COLLOQUIUM MATHEMATICUM 1995

VOL. LXVIII

ON INTEGERS NOT OF THE FORM $n - \varphi(n)$ ВY

J. BROWKIN AND A. SCHINZEL (WARSZAWA)

W. Sierpiński asked in 1959 (see [4], pp. 200–201, cf. [2]) whether there exist infinitely many positive integers not of the form $n - \varphi(n)$, where φ is the Euler function. We answer this question in the affirmative by proving

THEOREM. None of the numbers $2^k \cdot 509203$ (k = 1, 2, ...) is of the form $n - \varphi(n).$

LEMMA 1. The number 1018406 is not of the form $n - \varphi(n)$.

Proof. Suppose that

$$1018406 = n - \varphi(n)$$

and let

(1)

(2)
$$n = \prod_{i=1}^{j} q_i^{\alpha_i} \quad (q_1 < q_2 < \dots < q_j \text{ primes}).$$

If for any $i \leq j$ we have $\alpha_i > 1$ it follows that $q_i \mid 2 \cdot 509203$, and since 509203 is a prime, either $q_i = 2$ or $q_i = 509203$. In the former case $n - \varphi(n) \equiv 0 \neq 0$ 1018406 (mod 4), in the latter case $n - \varphi(n) > 1018406$, hence

(3)
$$\alpha_i = 1 \quad (1 \le i \le j).$$

Since n > 2 we have $\varphi(n) \equiv 0 \pmod{2}$, hence $n \equiv 0 \pmod{2}$. However, n/2 cannot be a prime since 1018405 is composite. Hence $\varphi(n) \equiv 0 \pmod{4}$ and $n \equiv 2 \pmod{4}$. Moreover, $n \equiv 1 \pmod{3}$ would imply $\varphi(n) \equiv n - 1$ $1018406 \equiv 2 \pmod{3}$, which is impossible, since

$$\varphi(n) \equiv \begin{cases} 0 \pmod{3} & \text{if at least one } q_i \equiv 1 \pmod{3}, \\ 1 \pmod{3} & \text{otherwise.} \end{cases}$$

Hence $n \equiv 2 \pmod{12}$ or $n \equiv 6 \pmod{12}$ and

(4)
$$n - \varphi(n) > \frac{1}{2}n.$$

[55]

¹⁹⁹¹ Mathematics Subject Classification: Primary 11A25.

Let p_i denote the *i*th prime and consider first the case n = 12k + 2. We have $q_1 = 2, q_i \ge p_{i+1}$ $(i \ge 2)$. Since

(5)
$$\prod_{i=2}^{7} p_{i+1} > 1018406,$$

it follows from (1)–(4) that $j \leq 6$ and

$$\frac{1}{2}\prod_{i=2}^{6} \left(1 - \frac{1}{p_{i+1}}\right) \le \frac{\varphi(n)}{n} \le \begin{cases} 2/5 & \text{if } n \equiv 0 \pmod{5} \\ 1/2 & \text{otherwise.} \end{cases}$$

Hence if n = 12k + 2 satisfies (1) we have either 116381 < k < 141446 or $141446 \le k < 169735$ and $k \not\equiv 4 \pmod{5}$.

Consider now n = 12k + 6. Here $q_1 = 2$, $q_2 = 3$, $q_i \ge p_i$. By (1)–(5), $j \le 7$ and

$$\prod_{i=1}^{7} \left(1 - \frac{1}{p_i} \right) \le \frac{\varphi(n)}{n} \le \frac{1}{3}.$$

Hence if n = 12k + 6 satisfies (1) we have

The computation performed on the computer SUN/SPARC of the Institute of Applied Mathematics and Mechanics of the University of Warsaw using the program GP/PARI has shown that no n corresponding to k in the indicated ranges satisfies (1).

LEMMA 2. All the numbers $2^k \cdot 509203 - 1$ (k = 1, 2, ...) are composite.

Proof. We have

$$509203 \equiv 2^{a_i} \pmod{q_i},$$

where $\langle q_i, a_i \rangle$ is given by $\langle 3, 0 \rangle$, $\langle 5, 3 \rangle$, $\langle 7, 1 \rangle$, $\langle 13, 5 \rangle$, $\langle 17, 1 \rangle$ and $\langle 241, 21 \rangle$ for $i = 1, 2, \ldots, 6$, respectively. Now, 2 belongs mod q_i to the exponent m_i , where $m_i = 2, 4, 3, 12, 8$ and 24 for $i = 1, 2, \ldots, 6$, respectively.

It is easy to verify that every integer n satisfies one of the congruences

 $n \equiv -a_i \pmod{m_i} \quad (1 \le i \le 6).$

If $k \equiv -a_j \pmod{m_j}$ we have

$$2^k \cdot 509203 \equiv 2^{a_j - a_j} \equiv 1 \pmod{q_j},$$

and since $2^k \cdot 509203 - 1 > q_j$ the number $2^k \cdot 509203 - 1$ is composite.

 ${\rm Remark}$ 1. Lemma 2 was proved by H. Riesel, already in 1956 (see [3], Anhang).

The following problem, implicit in [1], suggests itself.

PROBLEM 1. What is the least positive integer n such that all integers $2^k n - 1$ (k = 1, 2, ...) are composite?

Proof of the theorem. We shall prove that $n - \varphi(n) \neq 2^k \cdot 509203$ by induction on k. For k = 1 this holds by virtue of Lemma 1. Assume that this holds with k replaced by k - 1 ($k \geq 2$) and that

(6)
$$n - \varphi(n) = 2^k \cdot 50920$$

If $\varphi(n) \equiv 0 \pmod{4}$ we have $n \equiv 0 \pmod{4}$ and

$$\frac{n}{2} - \varphi\left(\frac{n}{2}\right) = 2^{k-1} \cdot 509203$$

contrary to the inductive assumption. Thus $\varphi(n) \equiv 2 \pmod{4}$ and $n = 2p^{\alpha}$, where p is an odd prime. From (6) we obtain

$$p^{\alpha-1}(p+1) = 2^k \cdot 509203$$

By Lemma 2, $\alpha = 1$ is impossible. If $\alpha > 1$ we have

p

$$|2^k \cdot 509203,$$

and since 509203 is a prime, p = 509203, $\alpha = 2$ and

$$509204 = 2^k$$
,

which is impossible. The inductive proof is complete.

R e m a r k 2. D. H. Lehmer on the request of one of us has kindly computed the table of all numbers not of the form $n - \varphi(n)$ up to 50 000. This table and its prolongation up to 100 000 seems to indicate that the numbers not of the form $n - \varphi(n)$ have a positive density, about 1/10.

This suggests

PROBLEM 2. Have the integers not of the form $n - \varphi(n)$ a positive lower density?

Added in proof ((November 1994). A computation performed by A. Odlyzko has shown that there are 561 850 positive integers less than 5 000 000 not of the form $n - \varphi(n)$.

REFERENCES

- A. Aigner, Folgen der Art arⁿ + b, welche nur teilbare Zahlen liefern, Math. Nachr. 23 (1961), 259-264.
- [2] P. Erdős, Über die Zahlen der Form $\sigma(n) n$ und $n \varphi(n)$, Elem. Math. 28 (1973), 83–86.

- [3] W. Keller, Woher kommen die größten derzeit bekannten Primzahlen?, Mitt. Math. Ges. Hamburg 12 (1991), 211–229.
- [4] W. Sierpiński, Number Theory, Part II, PWN, Warszawa, 1959 (in Polish).

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW BANACHA 2 02-097 WARSZAWA, POLAND E-mail: BRO@PLEARN.BITNET MATHEMATICAL INSTITUTE POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 P.O. BOX 137 00-950 WARSZAWA, POLAND E-mail: SCHINZEL@IMPAN.IMPAN.GOV.PL

Reçu par la Rédaction le 11.4.1994

 $\overline{58}$