countable subset F of X ∩D
which separates (in X∩D) the sets X∩A1 and X∩A2 (see [5], §51, IV, Th. 9).
Let G1, G2 be disjoint open subsets of X∩D such that (X∩D)\F = G1∪G2,
X ∩A1 ⊆ G1 and X ∩A2 ⊆ G2.

Let F1 = Cl(G1) ∪ A1, F2 = Cl(G2) ∪ A2, x ∈ A1 \ {a, b} and y ∈
A2 \ {a, b}. Since F1 and F2 are compact and F1 ∩F2 ⊆ F ∪{a, b} is totally
disconnected, there exists (see [9], p. 108, Th. (3.1)) a simple closed curve
J which separates the points x and y in the plane such that J ∩ (F1 ∪F2) ⊆
F ∪ {a, b}.

From the above it follows that J ∩ (A1 ∪A2) = {a, b}. Since J separates
x and y, the simple closed curve J intersects the disk D in an arc A with
endpoints a, b. We have A∩X ⊆ (J∩D)∩X ⊆ J∩(F1∪F2∪F ) ⊆ F ∪{a, b}.
Hence A ∩X is countable. Thus A is the required arc.

6. Theorem. The space Y is a containing space for all planar rational
compacta.

P r o o f. Let X be a planar rational compact space and D be a disk of the
plane such that X ⊆ Int(D). We construct a homeomorphism h : D → I2

such that h(X) ⊆ Y . For every i ∈ ω we shall define by induction a natural
number ni, an ni-subdivision Vi of D, rational with respect to X, and a
Vi-homeomorphism hi such that:

(1) Vi+1 is inscribed in Vi,
(2) mesh(Vi+1) < 1/2i+1,
(3) hi+1|Bd(Vi) = hi|Bd(Vi),
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(4) hi(Bd(Vi) ∩X) ⊆ Y .

Let i = 0. We set n0 = 0 and V0 = {D}. Let h0 be a homeomorphism
of D onto I2. Obviously h0 is a V0-homeomorphism and (4) is satisfied for
i = 0 because Bd(V0)∩X = ∅. The other properties concern the case i > 0.

Suppose that for every i ≤ k we have defined a natural number ni, an
ni-subdivision Vi of D, rational with respect to X, and a Vi-homeomorphism
hi such that (1)–(3) are satisfied if i + 1 ≤ k, and (4) is satisfied if i ≤ k.
We define a natural number nk+1, an nk+1-subdivision Vk+1 of D, rational
with respect to X, and a Vk+1-homeomorphism hk+1 such that (1)–(3) are
satisfied if i + 1 ≤ k + 1, and (4) is satisfied if i ≤ k + 1.

There exists an integer j ∈ ω such that diam(h−1
k (F )) < 1/2k+1 for

every F ∈ Wnk+j . Since I2 \ hk(X) is a dense subset of I2, Vk is ra-
tional with respect to X and since V (Wnk+j) ∩ Y = ∅ there exists a Vk-
homeomorphism h′k such that h′k|Bd(Vk) = hk|Bd(Vk), h′k(X)∩V (Wnk+j) = ∅
and diam((h′k)−1(F )) < 1/2k+1 for every F ∈ Wnk+j .

Let nk+1 = nk + j and

V ′k+1 = {(h′k)−1(F ) : F ∈ Wnk+1}.
Then V ′k+1 is an nk+1-subdivision of D with mesh(V ′k+1) < 1/2k+1, which
is inscribed in Vk. However, this subdivision is not, in general, rational with
respect to X. The nk+1-subdivision Vk+1 of D will be obtained by some
modification of V ′k+1.

For every edge e ∈ E(V ′k+1) \Bd(Vk) we denote by De a disk such that:
(α) e ⊆ De, (β) De∩Bd(Vk) ⊆ e∩Bd(Vk), (γ) De1∩De2 ⊆ e1∩e2 if e1 6= e2,
and (δ) for every F ∈ V ′k+1, diam(F ∪

⋃
{De : e ⊆ F}) < 1/2k+1.

For every e ∈ E(V ′k+1) we define an arc ẽ as follows: (α) if e ⊆ Bd(Vk),
then ẽ = e, and (β) if e 6⊆ Bd(Vk), then ẽ is the arc A of Lemma 5, where D
is the disk De and a, b are the endpoints of e. Thus every F ∈ V ′k+1 defines
a simple closed curve JF , which is the union of arcs ẽ, where e ⊆ Bd(F ).
Let F̃ be the disk having as boundary the simple closed curve JF . We set

Vk+1 = {F̃ : F ∈ V ′k+1}.

For every e ∈ E(V ′k+1) we define a homeomorphism hẽ
k+1 of ẽ into

Bd(Wnk+1) as follows: (α) if ẽ = e ⊆ Bd(Vk), then hẽ
k+1 = hk|e, and

(β) if e 6⊆ Bd(Vk), then hẽ
k+1 is a homeomorphism of ẽ onto h′k(e) such that

hẽ
k+1|{a,b} = h′k|{a,b},

where a, b are the endpoints of ẽ, and

hẽ
k+1(ẽ ∩X) ⊆ Y ∩ h′k(e).

The existence of such a homeomorphism is based on the fact that ẽ ∩ X
is countable, and h′k(e) ∩ Y is countable and dense in h′k(e). For every
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F̃ ∈ Vk+1 we denote by hF̃
k+1 a homeomorphism of F̃ onto h′k(F ) such that

hF̃
k+1|ẽ = hẽ

k+1 for every ẽ ⊆ F̃ . Let hk+1 be a homeomorphism of D onto
I2 for which hk+1|F̃ = hF̃

k+1 for every F̃ ∈ Vk+1.
It is easy to verify that Vk+1 is an nk+1-subdivision of D, rational with

respect to X, and hk+1 is a Vk+1-homeomorphism with properties (1)–(4).
Furthermore, for every x ∈ D and i, j ∈ ω, j ≥ i, by the definition of Vi

we have

(5) hi(st(x,Vi)) = st(hi(x),Wni),

by (1) it follows that

(6) st(x,Vj) ⊆ st(x,Vi),

and by (3) we have

(7) hj(st(x,Vi)) = hi(st(x,Vi)).

Now we define a map h : D → I2 setting for every x ∈ D,

h(x) =
⋂
{hi(st(x,Vi)) : i ∈ ω}

and prove that h is a homeomorphism such that h(X) ⊆ Y .
First note that by (6) and (7), hi+1(st(x,Vi+1)) ⊆ hi(st(x,Vi)) for every

x ∈ D and i ∈ ω. On the other hand, by (5), limi→∞ diam(hi(st(x,Vi)))
= 0. Hence

⋂
hi(st(x,Vi)) is a singleton. Thus h is well defined.

Let x1, x2 ∈ D and x1 6= x2. By (2) there exists i ∈ ω such that
st(x1,Vi) ∩ st(x2,Vi) = ∅. Hence hi(st(x1,Vi)) ∩ hi(st(x2,Vi)) = ∅ and
therefore h(x1) 6= h(x2), that is, h is one-to-one.

We prove that h is continuous. Let h(x) = y and U be an open neigh-
bourhood of y in I2. There exists i ∈ ω such that st(y,Wni) ⊆ U . By
(5), hi(st(x,Vi)) ⊆ U . For the continuity of h it is sufficient to prove
that h(Int(st(x,Vi))) ⊆ U . Let z ∈ Int(st(x,Vi)). It is easy to see that
st(z,Vi) ⊆ st(x,Vi). Hence h(z) ∈ hi(st(z,Vi)) ⊆ hi(st(x,Vi)) ⊆ U . Thus h
is continuous and therefore h is a homeomorphism.

To prove that h(X) ⊆ Y , we observe that if x ∈ Bd(Vi), then hi(x) =
hj(x) ∈ hj(st(x,Vj)) for every j ≥ i. Thus h(x) = hi(x). Since hi(Bd(Vi)) =
Bd(Wni) we see that if x 6∈

⋃
{Bd(Vi) : i ∈ ω}, then h(x) 6∈

⋃
{Bd(Wni) :

i ∈ ω} =
⋃
{Bd(Wj) : j ∈ ω}.

Let x ∈ X. If x 6∈
⋃

i Bd(Vi), then h(x) 6∈
⋃

j Bd(Wj). Since I2 \⋃
j Bd(Wj) ⊆ Y , we have h(x) ∈ Y . If x ∈

⋃
i Bd(Vi), then h(x) = hi(x)

for some i ∈ ω. By (4) it follows that h(x) ∈ Y . Thus h(X) ⊆ Y .
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