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ESTIMATES FOR THE BERGMAN AND SZEGÖ PROJECTIONS
IN TWO SYMMETRIC DOMAINS OF Cn

BY

DAVID BEKOLL É (YAOUNDE) AND ALINE BONAMI (ORLÉANS)

1. Introduction. Let D denote each of the following domains in Cn,
n ≥ 3:

(i) the tube Ω = Rn + iΓ over the spherical cone

Γ = {(y1, . . . , yn) ∈ Rn : y1 > 0, y1y2 − y2
3 − . . .− y2

n > 0},
(ii) the Lie ball

ω =
{

z ∈ Cn :
∣∣∣ n∑

j=1

z2
j

∣∣∣ < 1, 1− 2|z|2 +
∣∣∣ n∑

j=1

z2
j

∣∣∣2 > 0
}

.

Obviously, the first domain is unbounded while the second one is bounded.
It is well known that they are biholomorphically equivalent and, in Elie
Cartan’s classification of bounded symmetric domains [5], they are repre-
sentatives of class IV (according to Hua’s numbering [9]).

Let H(D) denote the space of holomorphic functions in D and let dV
be Lebesgue measure in Cn. For every p ≥ 1, the Bergman space Ap(D)
is defined by Ap(D) = H(D) ∩ Lp(D, dV ). For every f ∈ Ap(D), we set
‖f‖Ap(D) = ‖f‖Lp(D,dV ); for p ≥ 1, this is a norm under which Ap(D)
is a Banach space. The Bergman projection PD of D is the orthogonal
projection of the Hilbert space L2(D, dV ) onto its closed subspace A2(D).
Moreover, PD is the integral operator associated with a kernel BD(·, ·) called
the Bergman kernel of D. Finally, we shall let P ∗

D denote the integral
operator associated with the positive kernel |BD(·, ·)|.

Let us state our first results:

Theorem 1. For every p ∈
(
1, 3n−2

2n

]
∪

[
3n−2
n−2 ,∞

)
, the Bergman projec-

tion PD is unbounded on Lp(D, dV ).

Theorem 2. Let p ≥ 1. The operator P ∗
D is bounded on Lp(D, dV ) if

and only if p ∈
(

2n−2
n , 2n−2

n−2

)
. Furthermore, the Bergman projection PD is

bounded from Lp(D, dV ) to Ap(D) when p ∈
(

2n−2
n , 2n−2

n−2

)
.
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For the tube domain Ω, some of these results were announced in [1].
The question whether PD is bounded on Lp(D, dV ) when p belongs to(

3n−2
2n , 2n−2

n

]
∪

[
2n−2
n−2 , 3n−2

n−2

)
remains open. The case of all homogeneous

Siegel domains of type II has recently been considered by D. Bekollé and
A. Temgoua Kagou. They proved that there is a range of p, around 2, where
the Bergman projection is bounded in Lp, while there is a range of p, around
1 and ∞, where it is unbounded (cf. [4]). In all cases the critical result is
not known, except for the product of Cayley transforms of unit balls for
which the Bergman projection is bounded in Lp for every p > 1.

For bounded domains, one can as well ask for (Lp, Lq) estimates with
q < p. The case p = ∞ is of special interest because the Bergman projection
of L∞ can be described as the Bloch space of holomorphic functions. The
Bloch space B is related to Hankel operators [16]. For a description in the
case of the Lie ball, see [3] and [15]. The following two statements deal with
this case:

Theorem 3. In the Lie ball ω of Cn, the operator P ∗
ω is bounded from

L∞(ω) to Lq(ω, dV ) if and only if q < 2n/(n− 2). Furthermore, the Bloch
space Bω of ω is contained in Aq(ω) when q < 2n/(n− 2) and this inclusion
is continuous.

Theorem 4. The Bergman projection Pω is unbounded from L∞(ω) to
Lq(ω, dV ) when q ≥ 4n/(n− 2). Furthermore, there is no continuous in-
clusion of the Bloch space Bω into Aq(ω) when q ≥ 4n/(n− 2).

The case of the Lie ball in Theorems 1 and 2, as well as Theorems 3
and 4, will be deduced from the case of the unbounded domain Ω via a
transfer principle based on two tools:

(i) an explicit linear fractional mapping Φ of ω into Ω given in [5],
(ii) the following well-known change of variable formula for the Bergman

kernel:
Bω(ζ, z′) = BΩ(Φ(ζ), Φ(z′))JΦ(ζ)JΦ(z′).

In the Hardy space setting, we shall also apply our transfer principle to
the Szegö projection. More precisely, the Shilov boundary of the tube T =
Rn+iC over a self-dual cone C is Rn. The Hardy space Hp(T ), 0 < p < ∞,
consists of those holomorphic functions f(x+iy) on T which satisfy

‖f‖Hp(T ) = sup
y∈C

( ∫
Rn

|f(x + iy)|p dx
)1/p

< ∞.

For p ≥ 1, such functions have boundary values, namely

lim
y→0, y∈C

f(x + iy) = f(x)

exists in the Lp norm (cf. [13], p. 119).
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In particular, for p = 2, the integral representation of each H2 function
f in terms of its boundary values is

f(s + it) =
∫

Rn

ST (s + it, x)f(x) dx,

where ST is the Szegö kernel of Ω given by (cf. [8])

ST (s + it, x) = τn

∫
C

eiλ·(s−x+it) dλ.

Moreover, the boundary value functions form a closed subspace of L2(Rn).
The Szegö projection ST of T is the orthogonal projection of L2(Rn) onto
this subspace and it is given by

ST f(s) = lim
t→0, t∈C

∫
Rn

ST (s + it, x)f(x) dx (s ∈ Rn),

where the limit is taken in the L2 norm. The analytic continuation of
ST f, f ∈ L2(Rn), to T is the H2 function also denoted by ST f and defined
by

ST f(s + it) =
∫

Rn

ST (s + it, x)f(x) dx (s + it ∈ Ω).

The following theorem has been known for 20 years (cf. [12] and [6],
[14]):

Theorem 5. The Szegö projection is unbounded on Lp, p 6= 2, p ∈ (1,∞),
in the tube over an irreducible self-dual cone of rank greater than 1.

Now, let D be a standard bounded realization of the tube T . Such a
domain D is called a standard bounded symmetric domain of tube type. The
definition of Hardy spaces on D is as follows. We denote by ∂0D the Shilov
boundary of D and by dσ a measure on ∂0D which is invariant under the
stability group of the origin. The Hardy space Hp(D), p ≥ 1, consists of
those holomorphic functions f on D which satisfy

‖f‖Hp(D) = sup
0<r<1

( ∫
∂0D

|f(rξ)|p dσ(ξ)
)1/p

< ∞.

Those functions have radial boundary values, i.e.

lim
r→1

f(rξ) = f(ξ), ξ ∈ ∂0D,

exists in the Lp norm. Moreover, for p = 2, the integral representation of
every H2 function in terms of its boundary values is

f(z′) =
∫

∂0D
SD(z′, ξ)f(ξ) dσ(ξ) (z′ ∈ D),
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where SD is the Szegö kernel of D. Furthermore, the boundary value func-
tions form a closed subspace of L2(∂0D, dσ); the Szegö projection SD of D is
the orthogonal projection of L2(∂0D, dσ) onto this subspace and it is given
by

SDf(ξ) = lim
r→1, 0<r<1

∫
∂0D

SD(rξ, η)f(η)dσ(η) (ξ ∈ ∂0D),

where the limit is taken in the L2 norm. The analytic continuation of SDf ,
f ∈ L2(∂0D, dσ), to D is the H2 function defined by

SDf(z′) =
∫

∂0D
SD(z′, η)f(η) dσ(η) (z′ ∈ D).

From our transfer principle, using restricted nontangential convergence,
we shall deduce from Theorem 5 the following result:

Theorem 6. For every standard irreducible bounded symmetric domain
D of tube type whose rank is greater than 1, the Szegö projection is unbounded
on Lp(∂0D, dσ), p ∈ (1,∞), p 6= 2.

On the other hand, we recall that for the unit ball and its Cayley trans-
form, the Szegö projection is bounded on Lp for all p > 1 ([11]), but the
general case of nontubular domains of rank greater than 1 remains open.

The proof of Theorem 6 is given below for the particular case of the Lie
ball ω of Cn, n ≥ 3. In this case, the following analogue of Theorem 3
for the Szegö projection is due to B. Jöricke [10] (we shall, however, give a
different proof based on our transfer principle):

Theorem 7. For the Lie ball ω of Cn, n ≥ 3, the Szegö projection is
unbounded from L∞(∂0ω) to Lq(∂0ω, dσ) when q ≥ 2n/(n− 2).

We shall proceed as follows. In the second section, we prove Theorems 1
and 2 in the tube Ω. In fact, Theorem 1 in Ω is a straightforward con-
sequence of the characterization obtained in [2] of those p ∈ [1,∞) such
that for each ζ ∈ Ω, the Bergman kernel BΩ(ζ, z) belongs to Lp(Ω, dV (z))
(Section 2.1). Section 2.2 is devoted to the proof of Theorem 2 in Ω; for the
sufficiency, we apply Schur’s lemma (cf. [7]) with the same test functions as
in [1].

In the third section, we prove Theorems 1 and 2 in the Lie ball and, in
the fourth section, we prove Theorems 3 and 4. By means of our transfer
principle, we carry over the estimates to the tube Ω where more is known
and our computation techniques are more powerful.

Finally, we prove Theorem 6 and we give another proof of B. Jöricke’s
result (Theorem 7).
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2. Proofs of Theorems 1 and 2 in the tube Ω

2.1. Proof of Theorem 1 in Ω. The tube Ω is a symmetric Siegel
domain of type I (hence of type II). Thus the general theorems proved by
S. G. Gindikin [8] can be applied to Ω. In particular, the Bergman kernel
of Ω has the following expression:

Proposition 2.1. The Bergman kernel BΩ(s, z) of Ω is given by

(1) BΩ(ζ, z) = cn

[
(ζ1 − z1)(ζ2 − z2)−

n∑
j=3

(ζj − zj)2
]−n

,

where ζ = (ζ1, . . . , ζn), z = (z1, . . . , zn) ∈ Ω.

Definition 2.2. Let k(t, y) denote the positive kernel defined on the
cone Γ by

k(t, y) =
[
(t1 + y1)(t2 + y2)−

n∑
j=3

(tj + yj)2
]−n/2

,

t = (t1, . . . , tn), y = (y1, . . . , yn).

Let T be the integral operator associated with this kernel. We call k (resp. T )
the Hilbert–Gindikin kernel (resp. the Hilbert–Gindikin operator) in Γ .

We first prove the following proposition:

Proposition 2.3. For each p ≥ 1, there exists a constant Cp such that
for all y ∈ Γ and ξ = s + it ∈ Ω,

(2)
∫

Rn

|BΩ(ζ, x + iy)|p dx = Cp[k(t, y)]2p−1.

Moreover , there exists a constant cp such that , for each y ∈ Γ such that
|y| < 1/100 and each ζ = s + it ∈ Ω such that |ζ| < 1/100,

(3)
∫

I×...×I

|BΩ(ζ, x + iy)|p dx ≥ Cp[k(t, y)]2p−1,

where I denotes the interval [−1, 1].

P r o o f. Let us first prove (2). Setting z = x + iy, in view of (1) we get

|BΩ(ζ, z)|p = cp
n|ζ2 − z2|−np

∣∣∣∣ζ1 − z1 −
∑n

j=3(ζj − zj)2

ζ2 − z2

∣∣∣∣−np

(4)

= cp
n|ζ2 − z2|−np

{[
s1 − x1 − Re

∑n
j=3(ζj − zj)2

ζ2 − z2

]2

+
[
t1 + y1 − Im

∑n
j=3(ζj − zj)2

ζ2 − z2

]2}−np/2

.
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Integrating first with respect to x1 in R, we easily obtain∫
R
|BΩ(ζ, x+iy)|p dx1 = cp|ζ2−z2|−np

[
t1+y1−Im

∑n
j=3(ζj − zj)2

ζ2 − z2

]−np+1

.

Next, we notice that

(15) t1 + y1 − Im

∑n
j=3(ζj − zj)2

ζ2 − z2

=
1

|ζ2 − z2|2

{
(t2 + y2)

n∑
j=3

[
sj − xj −

(tj + yj)(s2 − x2)
t2 + y2

]2

+ |ζ2 − z2|2
[
t1 + y1 −

∑n
j=3(tj + yj)2

t2 + y2

]2}
.

Integrating with respect to dx3 . . . dxn then yields∫
Rn−1

|BΩ(ζ, x + iy)|p dx1 dx3 . . . dxn

= cp|ζ2− z2|−np+n−2(t2 + y2)−n/2+1

[
t1 + y1−

∑n
j=3(tj + yj)2

t2 + y2

]−np+n/2

.

We integrate finally with respect to x2 in R; it is easy to check that∫
R
|ζ2 − z2|−np+n−2 dx2 = cp(t2 + y2)−np+n−1.

This yields (2).
Let us next prove inequality (3). We keep s, y, t fixed and we denote by

J2, . . . , Jn the subintervals of I = [−1, 1] defined by

J2 =
{
x2 ∈ R : |s2 − x2| < 1

5 (t2 + y2)
}
,

Jj =
{
xj ∈ R : |sj − xj | < 1

100n

√
(t1 + y1)(t2 + y2)

}
, j = 3, . . . , n.

Then for each (x2, . . . , xn) ∈ J2 × . . .× Jn, we deduce from (5) that

0 < t1 + y1 −
∑n

j=3(tj − yj)2

t2 + y2
< t1 + y1 − Im

∑n
j=3(ζj − zj)2

ζ2 − z2
<

1
10

.

On the other hand, we have

Re

∑n
j=3(ζj − zj)2

ζ2 − z2
=

1
|ζj − zj |2

{
(s2 − x2)

[ n∑
j=3

(sj − xj)2 −
n∑

j=3

(tj + yj)2
]

+ 2(t2 + y2)
n∑

j=3

(sj − xj)(tj + yj)
}

.
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Then it is easy to check that for each (x2, . . . , xn) ∈ J2 × . . .× Jn,∣∣∣∣ Re

∑n
j=3(ζj − zj)2

ζ2 − z2

∣∣∣∣ ≤ 1
10

and the interval J1 defined by

J1 =
{

x1 ∈ R :
∣∣∣∣s1 − x1 − Re

∑n
j=3(ζj − zj)2

ζ2 − z2

∣∣∣∣
≤ t1 + y1 − Im

∑n
j=3(ζj − zj)2

ζ2 − z2

}
is contained in I. Hence, we get∫

In

|BΩ(ζ, z)|p dx ≥
∫

J1×...×Jn

|BΩ(ζ, z)|p dx.

Now we deduce from (4) that for each (x2, . . . , xn) ∈ J2 × . . .× Jn,

(6)
∫

J1

|BΩ(ζ, z)|p dx1 = Cp|ζ2−z2|−np

[
t1 +y1− Im

∑n
j=3(ζj − zj)2

ζ2 − z2

]−np+1

.

We notice next that for each x2 ∈ J2, the set E defined by

E =
{

(x3, . . . , xn) ∈ Rn−2 :
n∑

j=3

[
sj − xj −

(tj + yj)(s2 − x2)
t2 + y2

]2

<
t2 + y2

104

[
t1 + y1 −

∑n
j=3(tj + yj)2

t2 + y2

]}
is contained in J3 × . . .× Jn. Hence, in view of (5) and (6), it is easy to see
that for each x2 ∈ J2,

(7)
∫

J1×J3×...×Jn

|BΩ(ζ, z)|p dx1 dx3 . . . dxn

≥ C ′
p(t2 + y2)−np+n/2−1

[
t1 + y1 −

∑n
j=3(tj + yj)2

t2 − y2

]−np+n/2

.

Integrating finally with respect to x2 in J2 immediately yields (3). This
concludes the proof of Proposition 2.3.

The next step is the following lemma:

Lemma 2.4. Let p ≥ 1. Then for each t ∈ Γ , the Hilbert–Gindikin kernel
k(t, y) belongs to Lp(Γ, dy) if and only if p > (2n− 2)/n. In this case, there
exists a constant Cp such that for each t ∈ Γ ,∫

Γ

[k(t, y)]p dy = Cp[k(t, t)]p−1.
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P r o o f. We use the following identity:

(8) t1 + y1 −
∑n

j=3(tj − yj)2

t2 + y2
= y1 −

∑n
j=3 y2

j

y2
+ ϕ(t, y2, . . . , yn),

where

ϕ(t, y2, . . . , yn) = t1 −
∑n

j=3 t2j

t2
+

t2
∑n

j=3(yj − y2tj/t2)2

y2(t2 + y2)
.

In view of (8), integrating first with respect to y1 yields
∞∫

Σn
j=3y2

j /y2

[k(t, y)]p dy1 = Cp(t2 + y2)−np/2[ϕ(t, y2, . . . , yn)]−np/2+1.

We next integrate with respect to dy3 . . . dyn in Rn−2; it is easy to obtain∫
Rn−2

[ϕ(t, y2, . . . , yn)]−np/2+1dy3 . . . dyn

= C ′
p

[
y2(t2 + y2)

t2

]n/2−1(
t1 −

∑n
j=3 t2j

t2

)−n(p−1)/2

if p > 1, and is ∞ if p = 1. Finally, integrating with respect to y2 in (0,∞)
yields the desired conclusion because

∞∫
0

y
n/2−1
2 (t2 + y2)−n(p−1)/2−1 dy2 = Cpt

−np/2+n−1
2 ,

where

Cp =
∞∫

0

y
n/2−1
2 (1 + y2)−n(p−1)/2−1 dy2,

and this last integral converges if and only if p > (2n− 2)/n.

P r o o f o f T h e o r e m 1. The Bergman projection PΩ is a self-adjoint
operator; thus it suffices to prove that PΩ is unbounded on Lp(Ω, dV )
when p ∈

[
1, 3n−2

2n

]
. More precisely, we shall exhibit a function f0 in all

Lp(Ω, dV ), p ≥ 1, but such that for all p ∈
[
1, 3n−2

2n

]
, PΩf0 does not belong

to Lp(Ω, dV ).
Let e denote the point of Ω given by e = (i, i, 0, . . . , 0), let β be the

Euclidean ball of radius 1/n, centered at e, and let f0 be the characteris-
tic function of β. Since β is contained in Ω, by the mean value formula,
there exists a constant Cn such that for each ζ ∈ Ω, PΩf0(ζ) = CnBΩ(ζ, e).
Equality (2) and Lemma 2.4 then yield the desired conclusion. This con-
cludes the proof of Theorem 1 in Ω.

2.2. Proof of Theorem 2 in Ω. Sufficiency . We first prove the following
lemma:
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Lemma 2.5. Let gγ,δ be the positive function in Γ given by

gγ,δ(y) = yγ
2 (y1y2 − y2

3 − . . .− y2
n)δ.

Under the conditions −1 < δ < 0 and −n/2 < γ+δ < −n/2+1, there exists
a constant C(γ, δ) such that for each t ∈ Γ ,∫

Γ

k(t, y)gγ,δ(y) dy = C(γ, δ)gγ,δ(t).

P r o o f. The proof is very similar to that of Lemma 2.4. We integrate
first with respect to y1 using (8), next with respect to dy3 . . . dyn in Rn−2

and lastly with respect to y2 in (0,∞).

The next step is to prove the sufficiency of the condition p ∈
(

2n−2
n , 2n−2

n−2

)
for the boundedness of T on Lp(Γ ). In view of Schur’s Lemma (cf. [7]), it
is enough to show that for such a p, there exists a positive test function g
in Γ and constants C1 and C2 such that

(i) for each t ∈ Γ ,

(9)
∫
Γ

k(t, y)[g(y)]p
′
dy ≤ C1[g(t)]p

′
,

(ii) for each y ∈ Γ ,

(10)
∫
Γ

k(t, y)[g(t)]p dt ≤ C2[g(y)]p.

For the test function gγ,δ given by Lemma 2.5, inequality (9) (resp. (10))
holds when

− 1
p′

< δ < 0 and − n

2p′
< γ + δ < −n− 2

2p′
,

respectively when

−1
p

< δ < 0 and − n

2p′
< γ + δ < −n− 2

2p
.

The two conditions on γ + δ may be simultaneously satisfied if

p ∈
(

2n− 2
n

,
2n− 2
n− 2

)
.

Necessity . Again, we first prove the necessity of the condition p ∈(
2n−2

n , 2n−2
n−2

)
for the boundedness of T on Lp(Γ ). By Lemma 2.4, for each

y ∈ Γ , the Hilbert–Gindikin kernel k(t, y) belongs to Lp(Γ, dt) if and only if
p > (2n − 2)/n. Now, the conclusion follows as in the proof of Theorem 1.
The test function here is the characteristic function of the Euclidean ball
b in Rn, of radius 1/n, centered at (1, 1, 0, . . . , 0). Here, the mean value
formula is replaced by the following fact, whose proof is easy: for each t ∈ Γ
and each y ∈ b, k(t, y) ≥ k(t, (2, 2, 0, . . . , 0)).
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We next prove that the condition p ∈
(

2n−2
n , 2n−2

n−2

)
is necessary for the

boundedness of P ∗
Ω on Lp(Ω, dV ).

Under the assumption that P ∗
Ω is bounded on Lp(Ω, dV ), there exists

a constant Cp such that for each positive function f in Γ , supported in
{y : |y| < 1/100},∫
{s∈Ω:|s|<1/50}

{ ∫
{y∈Γ :|y|<1/100}

( ∫
|xj |<1,j=1,...,n

|BΩ(ζ, z)|dx
)
f(y)dy

}p

dV (s)

≤ Cp

∫
{y∈Γ :|y|<1/100}

[f(y)]p dy.

Furthermore, in view of (3),∫
{t∈Γ :|t|<1/100}

( ∫
{y∈Γ :|y|<1/100}

k(t, y)f(y) dy
)p

dt

≤ C ′
p

∫
{y∈Γ :|y|<1/100}

[f(y)]p dy.

Dilating the balls 100N times and using the homogeneity of the kernel k(t, y)
easily yields that for each positive function f in Γ ,∫
{t∈Γ :|t|<N}

( ∫
{y∈Γ :|y|<N}

k(t, y)f(y) dy
)p

dt ≤ C ′
p

∫
{y∈Γ :|y|<N}

[f(y)]p dy.

When we let N tend to infinity, we get the conclusion that T is bounded
on Lp(Γ ) and hence, according to the first part of the proof, the condition
p ∈

(
2n−2

n , 2n−2
n−2

)
is necessary. This concludes the proof of Theorem 2 in Ω.

3. Proofs of Theorems 1 and 2 in the Lie ball: a transfer princi-
ple

3.1. Preliminaries. Let z = Φ(z′) be the linear fractional mapping from
ω onto Ω which is given in [5]. In particular, we assume that Φ(0) = e, where
e = (i, i, 0, . . . , 0) and Φ is holomorphic outside Z = {z ∈ Cn : Q(z) =
0}, where Q is a polynomial such that Q(0) = 1. In view of the change
of variable formula, the Bergman kernel Bω(ζ ′, z′) of ω has the following
expression in terms of that of Ω:

(11) Bω(ζ ′, z′) = BΩ(Φ(ζ ′), Φ(z′))JΦ(ζ ′)JΦ(z′).

On the other hand, since ω is a circular domain, for each real number θ,

(12) Bω(eiθζ ′, eiθz′) = Bω(ζ ′, z′)

and thus, there exists a constant C such that Bω(ζ ′, 0) = C for each ζ ′ ∈ ω.
Hence, from (11), we get

(13) JΦ(ζ ′) = C ′[BΩ(Φ(ζ ′), e)]−1.
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The following lemma is a straightforward consequence of (4) and (5):

Lemma 3.1. For all z and ζ in Ω,

|BΩ(ζ, z)| ≤ BΩ(z, z).

In the sequel, we let K be the closed unit ball of Cn and we set S =
Φ−1(K ∩Ω). We shall use the following lemma:

Lemma 3.2. There exist constants c and C such that for each ζ ′ ∈ S,

(14) c ≤ |JΦ(ζ ′)| ≤ C.

P r o o f. The latter inequality follows easily from (13) and formula (1)
for Bω. The former inequality is the particular case of Lemma 3.1 where
z = e.

We shall also use the following lemma:

Lemma 3.3. For all ζ ′ and z′ in the closure ω of ω, there exists a real
number θ = θ(ζ ′, z′) and there exist bounded open neighborhoods O1(ζ ′) and
O2(z′) of eiθζ ′ and eiθz′ respectively , such that neither O1(ζ ′) nor O2(z′)
intersects Z.

P r o o f. By an obvious argument, it suffices to prove that for all ζ ′ and
z′ in ω, there exists a real number θ such that neither eiθζ ′ nor eiθz′ belongs
to Z. Keeping ζ ′ and z′ fixed, let p and q denote the analytic polynomials in
C given by p(λ) = Q(λz′) and q(λ) = Q(λζ ′). By a contradiction argument,
we assume that the product polynomial pq is identically zero on the unit
circle. It follows that one polynomial, say p, is identically zero in the complex
plane C; but this contradicts the hypothesis p(0) = q(0) = 1.

3.2. Proof of Theorem 1 and of the necessity part of Theorem 2 in ω. In
the sequel, for each compact set ∆ in Cn, we let Lp

∆(D) denote the subspace
of Lp(D, dV ) consisting of functions supported in ∆.

We assume that Pω (resp. P ∗
ω) is bounded on Lp(ω, dV ). Then by

(14), it is easy to deduce that PΩ (resp. P ∗
Ω) is bounded from Lp

K(Ω) to
Lp(K ∩ Ω, dV ). In view of Theorems 1 and 2 in Ω, it is then enough to
prove the following lemma:

Lemma 3.4. Assume that PΩ (resp. P ∗
Ω) is bounded from Lp

K(Ω) to
Lp(K ∩Ω, dV ). Then PΩ (resp. P ∗

Ω) is bounded on Lp(Ω, dV ).

P r o o f. At the end of the proof of Theorem 2 in Ω, we proved the
analogous result in Γ for the kernel k(t, y); we again use the same argument.
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Let P denote either PΩ or P ∗
Ω and let Q(·, ·) be its kernel. Since P is

bounded from Lp
K(Ω) to Lp(K ∩ Ω, dV ), there exists a constant Cp such

that for each C∞ function f in Ω with compact support,∫
{ζ∈Ω:|ζ|≤1}

∣∣∣ ∫
{z∈Ω:|z|≤1}

Q(ζ, z)f(z) dV (z)
∣∣∣p dV (ζ)

≤ Cp

∫
{z∈Ω:|z|≤1}

|f(z)|p dV (z).

Dilating the balls N times and using the homogeneity of the kernel Q yields∫
{ζ∈Ω:|ζ|≤N}

∣∣∣ ∫
{z∈Ω:|z|≤N}

Q(ζ, z)f(z) dV (z)
∣∣∣p dV (ζ)

≤ Cp

∫
{z∈Ω:|z|≤N}

|f(z)|p dV (z)

for each C∞ function f with compact support. When we let N tend to
infinity, we conclude that P is bounded on Lp(Ω).

3.3. Proof of the sufficiency part of Theorem 2 in ω. Since Φ−1({∞})
is obviously contained in Z, the following lemma is a straightforward con-
sequence of Theorem 2 in Ω and (14):

Lemma 3.5. Let K ′ be a compact set in Cn such that K ′ ∩ Z = ∅ and
the interior of K ′ ∩ ω is nonempty. Then for each p ∈

(
2n−2

n , 2n−2
n−2

)
, P ∗

ω is
bounded from Lp

K(ω) to Lp(K ∩ ω, dV ).

Now, in view of Lemma 3.3, since ω × ω is compact, its open covering

{e−iθ(ζ′,z′)(O1(ζ ′)×O2(z′)) : (ζ ′, z′) ∈ ω × ω}
contains a finite covering {e−iθj (O1

j × O2
j ) : j = 1, . . . , N} and the set

K ′ =
⋃N

j=1(O1
j ∪ O2

j ) is a compact set in Cn such that K ′ ∩ Z = ∅.
Thus, for all positive functions f and g, we get∫∫

ω×ω

|Bω(ζ ′, z′)|f(z′)g(ζ ′) dV (z′) dV (ζ ′)

≤
N∑

j=1

∫∫
e−iθjO1

j×e−iθjO2
j

|Bω(ζ ′, z′)|f(z′)g(ζ ′) dV (z′) dV (ζ ′)

≤
N∑

j=1

∫
K′∩ω

∫
K′∩ω

|Bω(ζ ′, z′)|f(e−iθj z′)g(e−iθj ζ ′) dV (z′) dV (ζ ′),

since ω is circular. By Lemma 3.5, it is then easy to conclude that P ∗
ω is

bounded on Lp(ω, dV ) when p ∈
(

2n−2
n , 2n−2

n−2

)
. This concludes the proof of

Theorem 2 in ω.



BERGMAN AND SZEGÖ PROJECTIONS 93

4. Proofs of Theorems 3 and 4

4.1. Proof of Theorem 4. Since Pω is a self-adjoint operator, it suffices
to prove that Pω is unbounded from Lp′(ω, dV ) to L1(ω, dV ) when p′ ∈(
1, 4n

3n+2

)
. Furthermore, as at the beginning of the proof of Theorem 1 in

ω (cf. 3.2), it is enough to prove that for such a p′, PΩ is unbounded from
Lp′

K(Ω) to L1(K ∩Ω, dV ). Let bτ , τ ∈ (0, 1/2), denote the Euclidean ball of
radius τ/(100n), centered at (iτ/16, iτ, 0, . . . , 0). This ball is contained in
Ω; then by the mean value formula, there exists a constant Cn such that for
each s ∈ Ω and each τ ∈ (0, 1/2),

PΩχbτ (ζ) = Cnτ2nBΩ(ζ, (iτ/16, iτ, 0, . . . , 0)).

Hence, by (3), we get

(15)
∫

K∩Ω

|PΩχbτ (ζ)| dV (ζ) ≥ C ′
nτ2nI(τ/16, τ, 0, . . . , 0),

where, for each y ∈ Γ , we set

(16) I(y) =
∫

{t∈Γ :t1<1, t2<1}

k(t, y) dt.

The key lemma is the following:

Lemma 4.1. There exists a constant Cn such that , for each y ∈ Γ such
that y1 ≤ y2/16 and y2 < 1/2,

(17) I(y) ≥ Cny
−(n/2−1)
2 .

P r o o f. Let b denote the ball in Rn−2 given by

b =
{

(t3, . . . , tn) :
n∑

j=3

t2j/t2 < 1− y1 +
n∑

j=3

y2
j /y2

}
.

Then for each (t3, . . . , tn) ∈ b, the interval {t1 ∈ R :
∑n

j=3 t2j/t2 < t1 < 1}
contains the interval {t1 : 0 < t1−

∑n
j=3 t2j/t2 < y1−

∑n
j=3 y2

j /y2}. Now, in
view of (8), we get

I(y) ≥ Cn

(
y1 −

∑n
j=3 y2

j

y2

)
×

1∫
0

(t2 + y2)−n/2
( ∫

b

ϕ(y, t2, . . . , tn) dt3 . . . dtn

)−n/2

dt2.

On the other hand, under the assumption y1 ≤ y2/16, the ball b contains
the ball

b′ =
{

(t3, . . . , tn) :
n∑

j=3

(
yj −

y2tj
t2

)2

<
y2(t2 + y2)

t2

(
y1 −

∑n
j=3 t2j

y2

)}
;
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thus, ∫
b

ϕ−n/2 dt3 . . . dtn ≥ Cn

(
y1 −

∑n
j=3 y2

j

y2

)−1[
t2(t2 + y2)

y2

]n/2−1

.

Furthermore, since y2 < 1/2, we get

I(y) ≥ Cny
−n/2+1
2

1∫
1/2

(t2 + y2)−1t
n/2−1
2 dt2 ≥ C ′

ny
−n/2+1
2 .

In view of (17), the left hand side of (15) is greater than Cnτ3n/2+1; thus,
the boundedness of PΩ from Lp′

K(Ω) to L1(K ∩Ω, dV ) implies the existence
of a constant Cp such that, for each τ < 1/2, τ3n/2+1 ≤ Cpτ

2n/p′ . Therefore
the condition p′ > 4n/(3n + 2) is necessary. This concludes the proof of
Theorem 4.

4.2. Proof of Theorem 3. Let (E) denote the estimate

(E)
∫
ω

( ∫
ω

|Bω(ζ ′, z′)| dV (ζ ′)
)p

dV (z′) < ∞.

It is easy to reduce Theorem 3 to the following equivalence: (E) holds
if and only if p ∈

(
0, 2n

n−2

)
. Furthermore, in view of the end of the proof

of Theorem 2 in ω (cf. 3.3), estimate (E) is equivalent to the following
estimate: for each compact set K ′ in Cn such that K ′ ∩ Z = ∅,

(E′)
∫

K′∩ω

( ∫
K′∩ω

|Bω(ζ ′, z′)| dV (z′)
)p

dV (ζ ′) < ∞.

When carried over to the unbounded domain Ω, estimate (E′) takes the
following form:

(E′′)
∫

K∩Ω

( ∫
K∩Ω

|BΩ(ζ, z)| dV (z)
)p

dV (ζ) < ∞,

where K = {z ∈ Cn : |z| ≤ 1}. But in view of Proposition 2.3, (E′′) is
equivalent to

(18) Ip =
∫

{t∈Γ :t1<1, t2<1}

(I(t))p dt < ∞,

where I(t) is the integral given by (16).
We first assume (18). In view of (17),

Ip ≥ Cp

∫
{t∈Γ :t1≤t2/16, t2<1/2}

t
−(n/2−1)p
2 dt = C ′

p

1/2∫
0

t
n−1−(n/2−1)p
2 dt2.

This last integral converges only if p < 2n/(n− 2). This proves the necessity.
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Conversely, assume that p < 2n/(n− 2). To get (18), the key lemma is
the following:

Lemma 4.2. There exists a constant Cn such that for each t ∈ Γ such
that t1 < t2 < 1, the integral I(t) given by (16) satisfies

I(t) ≤ Cnt
−(n/2−1)
2 log 4

(
t1 − t−1

2

n∑
j=3

t2j

)−1

.

P r o o f. In view of (8), we get

(19)
1∫

Σn
j=3y2

j /y2

k(t, y) dy1 ≤
2

n− 2
(t2 + y2)−n/2[ϕ(t, y2, . . . , yn)]−n/2+1.

Integrating next with respect to dy3 . . . dyn gives

(20)
∫

Σn
j=3y2

j <y2

[ϕ(t, y2, . . . , yn)]−n/2+1 dy3 . . . dyn = I1(t, y2) + I2(t, y2),

where I1(t, y2) is the integral over the set

E1 =
{

(y3, . . . , yn) :
n∑

j=3

y2
j < y2,

t2
∑n

j=3(yj − y2tj/t2)2

y2(t2 + u2)
< t1 −

∑n
j=3 t2j

t2

}
and I2(t, y2) is the integral over the set

E2 =
{

(y3, . . . , yn) :
n∑

j=3

y2
j < y2,

t2
∑n

j=3(yj − y2tj/t2)2

y2(t2 + u2)
> t1 −

∑n
j=3 t2j

t2

}
.

Clearly I1(t, y2) is bounded by (t1 −
∑n

j=3 t2j/t2)−n/2+1|E1|, which gives

(21) I1(t, y2) ≤ Cn

[
y2(t2 + y2)

t2

]n/2−1

.

Since 0 < t1 < t2 < 1 implies that
∑n

j=3 t2j < t2, we get

I2(t, y2) ≤
[
y2(t2 + u2)

t2

]n/2−1 ∫ [ n∑
j=3

(
yj −

y2tj
t2

)2]−n/2+1

dy3 . . . dyn,

where the integral on the right hand side is taken over{
(y3, . . . , yn) :

(t1 −
∑n

j=3 t2j/t2)y2(t2 + y2)
t2

<

n∑
j=3

(
yj −

y2tj
t2

)2

< 4y2

}
.

Thus,

(22) I2(t, y2) ≤ Cn

[
y2(t2 + y2)

t2

]n/2−1

log 4
(
t1 − t−1

2

n∑
j=3

t2j

)−1

.
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Now, from (18), (20), (21) and (22), we conclude the proof by integrating
over y2.

We can now prove (18) under the assumption that p < 2n/(n− 2). In
view of Lemma 4.2, it is enough to prove that, for such a p,

(23)
∫

{t∈Γ :0<t1<t2<1}

t
−(n/2−1)p
2

(
t1 −

∑n
j=3 t2j

t2

)εp

dt < ∞

for some ε > 0. But for ε < 1/p, this integral is equal to

Cε,p

1∫
0

t
n−1−εp−(n/2−1)p
2 dt2.

For p < 2n/(n− 2), we may take ε < inf{1/p, n/p − n/2 + 1} to have
convergence.

R e m a r k. In view of the homogeneity of the Bergman kernel of the
unbounded domain Ω, it is easy to show that the statements analogous to
Theorems 3 and 4 are false in Ω. However, the following local statements
hold:

Theorem 4.3. The operator P ∗
Ω is bounded from L∞K (Ω) to Lp(K ∩

Ω, dV ) if and only if p < 2n/(n− 2).

Theorem 4.4. The Bergman projection PΩ is unbounded from L∞K (Ω)
to Lp(K ∩Ω, dV ) when p > 4n/(n− 2).

5. Proofs of Theorems 6 and 7

5.1. The Szegö projection of ω: preliminary results. The Shilov bound-
ary ∂0ω of the Lie ball ω of Cn, n ≥ 3, is given by

∂0ω = {eiθx : θ ∈ [0, 2π), x ∈ Sn−1},

where Sn−1 denotes the unit sphere of Rn. An invariant measure on ∂0ω
is dσ(eiθx) = dθ dµ(x), where dµ is the Lebesgue measure on Sn−1. The
Szegö and Bergman kernels of ω are respectively given by the following
formulae [9]: for eiθx ∈ ∂0ω and ζ ′ ∈ ω such that ζ ′ 6= eiθx,

Sω(ζ ′, eiθx) = τn

[
1− 2e−iθx · ζ ′ + e−2iθ

( n∑
j=1

ζ ′2j

)]−n/2

;

respectively for ζ ′ and z′ in Cn,

Bω(ζ ′, z′) = τ ′n

[
1− 2ζ ′z′ +

( n∑
j=1

ζ ′2j

)( n∑
j=1

z′2j

)]−n

.
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On the other hand, the Szegö kernel of Ω is given by (cf. [8])

SΩ(s + it, x) = Cn

[
(s1 − x1 + it1)(s2 − x2 + it2)−

n∑
j=3

(sj − xj + itj)2
]−n/2

,

where s + it ∈ Ω and x ∈ Rn. So, in view of (11), for all ζ ′ ∈ ω \ Z and
eiθx ∈ ∂0ω \ Z such that ζ ′ 6= eiθx,

(24) [Sω(ζ ′, eiθx)]2 = [SΩ(Φ(ζ), Φ(eiθx))]2JΦ(ζ ′)JΦ(eiθx).

We shall use the following lemma:

Lemma 5.1. Let E denote the complement of Φ−1({∞}) in ∂0ω. There
exists a C∞ real function η in Rn such that for each eiθx ∈ E, if s = Φ(eiθx),
then

dσ(eiθx) = η(s) ds.

Moreover , if ∆ is a compact set in Rn, then there exist two positive constants
c and C such that for each s ∈ ∆,

c ≤ |η(s)| ≤ C.

P r o o f. Φ : E → Rn is a C∞ diffeomorphism.

5.2. Proof of Theorem 6. By a contradiction argument, we assume that
there exists a p ∈ (1,∞), p 6= 2, such that the Szegö projection of ω is
bounded on Lp(∂0ω, dσ). Then there exists a constant Cp such that for
each compact set K ′ in Cn satisfying K ′ ∩ Z = ∅ and for each C∞ function
f with compact support in ∂0ω,∫

K′∩∂0ω

∣∣∣ lim
r→1

∫
K′∩∂0ω

Sω(reiθξ, eiϕx)f(eiθx) dσ(eiθx)
∣∣∣p dσ(eiϕξ)

≤ Cp

∫
K′∩∂0ω

|f(eiθx)|p dσ(eiθx).

We are going to carry over this estimate to the Shilov boundary Rn of the
tube Ω. We set s = Φ(eiϕξ), u = Φ(eiθx) and we define a family of curves
in Ω by γr(s) = Φ(reiϕξ), r ∈ [0, 1). Then γ0(s) = e, and limr→1 γr(s) = s.
Moreover, in view of (24) and Lemma 5.1, one easily shows that there exists
a constant Cp such that for each C∞ function g with compact support in
the unit ball of Rn,

(25)
∫

|s|≤1

∣∣∣ lim
r→1

∫
|u|≤1

SΩ(γr(s), u)g(u) du
∣∣∣p ds ≤ Cp

∫
|s|≤1

|g(s)|p ds.

Then the analytic continuation to Ω of its Szegö projection belongs to
H2(Ω) and hence (cf. [13], p. 119), it has restricted nontangential lim-
its for almost every s ∈ Rn. Moreover, the boundary value function in this
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sense coincides with the Szegö projection SΩg of g. On the other hand, for
s ∈ Rn fixed, the curve {γr(s) : 0 ≤ r < 1} is the image by Φ of a radius in
ω; then it is easy to show that there exists a proper subcone Γ0 of Γ and a
positive number α such that for each s in the compact set {s ∈ Rn : |s| ≤ 1},

(i) the imaginary part of γ(s) belongs to Γ0 and
(ii) |Re γr(s)− s| < α|Im γr(s)|.

(The curve r → γr(s), which goes inside Γ from s, has a tangent vector
d
dr γ(s)|r=1 whose imaginary part is 6= 0 and belongs to some proper subcone.
So Im γr(s) is in some proper subcone of Γ for 1−r small by Taylor’s formula.
All constants may be uniformly bounded on compact sets.)

So, by restricted nontangential convergence, for |s| ≤ 1,

lim
r→1

∫
Rn

SΩ(γr(s), u)g(u) du = SΩg(s) a.e.,

and by Fatou’s lemma, we deduce from (25) that

(26)
∣∣∣ ∫
{s∈Rn:|s|≤1}

SΩg(s)
∣∣∣p ds ≤ Cp

∫
Rn

|g(s)|p ds.

Dilating the balls N times in (26) and using the homogeneity of the Szegö
kernel yields ∫

{s∈Rn:|s|≤N}

|SΩg(s)|p ds ≤ Cp

∫
Rn

|g(s)|p ds

for g compactly supported.
Now, when we let N tend to infinity, we conclude that for each C∞

function g with compact support,∫
Rn

|SΩg(s)|p ds ≤ Cp

∫
Rn

|g(s)|p ds.

This contradicts the negative result for the tube Ω stated as Theorem 5 in
the introduction.

5.3. Proof of Theorem 7. Assume that Sω is bounded from L∞(∂0ω) to
Lq(∂0ω, dσ). We carry over this estimate to the Shilov boundary Rn of Ω.
As in the proof of Theorem 6 (see 5.2), in view of (24) and Lemma 5.1, we
have the following: there exists a constant Cp such that for each bounded
function g supported in the closed ball b = {s ∈ Rn : |s| ≤

√
n},

(27)
∫
b

|SΩg(s)|q ds ≤ Cq‖g‖∞.
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Thus, in the particular case where g is the characteristic function of b∩(−Γ ),
estimate (27) implies ∫

{t∈Γ :t1<1, t2<1}

(I(t))p dt < ∞,

where I(t) is the integral given by (16). Now, one realizes that this last
estimate is nothing but estimate (18) and we proved in 5.2 that the condition
p < 2n/(n− 2) is necessary for its validity. This concludes the proof of
Theorem 7.
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Siegel , Ann. Inst. Fourier (Grenoble) 33 (3) (1984), 125–154.
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domains, Math. Nachr. 113 (1983), 227–244.
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