ESTIMATES FOR THE BERGMAN AND SZEGÖ PROJECTIONS IN TWO SYMMETRIC DOMAINS OF \mathbb{C}^{n}

BY
DAVID BEKOLLÉ (YAOUNDE) and ALINE BONAMI (ORLÉANS)

1. Introduction. Let D denote each of the following domains in \mathbb{C}^{n}, $n \geq 3$:
(i) the tube $\Omega=\mathbb{R}^{n}+i \Gamma$ over the spherical cone

$$
\Gamma=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: y_{1}>0, y_{1} y_{2}-y_{3}^{2}-\ldots-y_{n}^{2}>0\right\}
$$

(ii) the Lie ball

$$
\omega=\left\{z \in \mathbb{C}^{n}:\left|\sum_{j=1}^{n} z_{j}^{2}\right|<1,1-2|z|^{2}+\left|\sum_{j=1}^{n} z_{j}^{2}\right|^{2}>0\right\}
$$

Obviously, the first domain is unbounded while the second one is bounded. It is well known that they are biholomorphically equivalent and, in Elie Cartan's classification of bounded symmetric domains [5], they are representatives of class IV (according to Hua's numbering [9]).

Let $H(D)$ denote the space of holomorphic functions in D and let $d V$ be Lebesgue measure in \mathbb{C}^{n}. For every $p \geq 1$, the Bergman space $A^{p}(D)$ is defined by $A^{p}(D)=H(D) \cap L^{p}(D, d V)$. For every $f \in A^{p}(D)$, we set $\|f\|_{A^{p}(D)}=\|f\|_{L^{p}(D, d V)}$; for $p \geq 1$, this is a norm under which $A^{p}(D)$ is a Banach space. The Bergman projection P_{D} of D is the orthogonal projection of the Hilbert space $L^{2}(D, d V)$ onto its closed subspace $A^{2}(D)$. Moreover, P_{D} is the integral operator associated with a kernel $B_{D}(\cdot, \cdot)$ called the Bergman kernel of D. Finally, we shall let P_{D}^{*} denote the integral operator associated with the positive kernel $\left|B_{D}(\cdot, \cdot)\right|$.

Let us state our first results:
Theorem 1. For every $p \in\left(1, \frac{3 n-2}{2 n}\right] \cup\left[\frac{3 n-2}{n-2}, \infty\right)$, the Bergman projection P_{D} is unbounded on $L^{p}(D, d V)$.

Theorem 2. Let $p \geq 1$. The operator P_{D}^{*} is bounded on $L^{p}(D, d V)$ if and only if $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$. Furthermore, the Bergman projection P_{D} is bounded from $L^{p}(D, d V)$ to $A^{p}(D)$ when $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$.

For the tube domain Ω, some of these results were announced in [1]. The question whether P_{D} is bounded on $L^{p}(D, d V)$ when p belongs to $\left(\frac{3 n-2}{2 n}, \frac{2 n-2}{n}\right] \cup\left[\frac{2 n-2}{n-2}, \frac{3 n-2}{n-2}\right)$ remains open. The case of all homogeneous Siegel domains of type II has recently been considered by D. Bekollé and A. Temgoua Kagou. They proved that there is a range of p, around 2, where the Bergman projection is bounded in L^{p}, while there is a range of p, around 1 and ∞, where it is unbounded (cf. [4]). In all cases the critical result is not known, except for the product of Cayley transforms of unit balls for which the Bergman projection is bounded in L^{p} for every $p>1$.

For bounded domains, one can as well ask for $\left(L^{p}, L^{q}\right)$ estimates with $q<p$. The case $p=\infty$ is of special interest because the Bergman projection of L^{∞} can be described as the Bloch space of holomorphic functions. The Bloch space \mathcal{B} is related to Hankel operators [16]. For a description in the case of the Lie ball, see [3] and [15]. The following two statements deal with this case:

Theorem 3. In the Lie ball ω of \mathbb{C}^{n}, the operator P_{ω}^{*} is bounded from $L^{\infty}(\omega)$ to $L^{q}(\omega, d V)$ if and only if $q<2 n /(n-2)$. Furthermore, the Bloch space \mathcal{B}_{ω} of ω is contained in $A^{q}(\omega)$ when $q<2 n /(n-2)$ and this inclusion is continuous.

Theorem 4. The Bergman projection P_{ω} is unbounded from $L^{\infty}(\omega)$ to $L^{q}(\omega, d V)$ when $q \geq 4 n /(n-2)$. Furthermore, there is no continuous inclusion of the Bloch space \mathcal{B}_{ω} into $A^{q}(\omega)$ when $q \geq 4 n /(n-2)$.

The case of the Lie ball in Theorems 1 and 2, as well as Theorems 3 and 4 , will be deduced from the case of the unbounded domain Ω via a transfer principle based on two tools:
(i) an explicit linear fractional mapping Φ of ω into Ω given in [5],
(ii) the following well-known change of variable formula for the Bergman kernel:

$$
B_{\omega}\left(\zeta, z^{\prime}\right)=B_{\Omega}\left(\Phi(\zeta), \Phi\left(z^{\prime}\right)\right) J \Phi(\zeta) \overline{J \Phi\left(z^{\prime}\right)} .
$$

In the Hardy space setting, we shall also apply our transfer principle to the Szegö projection. More precisely, the Shilov boundary of the tube $\mathcal{T}=$ $\mathbb{R}^{n}+i \mathcal{C}$ over a self-dual cone \mathcal{C} is \mathbb{R}^{n}. The Hardy space $H^{p}(\mathcal{T}), 0<p<\infty$, consists of those holomorphic functions $f(x+i y)$ on \mathcal{T} which satisfy

$$
\|f\|_{H^{p}(\mathcal{T})}=\sup _{y \in \mathcal{C}}\left(\int_{\mathbb{R}^{n}}|f(x+i y)|^{p} d x\right)^{1 / p}<\infty
$$

For $p \geq 1$, such functions have boundary values, namely

$$
\lim _{y \rightarrow 0, y \in \mathcal{C}} f(x+i y)=f(x)
$$

exists in the L^{p} norm (cf. [13], p. 119).

In particular, for $p=2$, the integral representation of each H^{2} function f in terms of its boundary values is

$$
f(s+i t)=\int_{\mathbb{R}^{n}} S_{\mathcal{T}}(s+i t, x) f(x) d x
$$

where $S_{\mathcal{T}}$ is the Szegö kernel of Ω given by (cf. [8])

$$
S_{\mathcal{T}}(s+i t, x)=\tau_{n} \int_{\mathcal{C}} e^{i \lambda \cdot(s-x+i t)} d \lambda
$$

Moreover, the boundary value functions form a closed subspace of $L^{2}\left(\mathbb{R}^{n}\right)$. The Szegö projection $\mathbb{S}_{\mathcal{T}}$ of \mathcal{T} is the orthogonal projection of $L^{2}\left(\mathbb{R}^{n}\right)$ onto this subspace and it is given by

$$
\mathbb{S}_{\mathcal{T}} f(s)=\lim _{t \rightarrow 0, t \in \mathcal{C}} \int_{\mathbb{R}^{n}} S_{\mathcal{T}}(s+i t, x) f(x) d x \quad\left(s \in \mathbb{R}^{n}\right)
$$

where the limit is taken in the L^{2} norm. The analytic continuation of $\mathbb{S}_{\mathcal{T}} f, f \in L^{2}\left(\mathbb{R}^{n}\right)$, to \mathcal{T} is the H^{2} function also denoted by $\mathbb{S}_{\mathcal{T}} f$ and defined by

$$
\mathbb{S}_{\mathcal{T}} f(s+i t)=\int_{\mathbb{R}^{n}} S_{\mathcal{T}}(s+i t, x) f(x) d x \quad(s+i t \in \Omega)
$$

The following theorem has been known for 20 years (cf. [12] and [6], [14]):

Theorem 5. The Szegö projection is unbounded on $L^{p}, p \neq 2, p \in(1, \infty)$, in the tube over an irreducible self-dual cone of rank greater than 1.

Now, let \mathcal{D} be a standard bounded realization of the tube \mathcal{T}. Such a domain \mathcal{D} is called a standard bounded symmetric domain of tube type. The definition of Hardy spaces on \mathcal{D} is as follows. We denote by $\partial_{0} \mathcal{D}$ the Shilov boundary of \mathcal{D} and by $d \sigma$ a measure on $\partial_{0} \mathcal{D}$ which is invariant under the stability group of the origin. The Hardy space $\mathcal{H}^{p}(\mathcal{D}), p \geq 1$, consists of those holomorphic functions f on \mathcal{D} which satisfy

$$
\|f\|_{H^{p}(\mathcal{D})}=\sup _{0<r<1}\left(\int_{\partial_{0} \mathcal{D}}|f(r \xi)|^{p} d \sigma(\xi)\right)^{1 / p}<\infty
$$

Those functions have radial boundary values, i.e.

$$
\lim _{r \rightarrow 1} f(r \xi)=f(\xi), \quad \xi \in \partial_{0} \mathcal{D}
$$

exists in the L^{p} norm. Moreover, for $p=2$, the integral representation of every H^{2} function in terms of its boundary values is

$$
f\left(z^{\prime}\right)=\int_{\partial_{0} \mathcal{D}} S_{\mathcal{D}}\left(z^{\prime}, \xi\right) f(\xi) d \sigma(\xi) \quad\left(z^{\prime} \in \mathcal{D}\right)
$$

where $S_{\mathcal{D}}$ is the Szegö kernel of \mathcal{D}. Furthermore, the boundary value functions form a closed subspace of $L^{2}\left(\partial_{0} \mathcal{D}, d \sigma\right)$; the Szegö projection $\mathbb{S}_{\mathcal{D}}$ of \mathcal{D} is the orthogonal projection of $L^{2}\left(\partial_{0} \mathcal{D}, d \sigma\right)$ onto this subspace and it is given by

$$
\mathbb{S}_{\mathcal{D}} f(\xi)=\lim _{r \rightarrow 1,0<r<1} \int_{\partial_{0} \mathcal{D}} S_{\mathcal{D}}(r \xi, \eta) f(\eta) d \sigma(\eta) \quad\left(\xi \in \partial_{0} \mathcal{D}\right)
$$

where the limit is taken in the L^{2} norm. The analytic continuation of $\mathbb{S}_{\mathcal{D}} f$, $f \in L^{2}\left(\partial_{0} \mathcal{D}, d \sigma\right)$, to \mathcal{D} is the H^{2} function defined by

$$
\mathbb{S}_{\mathcal{D}} f\left(z^{\prime}\right)=\int_{\partial_{0} \mathcal{D}} S_{\mathcal{D}}\left(z^{\prime}, \eta\right) f(\eta) d \sigma(\eta) \quad\left(z^{\prime} \in \mathcal{D}\right)
$$

From our transfer principle, using restricted nontangential convergence, we shall deduce from Theorem 5 the following result:

Theorem 6. For every standard irreducible bounded symmetric domain \mathcal{D} of tube type whose rank is greater than 1 , the Szegö projection is unbounded on $L^{p}\left(\partial_{0} \mathcal{D}, d \sigma\right), p \in(1, \infty), p \neq 2$.

On the other hand, we recall that for the unit ball and its Cayley transform, the Szegö projection is bounded on L^{p} for all $p>1$ ([11]), but the general case of nontubular domains of rank greater than 1 remains open.

The proof of Theorem 6 is given below for the particular case of the Lie ball ω of $\mathbb{C}^{n}, n \geq 3$. In this case, the following analogue of Theorem 3 for the Szegö projection is due to B. Jöricke [10] (we shall, however, give a different proof based on our transfer principle):

Theorem 7. For the Lie ball ω of $\mathbb{C}^{n}, n \geq 3$, the Szegö projection is unbounded from $L^{\infty}\left(\partial_{0} \omega\right)$ to $L^{q}\left(\partial_{0} \omega, d \sigma\right)$ when $q \geq 2 n /(n-2)$.

We shall proceed as follows. In the second section, we prove Theorems 1 and 2 in the tube Ω. In fact, Theorem 1 in Ω is a straightforward consequence of the characterization obtained in [2] of those $p \in[1, \infty)$ such that for each $\zeta \in \Omega$, the Bergman kernel $B_{\Omega}(\zeta, z)$ belongs to $L^{p}(\Omega, d V(z))$ (Section 2.1). Section 2.2 is devoted to the proof of Theorem 2 in Ω; for the sufficiency, we apply Schur's lemma (cf. [7]) with the same test functions as in [1].

In the third section, we prove Theorems 1 and 2 in the Lie ball and, in the fourth section, we prove Theorems 3 and 4. By means of our transfer principle, we carry over the estimates to the tube Ω where more is known and our computation techniques are more powerful.

Finally, we prove Theorem 6 and we give another proof of B. Jöricke's result (Theorem 7).

2. Proofs of Theorems 1 and 2 in the tube Ω

2.1. Proof of Theorem $1 \mathrm{in} \Omega$. The tube Ω is a symmetric Siegel domain of type I (hence of type II). Thus the general theorems proved by S. G. Gindikin [8] can be applied to Ω. In particular, the Bergman kernel of Ω has the following expression:

Proposition 2.1. The Bergman kernel $B_{\Omega}(s, z)$ of Ω is given by

$$
\begin{equation*}
B_{\Omega}(\zeta, z)=c_{n}\left[\left(\zeta_{1}-\bar{z}_{1}\right)\left(\zeta_{2}-\bar{z}_{2}\right)-\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}\right]^{-n} \tag{1}
\end{equation*}
$$

where $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \Omega$.
Definition 2.2. Let $k(t, y)$ denote the positive kernel defined on the cone Γ by

$$
\begin{aligned}
& k(t, y)=\left[\left(t_{1}+y_{1}\right)\left(t_{2}+y_{2}\right)-\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}\right]^{-n / 2}, \\
& t=\left(t_{1}, \ldots, t_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) .
\end{aligned}
$$

Let T be the integral operator associated with this kernel. We call k (resp. T) the Hilbert-Gindikin kernel (resp. the Hilbert-Gindikin operator) in Γ.

We first prove the following proposition:
Proposition 2.3. For each $p \geq 1$, there exists a constant C_{p} such that for all $y \in \Gamma$ and $\xi=s+i t \in \Omega$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|B_{\Omega}(\zeta, x+i y)\right|^{p} d x=C_{p}[k(t, y)]^{2 p-1} . \tag{2}
\end{equation*}
$$

Moreover, there exists a constant c_{p} such that, for each $y \in \Gamma$ such that $|y|<1 / 100$ and each $\zeta=s+i t \in \Omega$ such that $|\zeta|<1 / 100$,

$$
\begin{equation*}
\int_{I \times \ldots \times I}\left|B_{\Omega}(\zeta, x+i y)\right|^{p} d x \geq C_{p}[k(t, y)]^{2 p-1} \tag{3}
\end{equation*}
$$

where I denotes the interval $[-1,1]$.
Proof. Let us first prove (2). Setting $z=x+i y$, in view of (1) we get

$$
\begin{align*}
\left|B_{\Omega}(\zeta, z)\right|^{p}= & c_{n}^{p}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p}\left|\zeta_{1}-\bar{z}_{1}-\frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right|^{-n p} \tag{4}\\
= & c_{n}^{p}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p}\left\{\left[s_{1}-x_{1}-\operatorname{Re} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right]^{2}\right. \\
& \left.+\left[t_{1}+y_{1}-\operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right]^{2}\right\}^{-n p / 2}
\end{align*}
$$

Integrating first with respect to x_{1} in \mathbb{R}, we easily obtain
$\int_{\mathbb{R}}\left|B_{\Omega}(\zeta, x+i y)\right|^{p} d x_{1}=c_{p}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p}\left[t_{1}+y_{1}-\operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right]^{-n p+1}$.
Next, we notice that

$$
\begin{align*}
t_{1}+y_{1}- & \operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}} \tag{15}\\
= & \frac{1}{\left|\zeta_{2}-\bar{z}_{2}\right|^{2}}\left\{\left(t_{2}+y_{2}\right) \sum_{j=3}^{n}\left[s_{j}-x_{j}-\frac{\left(t_{j}+y_{j}\right)\left(s_{2}-x_{2}\right)}{t_{2}+y_{2}}\right]^{2}\right. \\
& \left.+\left|\zeta_{2}-\bar{z}_{2}\right|^{2}\left[t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}}{t_{2}+y_{2}}\right]^{2}\right\}
\end{align*}
$$

Integrating with respect to $d x_{3} \ldots d x_{n}$ then yields

$$
\int_{\mathbb{R}^{n-1}}\left|B_{\Omega}(\zeta, x+i y)\right|^{p} d x_{1} d x_{3} \ldots d x_{n}
$$

$$
=c_{p}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p+n-2}\left(t_{2}+y_{2}\right)^{-n / 2+1}\left[t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}}{t_{2}+y_{2}}\right]^{-n p+n / 2}
$$

We integrate finally with respect to x_{2} in \mathbb{R}; it is easy to check that

$$
\int_{\mathbb{R}}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p+n-2} d x_{2}=c_{p}\left(t_{2}+y_{2}\right)^{-n p+n-1}
$$

This yields (2).
Let us next prove inequality (3). We keep s, y, t fixed and we denote by J_{2}, \ldots, J_{n} the subintervals of $I=[-1,1]$ defined by

$$
\begin{aligned}
& J_{2}=\left\{x_{2} \in \mathbb{R}:\left|s_{2}-x_{2}\right|<\frac{1}{5}\left(t_{2}+y_{2}\right)\right\}, \\
& J_{j}=\left\{x_{j} \in \mathbb{R}:\left|s_{j}-x_{j}\right|<\frac{1}{100 n} \sqrt{\left(t_{1}+y_{1}\right)\left(t_{2}+y_{2}\right)}\right\}, \quad j=3, \ldots, n .
\end{aligned}
$$

Then for each $\left(x_{2}, \ldots, x_{n}\right) \in J_{2} \times \ldots \times J_{n}$, we deduce from (5) that

$$
0<t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}-y_{j}\right)^{2}}{t_{2}+y_{2}}<t_{1}+y_{1}-\operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}<\frac{1}{10}
$$

On the other hand, we have

$$
\begin{aligned}
\operatorname{Re} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}=\frac{1}{\left|\zeta_{j}-\bar{z}_{j}\right|^{2}}\left\{\left(s_{2}-x_{2}\right)\right. & {\left[\sum_{j=3}^{n}\left(s_{j}-x_{j}\right)^{2}-\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}\right] } \\
& \left.+2\left(t_{2}+y_{2}\right) \sum_{j=3}^{n}\left(s_{j}-x_{j}\right)\left(t_{j}+y_{j}\right)\right\} .
\end{aligned}
$$

Then it is easy to check that for each $\left(x_{2}, \ldots, x_{n}\right) \in J_{2} \times \ldots \times J_{n}$,

$$
\left|\operatorname{Re} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right| \leq \frac{1}{10}
$$

and the interval J_{1} defined by

$$
\begin{aligned}
J_{1}=\left\{x_{1} \in \mathbb{R}:\left|s_{1}-x_{1}-\operatorname{Re} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right|\right. \\
\left.\leq t_{1}+y_{1}-\operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right\}
\end{aligned}
$$

is contained in I. Hence, we get

$$
\int_{I^{n}}\left|B_{\Omega}(\zeta, z)\right|^{p} d x \geq \int_{J_{1} \times \ldots \times J_{n}}\left|B_{\Omega}(\zeta, z)\right|^{p} d x .
$$

Now we deduce from (4) that for each $\left(x_{2}, \ldots, x_{n}\right) \in J_{2} \times \ldots \times J_{n}$,
(6) $\int_{J_{1}}\left|B_{\Omega}(\zeta, z)\right|^{p} d x_{1}=C_{p}\left|\zeta_{2}-\bar{z}_{2}\right|^{-n p}\left[t_{1}+y_{1}-\operatorname{Im} \frac{\sum_{j=3}^{n}\left(\zeta_{j}-\bar{z}_{j}\right)^{2}}{\zeta_{2}-\bar{z}_{2}}\right]^{-n p+1}$.

We notice next that for each $x_{2} \in J_{2}$, the set E defined by

$$
\begin{aligned}
E=\left\{\left(x_{3}, \ldots, x_{n}\right) \in \mathbb{R}^{n-2}:\right. & \sum_{j=3}^{n}\left[s_{j}-x_{j}-\frac{\left(t_{j}+y_{j}\right)\left(s_{2}-x_{2}\right)}{t_{2}+y_{2}}\right]^{2} \\
& \left.<\frac{t_{2}+y_{2}}{10^{4}}\left[t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}}{t_{2}+y_{2}}\right]\right\}
\end{aligned}
$$

is contained in $J_{3} \times \ldots \times J_{n}$. Hence, in view of (5) and (6), it is easy to see that for each $x_{2} \in J_{2}$,

$$
\begin{align*}
& \int_{J_{1} \times J_{3} \times \ldots \times J_{n}}\left|B_{\Omega}(\zeta, z)\right|^{p} d x_{1} d x_{3} \ldots d x_{n} \tag{7}\\
& \geq C_{p}^{\prime}\left(t_{2}+y_{2}\right)^{-n p+n / 2-1}\left[t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}+y_{j}\right)^{2}}{t_{2}-y_{2}}\right]^{-n p+n / 2}
\end{align*}
$$

Integrating finally with respect to x_{2} in J_{2} immediately yields (3). This concludes the proof of Proposition 2.3.

The next step is the following lemma:
Lemma 2.4. Let $p \geq 1$. Then for each $t \in \Gamma$, the Hilbert-Gindikin kernel $k(t, y)$ belongs to $L^{p}(\Gamma, d y)$ if and only if $p>(2 n-2) / n$. In this case, there exists a constant C_{p} such that for each $t \in \Gamma$,

$$
\int_{\Gamma}[k(t, y)]^{p} d y=C_{p}[k(t, t)]^{p-1}
$$

Proof. We use the following identity:

$$
\begin{equation*}
t_{1}+y_{1}-\frac{\sum_{j=3}^{n}\left(t_{j}-y_{j}\right)^{2}}{t_{2}+y_{2}}=y_{1}-\frac{\sum_{j=3}^{n} y_{j}^{2}}{y_{2}}+\varphi\left(t, y_{2}, \ldots, y_{n}\right) \tag{8}
\end{equation*}
$$

where

$$
\varphi\left(t, y_{2}, \ldots, y_{n}\right)=t_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{t_{2}}+\frac{t_{2} \sum_{j=3}^{n}\left(y_{j}-y_{2} t_{j} / t_{2}\right)^{2}}{y_{2}\left(t_{2}+y_{2}\right)}
$$

In view of (8), integrating first with respect to y_{1} yields

$$
\int_{\Sigma_{j=3}^{n} y_{j}^{2} / y_{2}}^{\infty}[k(t, y)]^{p} d y_{1}=C_{p}\left(t_{2}+y_{2}\right)^{-n p / 2}\left[\varphi\left(t, y_{2}, \ldots, y_{n}\right)\right]^{-n p / 2+1}
$$

We next integrate with respect to $d y_{3} \ldots d y_{n}$ in \mathbb{R}^{n-2}; it is easy to obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{n-2}}\left[\varphi\left(t, y_{2}, \ldots, y_{n}\right)\right]^{-n p / 2+1} d y_{3} \ldots d y_{n} \\
&=C_{p}^{\prime}\left[\frac{y_{2}\left(t_{2}+y_{2}\right)}{t_{2}}\right]^{n / 2-1}\left(t_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{t_{2}}\right)^{-n(p-1) / 2}
\end{aligned}
$$

if $p>1$, and is ∞ if $p=1$. Finally, integrating with respect to y_{2} in $(0, \infty)$
yields the desired conclusion because

$$
\int_{0}^{\infty} y_{2}^{n / 2-1}\left(t_{2}+y_{2}\right)^{-n(p-1) / 2-1} d y_{2}=C_{p} t_{2}^{-n p / 2+n-1}
$$

where

$$
C_{p}=\int_{0}^{\infty} y_{2}^{n / 2-1}\left(1+y_{2}\right)^{-n(p-1) / 2-1} d y_{2}
$$

and this last integral converges if and only if $p>(2 n-2) / n$.
Proof of Theorem 1. The Bergman projection P_{Ω} is a self-adjoint operator; thus it suffices to prove that P_{Ω} is unbounded on $L^{p}(\Omega, d V)$ when $p \in\left[1, \frac{3 n-2}{2 n}\right]$. More precisely, we shall exhibit a function f_{0} in all $L^{p}(\Omega, d V), p \geq 1$, but such that for all $p \in\left[1, \frac{3 n-2}{2 n}\right], P_{\Omega} f_{0}$ does not belong to $L^{p}(\Omega, d V)$.

Let e denote the point of Ω given by $e=(i, i, 0, \ldots, 0)$, let β be the Euclidean ball of radius $1 / n$, centered at e, and let f_{0} be the characteristic function of β. Since β is contained in Ω, by the mean value formula, there exists a constant C_{n} such that for each $\zeta \in \Omega, P_{\Omega} f_{0}(\zeta)=C_{n} B_{\Omega}(\zeta, e)$. Equality (2) and Lemma 2.4 then yield the desired conclusion. This concludes the proof of Theorem 1 in Ω.
2.2. Proof of Theorem 2 in Ω. Sufficiency. We first prove the following lemma:

Lemma 2.5. Let $g_{\gamma, \delta}$ be the positive function in Γ given by

$$
g_{\gamma, \delta}(y)=y_{2}^{\gamma}\left(y_{1} y_{2}-y_{3}^{2}-\ldots-y_{n}^{2}\right)^{\delta}
$$

Under the conditions $-1<\delta<0$ and $-n / 2<\gamma+\delta<-n / 2+1$, there exists a constant $C(\gamma, \delta)$ such that for each $t \in \Gamma$,

$$
\int_{\Gamma} k(t, y) g_{\gamma, \delta}(y) d y=C(\gamma, \delta) g_{\gamma, \delta}(t)
$$

Proof. The proof is very similar to that of Lemma 2.4. We integrate first with respect to y_{1} using (8), next with respect to $d y_{3} \ldots d y_{n}$ in \mathbb{R}^{n-2} and lastly with respect to y_{2} in $(0, \infty)$.

The next step is to prove the sufficiency of the condition $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$ for the boundedness of T on $L^{p}(\Gamma)$. In view of Schur's Lemma (cf. [7]), it is enough to show that for such a p, there exists a positive test function g in Γ and constants C_{1} and C_{2} such that
(i) for each $t \in \Gamma$,

$$
\begin{equation*}
\int_{\Gamma} k(t, y)[g(y)]^{p^{\prime}} d y \leq C_{1}[g(t)]^{p^{\prime}} \tag{9}
\end{equation*}
$$

(ii) for each $y \in \Gamma$,

$$
\begin{equation*}
\int_{\Gamma} k(t, y)[g(t)]^{p} d t \leq C_{2}[g(y)]^{p} \tag{10}
\end{equation*}
$$

For the test function $g_{\gamma, \delta}$ given by Lemma 2.5, inequality (9) (resp. (10)) holds when

$$
-\frac{1}{p^{\prime}}<\delta<0 \quad \text { and } \quad-\frac{n}{2 p^{\prime}}<\gamma+\delta<-\frac{n-2}{2 p^{\prime}}
$$

respectively when

$$
-\frac{1}{p}<\delta<0 \quad \text { and } \quad-\frac{n}{2 p^{\prime}}<\gamma+\delta<-\frac{n-2}{2 p}
$$

The two conditions on $\gamma+\delta$ may be simultaneously satisfied if

$$
p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)
$$

Necessity. Again, we first prove the necessity of the condition $p \in$ $\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$ for the boundedness of T on $L^{p}(\Gamma)$. By Lemma 2.4, for each $y \in \Gamma$, the Hilbert-Gindikin kernel $k(t, y)$ belongs to $L^{p}(\Gamma, d t)$ if and only if $p>(2 n-2) / n$. Now, the conclusion follows as in the proof of Theorem 1. The test function here is the characteristic function of the Euclidean ball b in \mathbb{R}^{n}, of radius $1 / n$, centered at $(1,1,0, \ldots, 0)$. Here, the mean value formula is replaced by the following fact, whose proof is easy: for each $t \in \Gamma$ and each $y \in b, k(t, y) \geq k(t,(2,2,0, \ldots, 0))$.

We next prove that the condition $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$ is necessary for the boundedness of P_{Ω}^{*} on $L^{p}(\Omega, d V)$.

Under the assumption that P_{Ω}^{*} is bounded on $L^{p}(\Omega, d V)$, there exists a constant C_{p} such that for each positive function f in Γ, supported in $\{y:|y|<1 / 100\}$,

$$
\begin{array}{r}
\int_{\{s \in \Omega:|s|<1 / 50\}}\left\{\int_{\{y \in \Gamma:|y|<1 / 100\}}\left(\int_{\left|x_{j}\right|<1, j=1, \ldots, n}\left|B_{\Omega}(\zeta, z)\right| d x\right) f(y) d y\right\}^{p} d V(s) \\
\leq C_{p} \int_{\{y \in \Gamma:|y|<1 / 100\}}[f(y)]^{p} d y
\end{array}
$$

Furthermore, in view of (3),

$$
\begin{aligned}
\int_{\{t \in \Gamma:|t|<1 / 100\}}\left(\int_{\{y \in \Gamma:|y|<1 / 100\}}\right. & k(t, y) f(y) d y)^{p} d t \\
& \leq C_{p}^{\prime} \int_{\{y \in \Gamma:|y|<1 / 100\}}[f(y)]^{p} d y
\end{aligned}
$$

Dilating the balls $100 N$ times and using the homogeneity of the kernel $k(t, y)$ easily yields that for each positive function f in Γ,

$$
\int_{\{t \in \Gamma:|t|<N\}}\left(\int_{\{y \in \Gamma:|y|<N\}} k(t, y) f(y) d y\right)^{p} d t \leq C_{p}^{\prime} \int_{\{y \in \Gamma:|y|<N\}}[f(y)]^{p} d y
$$

When we let N tend to infinity, we get the conclusion that T is bounded on $L^{p}(\Gamma)$ and hence, according to the first part of the proof, the condition $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$ is necessary. This concludes the proof of Theorem 2 in Ω.
3. Proofs of Theorems 1 and 2 in the Lie ball: a transfer principle
3.1. Preliminaries. Let $z=\Phi\left(z^{\prime}\right)$ be the linear fractional mapping from ω onto Ω which is given in [5]. In particular, we assume that $\Phi(0)=e$, where $e=(i, i, 0, \ldots, 0)$ and Φ is holomorphic outside $Z=\left\{z \in \mathbb{C}^{n}: Q(z)=\right.$ $0\}$, where Q is a polynomial such that $Q(0)=1$. In view of the change of variable formula, the Bergman kernel $B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)$ of ω has the following expression in terms of that of Ω :

$$
\begin{equation*}
B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)=B_{\Omega}\left(\Phi\left(\zeta^{\prime}\right), \Phi\left(z^{\prime}\right)\right) J \Phi\left(\zeta^{\prime}\right) \overline{J \Phi\left(z^{\prime}\right)} \tag{11}
\end{equation*}
$$

On the other hand, since ω is a circular domain, for each real number θ,

$$
\begin{equation*}
B_{\omega}\left(e^{i \theta} \zeta^{\prime}, e^{i \theta} z^{\prime}\right)=B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right) \tag{12}
\end{equation*}
$$

and thus, there exists a constant C such that $B_{\omega}\left(\zeta^{\prime}, 0\right)=C$ for each $\zeta^{\prime} \in \omega$. Hence, from (11), we get

$$
\begin{equation*}
J \Phi\left(\zeta^{\prime}\right)=C^{\prime}\left[B_{\Omega}\left(\Phi\left(\zeta^{\prime}\right), e\right)\right]^{-1} \tag{13}
\end{equation*}
$$

The following lemma is a straightforward consequence of (4) and (5):
Lemma 3.1. For all z and ζ in Ω,

$$
\left|B_{\Omega}(\zeta, z)\right| \leq B_{\Omega}(z, z)
$$

In the sequel, we let K be the closed unit ball of \mathbb{C}^{n} and we set $S=$ $\Phi^{-1}(K \cap \Omega)$. We shall use the following lemma:

Lemma 3.2. There exist constants c and C such that for each $\zeta^{\prime} \in S$,

$$
\begin{equation*}
c \leq\left|J \Phi\left(\zeta^{\prime}\right)\right| \leq C \tag{14}
\end{equation*}
$$

Proof. The latter inequality follows easily from (13) and formula (1) for B_{ω}. The former inequality is the particular case of Lemma 3.1 where $z=e$.

We shall also use the following lemma:
Lemma 3.3. For all ζ^{\prime} and z^{\prime} in the closure $\bar{\omega}$ of ω, there exists a real number $\theta=\theta\left(\zeta^{\prime}, z^{\prime}\right)$ and there exist bounded open neighborhoods $\mathcal{O}^{1}\left(\zeta^{\prime}\right)$ and $\mathcal{O}^{2}\left(z^{\prime}\right)$ of $e^{i \theta} \zeta^{\prime}$ and $e^{i \theta} z^{\prime}$ respectively, such that neither $\mathcal{O}^{1}\left(\zeta^{\prime}\right)$ nor $\mathcal{O}^{2}\left(z^{\prime}\right)$ intersects Z.

Proof. By an obvious argument, it suffices to prove that for all ζ^{\prime} and z^{\prime} in $\bar{\omega}$, there exists a real number θ such that neither $e^{i \theta} \zeta^{\prime}$ nor $e^{i \theta} z^{\prime}$ belongs to Z. Keeping ζ^{\prime} and z^{\prime} fixed, let p and q denote the analytic polynomials in \mathbb{C} given by $p(\lambda)=Q\left(\lambda z^{\prime}\right)$ and $q(\lambda)=Q\left(\lambda \zeta^{\prime}\right)$. By a contradiction argument, we assume that the product polynomial $p q$ is identically zero on the unit circle. It follows that one polynomial, say p, is identically zero in the complex plane \mathbb{C}; but this contradicts the hypothesis $p(0)=q(0)=1$.
3.2. Proof of Theorem 1 and of the necessity part of Theorem 2 in ω. In the sequel, for each compact set Δ in \mathbb{C}^{n}, we let $L_{\Delta}^{p}(D)$ denote the subspace of $L^{p}(D, d V)$ consisting of functions supported in Δ.

We assume that P_{ω} (resp. P_{ω}^{*}) is bounded on $L^{p}(\omega, d V)$. Then by (14), it is easy to deduce that P_{Ω} (resp. P_{Ω}^{*}) is bounded from $L_{K}^{p}(\Omega)$ to $L^{p}(K \cap \Omega, d V)$. In view of Theorems 1 and 2 in Ω, it is then enough to prove the following lemma:

Lemma 3.4. Assume that $P_{\Omega}\left(\right.$ resp. $\left.P_{\Omega}^{*}\right)$ is bounded from $L_{K}^{p}(\Omega)$ to $L^{p}(K \cap \Omega, d V)$. Then $P_{\Omega}\left(\right.$ resp. $\left.P_{\Omega}^{*}\right)$ is bounded on $L^{p}(\Omega, d V)$.

Proof. At the end of the proof of Theorem 2 in Ω, we proved the analogous result in Γ for the kernel $k(t, y)$; we again use the same argument.

Let \mathcal{P} denote either P_{Ω} or P_{Ω}^{*} and let $Q(\cdot, \cdot)$ be its kernel. Since \mathcal{P} is bounded from $L_{K}^{p}(\Omega)$ to $L^{p}(K \cap \Omega, d V)$, there exists a constant C_{p} such that for each \mathcal{C}^{∞} function f in Ω with compact support,

$$
\begin{aligned}
\int_{\{\zeta \in \Omega:|\zeta| \leq 1\}} \mid & \left.\int_{\{z \in \Omega:|z| \leq 1\}} Q(\zeta, z) f(z) d V(z)\right|^{p} d V(\zeta) \\
& \leq C_{p} \int_{\{z \in \Omega:|z| \leq 1\}}|f(z)|^{p} d V(z)
\end{aligned}
$$

Dilating the balls N times and using the homogeneity of the kernel Q yields

$$
\begin{aligned}
\int_{\{\zeta \in \Omega:|\zeta| \leq N\}} \mid & \left.\int_{\{z \in \Omega:|z| \leq N\}} Q(\zeta, z) f(z) d V(z)\right|^{p} d V(\zeta) \\
& \leq C_{p} \int_{\{z \in \Omega:|z| \leq N\}}|f(z)|^{p} d V(z)
\end{aligned}
$$

for each \mathcal{C}^{∞} function f with compact support. When we let N tend to infinity, we conclude that \mathcal{P} is bounded on $L^{p}(\Omega)$.
3.3. Proof of the sufficiency part of Theorem 2 in ω. Since $\Phi^{-1}(\{\infty\})$ is obviously contained in Z, the following lemma is a straightforward consequence of Theorem 2 in Ω and (14):

Lemma 3.5. Let K^{\prime} be a compact set in \mathbb{C}^{n} such that $K^{\prime} \cap Z=\emptyset$ and the interior of $K^{\prime} \cap \omega$ is nonempty. Then for each $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right), P_{\omega}^{*}$ is bounded from $L_{K}^{p}(\omega)$ to $L^{p}(K \cap \omega, d V)$.

Now, in view of Lemma 3.3, since $\bar{\omega} \times \bar{\omega}$ is compact, its open covering

$$
\left\{e^{-i \theta\left(\zeta^{\prime}, z^{\prime}\right)}\left(\mathcal{O}^{1}\left(\zeta^{\prime}\right) \times \mathcal{O}^{2}\left(z^{\prime}\right)\right):\left(\zeta^{\prime}, z^{\prime}\right) \in \bar{\omega} \times \bar{\omega}\right\}
$$

contains a finite covering $\left\{e^{-i \theta_{j}}\left(\mathcal{O}_{j}^{1} \times \mathcal{O}_{j}^{2}\right): j=1, \ldots, N\right\}$ and the set $K^{\prime}=\bigcup_{j=1}^{N}\left(\overline{\mathcal{O}_{j}^{1}} \cup \overline{\mathcal{O}_{j}^{2}}\right)$ is a compact set in \mathbb{C}^{n} such that $K^{\prime} \cap Z=\emptyset$.

Thus, for all positive functions f and g, we get

$$
\begin{aligned}
\iint_{\omega \times \omega} \mid & B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right) \mid f\left(z^{\prime}\right) g\left(\zeta^{\prime}\right) d V\left(z^{\prime}\right) d V\left(\zeta^{\prime}\right) \\
& \leq \sum_{j=1}^{N} \int_{e^{-i \theta_{j}}}^{\iint_{\mathcal{O}_{j}^{1} \times e^{-i \theta_{j}}} \mid B_{\omega}^{2}}\left(\zeta^{\prime}, z^{\prime}\right) \mid f\left(z^{\prime}\right) g\left(\zeta^{\prime}\right) d V\left(z^{\prime}\right) d V\left(\zeta^{\prime}\right) \\
& \leq \sum_{j=1}^{N} \int_{K^{\prime} \cap \omega} \int_{K^{\prime} \cap \omega}\left|B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)\right| f\left(e^{-i \theta_{j}} z^{\prime}\right) g\left(e^{-i \theta_{j}} \zeta^{\prime}\right) d V\left(z^{\prime}\right) d V\left(\zeta^{\prime}\right),
\end{aligned}
$$

since ω is circular. By Lemma 3.5, it is then easy to conclude that P_{ω}^{*} is bounded on $L^{p}(\omega, d V)$ when $p \in\left(\frac{2 n-2}{n}, \frac{2 n-2}{n-2}\right)$. This concludes the proof of Theorem 2 in ω.

4. Proofs of Theorems 3 and 4

4.1. Proof of Theorem 4. Since P_{ω} is a self-adjoint operator, it suffices to prove that P_{ω} is unbounded from $L^{p^{\prime}}(\omega, d V)$ to $L^{1}(\omega, d V)$ when $p^{\prime} \in$ $\left(1, \frac{4 n}{3 n+2}\right)$. Furthermore, as at the beginning of the proof of Theorem 1 in ω (cf. 3.2), it is enough to prove that for such a p^{\prime}, P_{Ω} is unbounded from $L_{K}^{p^{\prime}}(\Omega)$ to $L^{1}(K \cap \Omega, d V)$. Let $b_{\tau}, \tau \in(0,1 / 2)$, denote the Euclidean ball of radius $\tau /(100 n)$, centered at $(i \tau / 16, i \tau, 0, \ldots, 0)$. This ball is contained in Ω; then by the mean value formula, there exists a constant C_{n} such that for each $s \in \Omega$ and each $\tau \in(0,1 / 2)$,

$$
P_{\Omega} \chi_{b_{\tau}}(\zeta)=C_{n} \tau^{2 n} B_{\Omega}(\zeta,(i \tau / 16, i \tau, 0, \ldots, 0))
$$

Hence, by (3), we get

$$
\begin{equation*}
\int_{K \cap \Omega}\left|P_{\Omega} \chi_{b_{\tau}}(\zeta)\right| d V(\zeta) \geq C_{n}^{\prime} \tau^{2 n} I(\tau / 16, \tau, 0, \ldots, 0) \tag{15}
\end{equation*}
$$

where, for each $y \in \Gamma$, we set

$$
\begin{equation*}
I(y)=\int_{\left\{t \in \Gamma: t_{1}<1, t_{2}<1\right\}} k(t, y) d t . \tag{16}
\end{equation*}
$$

The key lemma is the following:
Lemma 4.1. There exists a constant C_{n} such that, for each $y \in \Gamma$ such that $y_{1} \leq y_{2} / 16$ and $y_{2}<1 / 2$,

$$
\begin{equation*}
I(y) \geq C_{n} y_{2}^{-(n / 2-1)} \tag{17}
\end{equation*}
$$

Proof. Let b denote the ball in \mathbb{R}^{n-2} given by

$$
b=\left\{\left(t_{3}, \ldots, t_{n}\right): \sum_{j=3}^{n} t_{j}^{2} / t_{2}<1-y_{1}+\sum_{j=3}^{n} y_{j}^{2} / y_{2}\right\} .
$$

Then for each $\left(t_{3}, \ldots, t_{n}\right) \in b$, the interval $\left\{t_{1} \in \mathbb{R}: \sum_{j=3}^{n} t_{j}^{2} / t_{2}<t_{1}<1\right\}$ contains the interval $\left\{t_{1}: 0<t_{1}-\sum_{j=3}^{n} t_{j}^{2} / t_{2}<y_{1}-\sum_{j=3}^{n} y_{j}^{2} / y_{2}\right\}$. Now, in view of (8), we get

$$
\begin{aligned}
I(y) \geq & C_{n}\left(y_{1}-\frac{\sum_{j=3}^{n} y_{j}^{2}}{y_{2}}\right) \\
& \times \int_{0}^{1}\left(t_{2}+y_{2}\right)^{-n / 2}\left(\int_{b} \varphi\left(y, t_{2}, \ldots, t_{n}\right) d t_{3} \ldots d t_{n}\right)^{-n / 2} d t_{2}
\end{aligned}
$$

On the other hand, under the assumption $y_{1} \leq y_{2} / 16$, the ball b contains the ball

$$
b^{\prime}=\left\{\left(t_{3}, \ldots, t_{n}\right): \sum_{j=3}^{n}\left(y_{j}-\frac{y_{2} t_{j}}{t_{2}}\right)^{2}<\frac{y_{2}\left(t_{2}+y_{2}\right)}{t_{2}}\left(y_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{y_{2}}\right)\right\}
$$

thus,

$$
\int_{b} \varphi^{-n / 2} d t_{3} \ldots d t_{n} \geq C_{n}\left(y_{1}-\frac{\sum_{j=3}^{n} y_{j}^{2}}{y_{2}}\right)^{-1}\left[\frac{t_{2}\left(t_{2}+y_{2}\right)}{y_{2}}\right]^{n / 2-1}
$$

Furthermore, since $y_{2}<1 / 2$, we get

$$
I(y) \geq C_{n} y_{2}^{-n / 2+1} \int_{1 / 2}^{1}\left(t_{2}+y_{2}\right)^{-1} t_{2}^{n / 2-1} d t_{2} \geq C_{n}^{\prime} y_{2}^{-n / 2+1}
$$

In view of (17), the left hand side of (15) is greater than $C_{n} \tau^{3 n / 2+1}$; thus, the boundedness of P_{Ω} from $L_{K}^{p^{\prime}}(\Omega)$ to $L^{1}(K \cap \Omega, d V)$ implies the existence of a constant C_{p} such that, for each $\tau<1 / 2, \tau^{3 n / 2+1} \leq C_{p} \tau^{2 n / p^{\prime}}$. Therefore the condition $p^{\prime}>4 n /(3 n+2)$ is necessary. This concludes the proof of Theorem 4.
4.2. Proof of Theorem 3. Let (E) denote the estimate
(E)

$$
\int_{\omega}\left(\int_{\omega}\left|B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)\right| d V\left(\zeta^{\prime}\right)\right)^{p} d V\left(z^{\prime}\right)<\infty .
$$

It is easy to reduce Theorem 3 to the following equivalence: (E) holds if and only if $p \in\left(0, \frac{2 n}{n-2}\right)$. Furthermore, in view of the end of the proof of Theorem 2 in ω (cf. 3.3), estimate (E) is equivalent to the following estimate: for each compact set K^{\prime} in \mathbb{C}^{n} such that $K^{\prime} \cap Z=\emptyset$,

$$
\int_{K^{\prime} \cap \omega}\left(\int_{K^{\prime} \cap \omega}\left|B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)\right| d V\left(z^{\prime}\right)\right)^{p} d V\left(\zeta^{\prime}\right)<\infty .
$$

When carried over to the unbounded domain Ω, estimate (E^{\prime}) takes the following form:

$$
\int_{K \cap \Omega}\left(\int_{K \cap \Omega}\left|B_{\Omega}(\zeta, z)\right| d V(z)\right)^{p} d V(\zeta)<\infty
$$

where $K=\left\{z \in \mathbb{C}^{n}:|z| \leq 1\right\}$. But in view of Proposition 2.3, $\left(\mathrm{E}^{\prime \prime}\right)$ is equivalent to

$$
\begin{equation*}
I_{p}=\int_{\left\{t \in \Gamma: t_{1}<1, t_{2}<1\right\}}(I(t))^{p} d t<\infty, \tag{18}
\end{equation*}
$$

where $I(t)$ is the integral given by (16).
We first assume (18). In view of (17),

$$
I_{p} \geq C_{p} \int_{\left\{t \in \Gamma: t_{1} \leq t_{2} / 16, t_{2}<1 / 2\right\}} t_{2}^{-(n / 2-1) p} d t=C_{p}^{\prime} \int_{0}^{1 / 2} t_{2}^{n-1-(n / 2-1) p} d t_{2} .
$$

This last integral converges only if $p<2 n /(n-2)$. This proves the necessity.

Conversely, assume that $p<2 n /(n-2)$. To get (18), the key lemma is the following:

Lemma 4.2. There exists a constant C_{n} such that for each $t \in \Gamma$ such that $t_{1}<t_{2}<1$, the integral $I(t)$ given by (16) satisfies

$$
I(t) \leq C_{n} t_{2}^{-(n / 2-1)} \log 4\left(t_{1}-t_{2}^{-1} \sum_{j=3}^{n} t_{j}^{2}\right)^{-1}
$$

Proof. In view of (8), we get

$$
\begin{equation*}
\int_{\Sigma_{j=3}^{n} y_{j}^{2} / y_{2}}^{1} k(t, y) d y_{1} \leq \frac{2}{n-2}\left(t_{2}+y_{2}\right)^{-n / 2}\left[\varphi\left(t, y_{2}, \ldots, y_{n}\right)\right]^{-n / 2+1} \tag{19}
\end{equation*}
$$

Integrating next with respect to $d y_{3} \ldots d y_{n}$ gives

where $I_{1}\left(t, y_{2}\right)$ is the integral over the set

$$
E_{1}=\left\{\left(y_{3}, \ldots, y_{n}\right): \sum_{j=3}^{n} y_{j}^{2}<y_{2}, \frac{t_{2} \sum_{j=3}^{n}\left(y_{j}-y_{2} t_{j} / t_{2}\right)^{2}}{y_{2}\left(t_{2}+u_{2}\right)}<t_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{t_{2}}\right\}
$$

and $I_{2}\left(t, y_{2}\right)$ is the integral over the set

$$
E_{2}=\left\{\left(y_{3}, \ldots, y_{n}\right): \sum_{j=3}^{n} y_{j}^{2}<y_{2}, \frac{t_{2} \sum_{j=3}^{n}\left(y_{j}-y_{2} t_{j} / t_{2}\right)^{2}}{y_{2}\left(t_{2}+u_{2}\right)}>t_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{t_{2}}\right\} .
$$

Clearly $I_{1}\left(t, y_{2}\right)$ is bounded by $\left(t_{1}-\sum_{j=3}^{n} t_{j}^{2} / t_{2}\right)^{-n / 2+1}\left|E_{1}\right|$, which gives

$$
\begin{equation*}
I_{1}\left(t, y_{2}\right) \leq C_{n}\left[\frac{y_{2}\left(t_{2}+y_{2}\right)}{t_{2}}\right]^{n / 2-1} \tag{21}
\end{equation*}
$$

Since $0<t_{1}<t_{2}<1$ implies that $\sum_{j=3}^{n} t_{j}^{2}<t_{2}$, we get

$$
I_{2}\left(t, y_{2}\right) \leq\left[\frac{y_{2}\left(t_{2}+u_{2}\right)}{t_{2}}\right]^{n / 2-1} \int\left[\sum_{j=3}^{n}\left(y_{j}-\frac{y_{2} t_{j}}{t_{2}}\right)^{2}\right]^{-n / 2+1} d y_{3} \ldots d y_{n}
$$

where the integral on the right hand side is taken over

$$
\left\{\left(y_{3}, \ldots, y_{n}\right): \frac{\left(t_{1}-\sum_{j=3}^{n} t_{j}^{2} / t_{2}\right) y_{2}\left(t_{2}+y_{2}\right)}{t_{2}}<\sum_{j=3}^{n}\left(y_{j}-\frac{y_{2} t_{j}}{t_{2}}\right)^{2}<4 y_{2}\right\} .
$$

Thus,

$$
\begin{equation*}
I_{2}\left(t, y_{2}\right) \leq C_{n}\left[\frac{y_{2}\left(t_{2}+y_{2}\right)}{t_{2}}\right]^{n / 2-1} \log 4\left(t_{1}-t_{2}^{-1} \sum_{j=3}^{n} t_{j}^{2}\right)^{-1} . \tag{22}
\end{equation*}
$$

Now, from (18), (20), (21) and (22), we conclude the proof by integrating over y_{2}.

We can now prove (18) under the assumption that $p<2 n /(n-2)$. In view of Lemma 4.2, it is enough to prove that, for such a p,

$$
\begin{equation*}
\int_{\left\{t \in \Gamma: 0<t_{1}<t_{2}<1\right\}} t_{2}^{-(n / 2-1) p}\left(t_{1}-\frac{\sum_{j=3}^{n} t_{j}^{2}}{t_{2}}\right)^{\varepsilon p} d t<\infty \tag{23}
\end{equation*}
$$

for some $\varepsilon>0$. But for $\varepsilon<1 / p$, this integral is equal to

$$
C_{\varepsilon, p} \int_{0}^{1} t_{2}^{n-1-\varepsilon p-(n / 2-1) p} d t_{2} .
$$

For $p<2 n /(n-2)$, we may take $\varepsilon<\inf \{1 / p, n / p-n / 2+1\}$ to have convergence.

Remark. In view of the homogeneity of the Bergman kernel of the unbounded domain Ω, it is easy to show that the statements analogous to Theorems 3 and 4 are false in Ω. However, the following local statements hold:

Theorem 4.3. The operator P_{Ω}^{*} is bounded from $L_{K}^{\infty}(\Omega)$ to $L^{p}(K \cap$ $\Omega, d V)$ if and only if $p<2 n /(n-2)$.

Theorem 4.4. The Bergman projection P_{Ω} is unbounded from $L_{K}^{\infty}(\Omega)$ to $L^{p}(K \cap \Omega, d V)$ when $p>4 n /(n-2)$.

5. Proofs of Theorems 6 and 7

5.1. The Szegö projection of ω : preliminary results. The Shilov boundary $\partial_{0} \omega$ of the Lie ball ω of $\mathbb{C}^{n}, n \geq 3$, is given by

$$
\partial_{0} \omega=\left\{e^{i \theta} x: \theta \in[0,2 \pi), x \in S_{n-1}\right\},
$$

where S_{n-1} denotes the unit sphere of \mathbb{R}^{n}. An invariant measure on $\partial_{0} \omega$ is $d \sigma\left(e^{i \theta} x\right)=d \theta d \mu(x)$, where $d \mu$ is the Lebesgue measure on S_{n-1}. The Szegö and Bergman kernels of ω are respectively given by the following formulae [9]: for $e^{i \theta} x \in \partial_{0} \omega$ and $\zeta^{\prime} \in \bar{\omega}$ such that $\zeta^{\prime} \neq e^{i \theta} x$,

$$
S_{\omega}\left(\zeta^{\prime}, e^{i \theta} x\right)=\tau_{n}\left[1-2 e^{-i \theta} x \cdot \zeta^{\prime}+e^{-2 i \theta}\left(\sum_{j=1}^{n} \zeta_{j}^{\prime 2}\right)\right]^{-n / 2}
$$

respectively for ζ^{\prime} and z^{\prime} in \mathbb{C}^{n},

$$
B_{\omega}\left(\zeta^{\prime}, z^{\prime}\right)=\tau_{n}^{\prime}\left[1-2 \zeta^{\prime} \bar{z}^{\prime}+\left(\sum_{j=1}^{n} \zeta_{j}^{\prime 2}\right)\left(\sum_{j=1}^{n} \bar{z}_{j}^{\prime 2}\right)\right]^{-n}
$$

On the other hand, the Szegö kernel of Ω is given by (cf. [8])
$S_{\Omega}(s+i t, x)=C_{n}\left[\left(s_{1}-x_{1}+i t_{1}\right)\left(s_{2}-x_{2}+i t_{2}\right)-\sum_{j=3}^{n}\left(s_{j}-x_{j}+i t_{j}\right)^{2}\right]^{-n / 2}$,
where $s+i t \in \Omega$ and $x \in \mathbb{R}^{n}$. So, in view of (11), for all $\zeta^{\prime} \in \bar{\omega} \backslash Z$ and $e^{i \theta} x \in \partial_{0} \omega \backslash Z$ such that $\zeta^{\prime} \neq e^{i \theta} x$,

$$
\begin{equation*}
\left[S_{\omega}\left(\zeta^{\prime}, e^{i \theta} x\right)\right]^{2}=\left[S_{\Omega}\left(\Phi(\zeta), \Phi\left(e^{i \theta} x\right)\right)\right]^{2} J \Phi\left(\zeta^{\prime}\right) \overline{J \Phi\left(e^{i \theta} x\right)} \tag{24}
\end{equation*}
$$

We shall use the following lemma:
Lemma 5.1. Let E denote the complement of $\Phi^{-1}(\{\infty\})$ in $\partial_{0} \omega$. There exists a \mathcal{C}^{∞} real function η in \mathbb{R}^{n} such that for each $e^{i \theta} x \in E$, if $s=\Phi\left(e^{i \theta} x\right)$, then

$$
d \sigma\left(e^{i \theta} x\right)=\eta(s) d s
$$

Moreover, if Δ is a compact set in \mathbb{R}^{n}, then there exist two positive constants c and C such that for each $s \in \Delta$,

$$
c \leq|\eta(s)| \leq C
$$

Proof. $\Phi: E \rightarrow \mathbb{R}^{n}$ is a \mathcal{C}^{∞} diffeomorphism.
5.2. Proof of Theorem 6. By a contradiction argument, we assume that there exists a $p \in(1, \infty), p \neq 2$, such that the Szegö projection of ω is bounded on $L^{p}\left(\partial_{0} \omega, d \sigma\right)$. Then there exists a constant C_{p} such that for each compact set K^{\prime} in \mathbb{C}^{n} satisfying $K^{\prime} \cap Z=\emptyset$ and for each \mathcal{C}^{∞} function f with compact support in $\partial_{0} \omega$,

$$
\begin{array}{r}
\int_{K^{\prime} \cap \partial_{0} \omega}\left|\lim _{r \rightarrow 1} \int_{K^{\prime} \cap \partial_{0} \omega} S_{\omega}\left(r e^{i \theta} \xi, e^{i \varphi} x\right) f\left(e^{i \theta} x\right) d \sigma\left(e^{i \theta} x\right)\right|^{p} d \sigma\left(e^{i \varphi} \xi\right) \\
\leq C_{p} \int_{K^{\prime} \cap \partial_{0} \omega}\left|f\left(e^{i \theta} x\right)\right|^{p} d \sigma\left(e^{i \theta} x\right)
\end{array}
$$

We are going to carry over this estimate to the Shilov boundary \mathbb{R}^{n} of the tube Ω. We set $s=\Phi\left(e^{i \varphi} \xi\right), u=\Phi\left(e^{i \theta} x\right)$ and we define a family of curves in Ω by $\gamma_{r}(s)=\Phi\left(r e^{i \varphi} \xi\right), r \in[0,1)$. Then $\gamma_{0}(s)=e$, and $\lim _{r \rightarrow 1} \gamma_{r}(s)=s$. Moreover, in view of (24) and Lemma 5.1, one easily shows that there exists a constant C_{p} such that for each \mathcal{C}^{∞} function g with compact support in the unit ball of \mathbb{R}^{n},

$$
\begin{equation*}
\int_{|s| \leq 1}\left|\lim _{r \rightarrow 1} \int_{|u| \leq 1} S_{\Omega}\left(\gamma_{r}(s), u\right) g(u) d u\right|^{p} d s \leq C_{p} \int_{|s| \leq 1}|g(s)|^{p} d s \tag{25}
\end{equation*}
$$

Then the analytic continuation to Ω of its Szegö projection belongs to $H^{2}(\Omega)$ and hence (cf. [13], p. 119), it has restricted nontangential limits for almost every $s \in \mathbb{R}^{n}$. Moreover, the boundary value function in this
sense coincides with the Szegö projection $\mathbb{S}_{\Omega} g$ of g. On the other hand, for $s \in \mathbb{R}^{n}$ fixed, the curve $\left\{\gamma_{r}(s): 0 \leq r<1\right\}$ is the image by Φ of a radius in ω; then it is easy to show that there exists a proper subcone Γ_{0} of Γ and a positive number α such that for each s in the compact set $\left\{s \in \mathbb{R}^{n}:|s| \leq 1\right\}$,
(i) the imaginary part of $\gamma(s)$ belongs to Γ_{0} and
(ii) $\left|\operatorname{Re} \gamma_{r}(s)-s\right|<\alpha\left|\operatorname{Im} \gamma_{r}(s)\right|$.
(The curve $r \rightarrow \gamma_{r}(s)$, which goes inside Γ from s, has a tangent vector $\left.\frac{d}{d r} \gamma(s)\right|_{r=1}$ whose imaginary part is $\neq 0$ and belongs to some proper subcone. So $\operatorname{Im} \gamma_{r}(s)$ is in some proper subcone of Γ for $1-r$ small by Taylor's formula. All constants may be uniformly bounded on compact sets.)

So, by restricted nontangential convergence, for $|s| \leq 1$,

$$
\lim _{r \rightarrow 1} \int_{\mathbb{R}^{n}} S_{\Omega}\left(\gamma_{r}(s), u\right) g(u) d u=\mathbb{S}_{\Omega} g(s) \quad \text { a.e. }
$$

and by Fatou's lemma, we deduce from (25) that

$$
\begin{equation*}
\left|\int_{\left\{s \in \mathbb{R}^{n}:|s| \leq 1\right\}} S_{\Omega} g(s)\right|^{p} d s \leq C_{p} \int_{\mathbb{R}^{n}}|g(s)|^{p} d s \tag{26}
\end{equation*}
$$

Dilating the balls N times in (26) and using the homogeneity of the Szegö kernel yields

$$
\int_{\left\{s \in \mathbb{R}^{n}:|s| \leq N\right\}}\left|\mathbb{S}_{\Omega} g(s)\right|^{p} d s \leq C_{p} \int_{\mathbb{R}^{n}}|g(s)|^{p} d s
$$

for g compactly supported.
Now, when we let N tend to infinity, we conclude that for each \mathcal{C}^{∞} function g with compact support,

$$
\int_{\mathbb{R}^{n}}\left|\mathbb{S}_{\Omega} g(s)\right|^{p} d s \leq C_{p} \int_{\mathbb{R}^{n}}|g(s)|^{p} d s .
$$

This contradicts the negative result for the tube Ω stated as Theorem 5 in the introduction.
5.3. Proof of Theorem 7. Assume that \mathbb{S}_{ω} is bounded from $L^{\infty}\left(\partial_{0} \omega\right)$ to $L^{q}\left(\partial_{0} \omega, d \sigma\right)$. We carry over this estimate to the Shilov boundary \mathbb{R}^{n} of Ω. As in the proof of Theorem 6 (see 5.2), in view of (24) and Lemma 5.1, we have the following: there exists a constant C_{p} such that for each bounded function g supported in the closed ball $b=\left\{s \in \mathbb{R}^{n}:|s| \leq \sqrt{n}\right\}$,

$$
\begin{equation*}
\int_{b}\left|\mathbb{S}_{\Omega} g(s)\right|^{q} d s \leq C_{q}\|g\|_{\infty} \tag{27}
\end{equation*}
$$

Thus, in the particular case where g is the characteristic function of $b \cap(-\Gamma)$, estimate (27) implies

$$
\int_{\left\{t \in \Gamma: t_{1}<1, t_{2}<1\right\}}(I(t))^{p} d t<\infty
$$

where $I(t)$ is the integral given by (16). Now, one realizes that this last estimate is nothing but estimate (18) and we proved in 5.2 that the condition $p<2 n /(n-2)$ is necessary for its validity. This concludes the proof of Theorem 7 .

REFERENCES

[1] D. Bekollé, Solutions avec estimations de l'équation des ondes, in: Séminaire Analyse Harmonique 1983-1984, Publ. Math. Orsay, 1985, 113-125.
[2] - Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 33 (3) (1984), 125-154.
[3] D. Bekollé et M. Omporo, Le dual de la classe de Bergman A^{1} dans la boule de Lie de \mathbb{C}^{n}, C. R. Acad. Sci. Paris 311 (1990), 235-238.
[4] D. Bekollé and A. Temgoua Kagou, Reproducing properties and L ${ }^{p}$ estimates for Bergman projections in Siegel domains of type II, submitted.
[5] E. Cartan, Sur les domaines bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Hamburg 11 (1935), 116-162.
[6] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336.
[7] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602.
[8] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1-89.
[9] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Transl. Math. Monographs 6, Amer. Math. Soc., Providence, 1963.
[10] B. Jöricke, Continuity of the Cauchy projection in Hölder norms for classical domains, Math. Nachr. 113 (1983), 227-244.
[11] A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648.
[12] E. M. Stein, Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups, in: Proc. Intern. Congress of Math. Nice 1, 1970, 173-189.
[13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
[14] S. Vági, Harmonic analysis in Cartan and Siegel domains, in: Studies in Harmonic Analysis, J. M. Ash (ed.), MAA Stud. Math. 13, 1976, 257-309.
[15] S. Yan, Duality and differential operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 105 (1992), 171-187.
[16] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, ibid. 81 (1988), 260-278.

UNIVERSITÉ DE YAOUNDE
UNIVERSITÉ D'ORLÉANS
MATHÉMATIQUES
FACULTÉ DES SCIENCES MATHÉMATIQUES B.P. 6759
B.P. 812

F-45067 ORLÉANS CEDEX 2, FRANCE
YAOUNDE, CAMEROUN

Reçu par la Rédaction le 14.12.1993; en version modifiée le 14.6.1994

