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1. Introduction. Let D denote each of the following domains in C",
n>3:

(i) the tube 2 = R™ 4 ¢I" over the spherical cone

I'={(1, - yn) ER" :y1 >0, Y192 —y3 — ... —y2 > 0},
(ii) the Lie ball

n n
2
w:{zECn : ‘Zz?‘ <1, 1—2|z|2+)2zj2" >0}.
j=1 j=1

Obviously, the first domain is unbounded while the second one is bounded.
It is well known that they are biholomorphically equivalent and, in Elie
Cartan’s classification of bounded symmetric domains [5], they are repre-
sentatives of class IV (according to Hua’s numbering [9]).

Let H(D) denote the space of holomorphic functions in D and let dV
be Lebesgue measure in C". For every p > 1, the Bergman space AP(D)
is defined by AP(D) = H(D) N LP(D,dV). For every f € AP(D), we set
I fllarpy = IIfllze(p,avy; for p > 1, this is a norm under which AP(D)
is a Banach space. The Bergman projection Pp of D is the orthogonal
projection of the Hilbert space L?(D,dV) onto its closed subspace A?(D).
Moreover, Pp is the integral operator associated with a kernel Bp (-, -) called
the Bergman kernel of D. Finally, we shall let Pj, denote the integral
operator associated with the positive kernel |Bp(-,-)|.

Let us state our first results:

THEOREM 1. For every p € (1, 3’2‘;2] U [3?;‘:22, oo), the Bergman projec-

tion Pp is unbounded on LP(D,dV).

THEOREM 2. Let p > 1. The operator P, is bounded on LP(D,dV) if

and only if p € (2”7;2, %) Furthermore, the Bergman projection Pp is

bounded from LP(D,dV) to AP(D) when p € (2n_2’ 2n_2)'

n n—2
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For the tube domain 2, some of these results were announced in [1].
The question whether Pp is bounded on LP(D,dV) when p belongs to
(3’;;2, 2”7:2] U [2:__22, 377__22) remains open. The case of all homogeneous
Siegel domains of type II has recently been considered by D. Bekollé and
A. Temgoua Kagou. They proved that there is a range of p, around 2, where
the Bergman projection is bounded in LP, while there is a range of p, around
1 and oo, where it is unbounded (cf. [4]). In all cases the critical result is
not known, except for the product of Cayley transforms of unit balls for
which the Bergman projection is bounded in LP for every p > 1.

For bounded domains, one can as well ask for (LP, L?) estimates with
q < p. The case p = oo is of special interest because the Bergman projection
of L*° can be described as the Bloch space of holomorphic functions. The
Bloch space B is related to Hankel operators [16]. For a description in the
case of the Lie ball, see [3] and [15]. The following two statements deal with
this case:

THEOREM 3. In the Lie ball w of C", the operator P} is bounded from
L>(w) to LY (w,dV) if and only if ¢ < 2n/(n — 2). Furthermore, the Bloch
space B, of w is contained in A(w) when q < 2n/(n — 2) and this inclusion
18 continuous.

THEOREM 4. The Bergman projection P,, is unbounded from L*°(w) to
LY w,dV) when q > 4n/(n — 2). Furthermore, there is no continuous in-
clusion of the Bloch space B, into A%(w) when ¢ > 4n/(n — 2).

The case of the Lie ball in Theorems 1 and 2, as well as Theorems 3
and 4, will be deduced from the case of the unbounded domain {2 via a
transfer principle based on two tools:

(i) an explicit linear fractional mapping @ of w into {2 given in [5],
(ii) the following well-known change of variable formula for the Bergman
kernel:

B.(¢.2') = Ba(2(C), 2(2")) JP(C) JO(2).

In the Hardy space setting, we shall also apply our transfer principle to
the Szego projection. More precisely, the Shilov boundary of the tube 7 =
R™+iC over a self-dual cone C is R"™. The Hardy space HP(T), 0 < p < oo,
consists of those holomorphic functions f(x+iy) on 7 which satisfy

) 1/p
I llmoer =sup ([ 1f@+ iyl de) " < oc.
yeC R™

For p > 1, such functions have boundary values, namely
lim Cf(x—l—iy) = f(x)

y—0,y€
exists in the L” norm (cf. [13], p. 119).
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In particular, for p = 2, the integral representation of each H? function
f in terms of its boundary values is

f(s+it) = f St (s+it,z)f(x)dz,
RTL
where St is the Szegd kernel of {2 given by (cf. [8])
Sr(s+it,z) =1, f e (smaHit) gy
c

Moreover, the boundary value functions form a closed subspace of L?(R™).
The Szegd projection St of T is the orthogonal projection of L?(R™) onto
this subspace and it is given by
Srf(s)= lim [ Sr(s+it,z)f(z)dz (s €R™),
R’ﬂ

t—0,teC

where the limit is taken in the L? norm. The analytic continuation of
St f, f € L3(R™), to T is the H? function also denoted by Sz f and defined
by
Srf(s+it)= [ Sr(s+it,x)f(z)dz (s+it € £2).
Rn
The following theorem has been known for 20 years (cf. [12] and [6],
[14]):

THEOREM 5. The Szegé projection is unbounded on LP, p # 2, p € (1, 00),
in the tube over an irreducible self-dual cone of rank greater than 1.

Now, let D be a standard bounded realization of the tube 7. Such a
domain D is called a standard bounded symmetric domain of tube type. The
definition of Hardy spaces on D is as follows. We denote by dyD the Shilov
boundary of D and by do a measure on 0yD which is invariant under the
stability group of the origin. The Hardy space HP(D), p > 1, consists of
those holomorphic functions f on D which satisfy

1/
vy = e, ([ 10 do(©) ™ < o

Those functions have radial boundary values, i.e.
lim f(r€) = (). &€ 04D,

exists in the LP norm. Moreover, for p = 2, the integral representation of
every H? function in terms of its boundary values is

[ = [ Sp(z,©)f(do(&) (< €D),

00D
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where Sp is the Szego kernel of D. Furthermore, the boundary value func-
tions form a closed subspace of L?(9yD, do); the Szegd projection Sp of D is
the orthogonal projection of L?(9yD, do) onto this subspace and it is given
by

Spf(§) = lim [ Sp(r&n)f(m)do(n) (€€ dD),

r—1,0<r<1
o

where the limit is taken in the L? norm. The analytic continuation of Spf,
f € L?*(6yD,do), to D is the H? function defined by

Spf(')= [ So(z',n)f(n)do(n) (' €D).
00D

From our transfer principle, using restricted nontangential convergence,
we shall deduce from Theorem 5 the following result:

THEOREM 6. For every standard irreducible bounded symmetric domain
D of tube type whose rank is greater than 1, the Szego projection is unbounded
on LP(0yD,do), p € (1,00), p # 2.

On the other hand, we recall that for the unit ball and its Cayley trans-
form, the Szegd projection is bounded on LP for all p > 1 ([11]), but the
general case of nontubular domains of rank greater than 1 remains open.

The proof of Theorem 6 is given below for the particular case of the Lie
ball w of C", n > 3. In this case, the following analogue of Theorem 3
for the Szegd projection is due to B. Joricke [10] (we shall, however, give a
different proof based on our transfer principle):

THEOREM 7. For the Lie ball w of C*, n > 3, the Szego projection is
unbounded from L (Oyw) to LY(Jpw,do) when q¢ > 2n/(n — 2).

We shall proceed as follows. In the second section, we prove Theorems 1
and 2 in the tube (2. In fact, Theorem 1 in {2 is a straightforward con-
sequence of the characterization obtained in [2] of those p € [1,00) such
that for each ¢ € 2, the Bergman kernel B((, z) belongs to LP(£2,dV (z))
(Section 2.1). Section 2.2 is devoted to the proof of Theorem 2 in (2; for the
sufficiency, we apply Schur’s lemma (cf. [7]) with the same test functions as
in [1].

In the third section, we prove Theorems 1 and 2 in the Lie ball and, in
the fourth section, we prove Theorems 3 and 4. By means of our transfer
principle, we carry over the estimates to the tube {2 where more is known
and our computation techniques are more powerful.

Finally, we prove Theorem 6 and we give another proof of B. Joricke’s
result (Theorem 7).
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2. Proofs of Theorems 1 and 2 in the tube (2

2.1. Proof of Theorem 1 in §2. The tube {2 is a symmetric Siegel
domain of type I (hence of type II). Thus the general theorems proved by
S. G. Gindikin [8] can be applied to {2. In particular, the Bergman kernel
of {2 has the following expression:

PROPOSITION 2.1. The Bergman kernel Bq (s, z) of §2 is given by

n
-n

(1) Bo(¢2) = e |(G = 20)(G = 22) = D (G = %)%

j=3
where ¢ = (C1y- -+, Cn), 2= (21,...,2n) € £2.

DEFINITION 2.2. Let k(t,y) denote the positive kernel defined on the
cone I' by

n —n/2
k(tay) = [(t1+yl t2+y2 Z t +yj :| )
j=3

t= (tlv'”atn)7 Y= (y17"’7yn)'

Let T be the integral operator associated with this kernel. We call k (resp. T')
the Hilbert-Gindikin kernel (resp. the Hilbert-Gindikin operator) in I

We first prove the following proposition:

PROPOSITION 2.3. For each p > 1, there exists a constant C, such that
forallye I’ and & = s+ it € (2,

(2) [ 1Ba(C,a + )P de = Cylk(t, )]~

Moreover, there exists a constant c, such that, for each y € I' such that
ly| < 1/100 and each ¢ = s + it € 2 such that || < 1/100,

(3) [ 1Ba(Cx+iy)P dr > Cylk(t, )],
Ix...xI

where I denotes the interval [—1,1].

Proof. Let us first prove (2). Setting z = x + iy, in view of (1) we get

2|—n
(4) |BQ(C,z)’p:CfL|<2_§2|—np 41—51—2] 3(C zj) P
CQ_ZQ
I =292
=l _22‘—711’{ {91 —x1 — Re Zj:?’(CJ _ %) }
C2_ZQ

> =G — zj)Qr}—”P/%

+[t1+y1—lm —
CQ—ZQ
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Integrating first with respect to x; in R, we easily obtain

2l

G2 — 72

[ 1Ba(G,a+ig)P doy = cylcs—7a] ™ [myl—xm
R

Next, we notice that

>is(G — %)

G2 — Z2
1 " (t-er-)(szazg)r
= —— S (ta+ s; —x; — 21—
\C2—22\2{(2 yg)jzg[] ’ tr + Y2
> i=s(ti +v5)*)
+!C2—222[t1~|—y1— g=s) 7 ] }
to + o

Integrating with respect to dzxs...dx, then yields

f |Bo (¢, x + iy)|P dvy dos . . . dxy,
]Rn71

> i=slty + yj)z] e/
t2 + Y2 '
We integrate finally with respect to x5 in R; it is easy to check that

f (G = Za| TP dy = cp(ta + y2) TP
R

This yields (2).
Let us next prove inequality (3). We keep s, y,t fixed and we denote by
Ja, ..., J, the subintervals of I = [—1,1] defined by

= cp|Ca — Zo| TR (ty 4 yp) T/ AT |:t1 +y1 —

Jo={z €R:|sy —mo| < 2(t2+12)},
Jj = {J}j eR: ‘Sj —J}j| < ﬁ\/(fl +y1)(t2 +y2)}, j=3,...,n.
Then for each (z3,...,2,) € Jo X ... X J,, we deduce from (5) that

> gty —y5)? Yia(G—7)% 1
0<t - == t 1 = —.
<t1+um t + 1 <t1+wn m 7 <10
On the other hand, we have
> i—3(G —%5)? 1 - S
Re =~ 3 BRPEEAE {(82 — Z2) [Z(é‘j — 2" =Y (1 +yj)2}
2 2 J J j=3 j=3
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Then it is easy to check that for each (zo,...,2,) € Jo X ... X Jy,

> is(G —%)?

Re
G2 — Z2

<

and the interval J; defined by

" = )2
Y (Ci—Zs
Jl:{$1€R: sl—xl_ReZJ—Z%(Cji j)
<2_2’2
"TL_ A_EAQ
§t1+y1—1mzﬂ—3@?7 i) }
CQ_ZQ

is contained in I. Hence, we get

[ 1Ba¢2)Pdz> [ [Bal¢2)P da.

I JiX...XJp
Now we deduce from (4) that for each (zo,...,2,) € Jo X ... X Jp,
>j=s(G — Zj)z] et

G2 — 22

©) [ |Bg(<,z>|pd:c1:cp\@—zQy—”p[t1+y1—1m
J1

We notice next that for each x4 € Js, the set FE defined by

n

2
_ ti +y;)(s2 — x2)
E =2 (x3,...,2,) € R"2: [s-—x-—(J d
{C N
ta + o ity +y5)?
104 to + Yo

is contained in J3 x ... x J,,. Hence, in view of (5) and (6), it is easy to see
that for each zo € Js,

(7) 1l |Bo(C, 2)|P doy das . . . day,

JiXJIgX...XJp

[t1 +y1 —

> sty + yj)Z] Trptn/2

ta — Y2 '
Integrating finally with respect to x5 in Jy immediately yields (3). This
concludes the proof of Proposition 2.3. =

> C(ty + yo) P27 [tl +y1 —

The next step is the following lemma:;:

LEMMA 2.4. Let p > 1. Then for each t € I', the Hilbert—Gindikin kernel
k(t,y) belongs to LP (I, dy) if and only if p > (2n —2)/n. In this case, there
exists a constant C, such that for each t € I,

J k()P dy = Cylk(e 0
r
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Proof. We use the following identity:

Zn 3( y]) Zﬂ—?,yz‘
8 t 4y — =2 =y — 2T 4 ot ye, . Yn),
(8) 1+ y P, 1 " o(t, yo Yn)

where

dist? N ta Y0 g(yj — yatj/ta)’
to Ya(t2 + y2)
In view of (8), integrating first with respect to y; yields

@(tay%”wyn) =t —

[ k)P dyr = Cplta+y2) " 2lo(t o, - yn)]/2F
E?:ay?/yz

We next integrate with respect to dys . ..dy, in R"~2; it is easy to obtain

f [@(t, Y2,... 7yn)]_np/2+ldy3 . dyn
Rn—Q

2—1 —n(p—1)/2

_ Yot +1y2) 1" o Sgty\ e/
o to ! to

if p> 1, and is oo if p = 1. Finally, integrating with respect to ys in (0, 00)

yields the desired conclusion because

j‘yn/2 1 (ts + o)~ n(p—1)/2— 1dy2 Ct2np/2+” 1

where

Cp —fyn/2 Y1 4 yp) D27 gy

and this last integral converges if and only if p > (2n —2)/n. =

Proof of Theorem 1. The Bergman projection Py is a self-adjoint
operator; thus it suffices to prove that Pp is unbounded on LP(£2,dV)
when p € [1, 372“2]. More precisely, we shall exhibit a function fy in all
LP(£2,dV),p > 1, but such that for all p € [1, 3’;;2], Pq, fo does not belong
to LP(§2,dV).

Let e denote the point of 2 given by e = (,7,0,...,0), let 8 be the
Euclidean ball of radius 1/n, centered at e, and let fy be the characteris-
tic function of §. Since 3 is contained in {2, by the mean value formula,
there exists a constant C,, such that for each ¢ € 2, P fo(¢) = C,Ba((,e).
Equality (2) and Lemma 2.4 then yield the desired conclusion. This con-
cludes the proof of Theorem 1 in (2. =

2.2. Proof of Theorem 2 in (2. Sufficiency. We first prove the following
lemma:




BERGMAN AND SZEGO PROJECTIONS 89

LEMMA 2.5. Let g5 be the positive function in I' given by

915(y) = y3 (nya —v3 — .. —v3)’.
Under the conditions —1 < 6 < 0 and —n/2 < v+ < —n/2+1, there exists
a constant C(v, ) such that for each t € I,

[kt y)gr.5(y) dy = C(v,8)g5,5(1).

Proof. The proof is very similar to that of Lemma 2.4. We integrate
first with respect to 3; using (8), next with respect to dys...dy, in R"~2
and lastly with respect to ys in (0, c0).

The next step is to prove the sufficiency of the condition p € (2”7;2 , 27?:22

for the boundedness of T on LP(I"). In view of Schur’s Lemma (cf. [7]), it
is enough to show that for such a p, there exists a positive test function ¢
in I'" and constants C7 and C5 such that

(i) for each t € I,
(9) [ kg dy < Ci[g()])”,
r

(ii) for each y € I',
(10) [kt y) g dt < Calg(m))P.
r

For the test function g, s given by Lemma 2.5, inequality (9) (resp. (10))
holds when

1 n n—2
—2?<(5<0 and —27p/<7+5<—27p/,
respectively when
1 -2
——<d<0 and —i<7+6<—n—.
p 2p’ 2p

The two conditions on v + § may be simultaneously satisfied if

<2n —2 2n— 2)
pE , . m
n n—2

Necessity. Again, we first prove the necessity of the condition p €
(%, 277__22) for the boundedness of T' on LP(I"). By Lemma 2.4, for each
y € I', the Hilbert-Gindikin kernel k(¢, y) belongs to LP(I',dt) if and only if
p > (2n — 2)/n. Now, the conclusion follows as in the proof of Theorem 1.
The test function here is the characteristic function of the Euclidean ball
b in R™, of radius 1/n, centered at (1,1,0,...,0). Here, the mean value
formula is replaced by the following fact, whose proof is easy: for each ¢t € I’

and each y € b, k(t,y) > k(t,(2,2,0,...,0)).
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2n—2 2n—2
n J’ n—2

We next prove that the condition p € ( ) is necessary for the
boundedness of P, on LP(§2,dV).

Under the assumption that Pf, is bounded on LP(£2,dV), there exists
a constant C), such that for each positive function f in I, supported in

{y: |yl <1/100},
[ BalC )y} av (s)

{se2:|s|<1/50} {yer:|ylk1/100} lz;|<1j=1,....,n

<G, / ()} dy.

{yer:|y|<1/100}

Furthermore, in view of (3),

P
E(t,y)f(y) dy) dt
{ter:|t|<1/100}  {yel:|y|<1/100}

<C f [f()]? dy.

{yer:|y|<1/100}

Dilating the balls 100N times and using the homogeneity of the kernel k(¢, y)
easily yields that for each positive function f in I,

o kewrway) d<c, [ [Py

{tel|t|<N}  {yel:|y|<N} {yer:|y|<N}

When we let N tend to infinity, we get the conclusion that T is bounded
on LP(I") and hence, according to the first part of the proof, the condition

pE (%, 27?%22) is necessary. This concludes the proof of Theorem 2 in {2. =

3. Proofs of Theorems 1 and 2 in the Lie ball: a transfer princi-
ple

3.1. Preliminaries. Let z = ®(z') be the linear fractional mapping from
w onto {2 which is given in [5]. In particular, we assume that ¢(0) = e, where
e = (4,4,0,...,0) and @ is holomorphic outside Z = {z € C" : Q(z) =
0}, where @ is a polynomial such that Q(0) = 1. In view of the change
of variable formula, the Bergman kernel B, (¢’,z’) of w has the following
expression in terms of that of (2:

(11) B.(¢',7") = Ba(2(('), 8(2)) JD(¢) J2(2).
On the other hand, since w is a circular domain, for each real number 6,
(12) B, (¢, ey = B, (¢, 2)

and thus, there exists a constant C' such that B, ({’,0) = C for each ¢’ € w.
Hence, from (11), we get

(13) JO((') = C'[Ba(®(().e)]
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The following lemma is a straightforward consequence of (4) and (5):
LEMMA 3.1. For all z and ¢ in {2,
[Ba(C, 2)| < Ba(z, 2).

In the sequel, we let K be the closed unit ball of C"* and we set S =
$~1(K N 2). We shall use the following lemma:

LEMMA 3.2. There exist constants ¢ and C such that for each ' € S,
(14) c<|Jo() < C.

Proof. The latter inequality follows easily from (13) and formula (1)
for B,,. The former inequality is the particular case of Lemma 3.1 where
z=e€. m

We shall also use the following lemma:

LEMMA 3.3. For all {' and 2’ in the closure @ of w, there exists a real
number 6 = 0({',2') and there exist bounded open neighborhoods O (¢') and
O2(2") of ¢ and €2’ respectively, such that neither O(¢') nor O?(2')
intersects Z.

Proof. By an obvious argument, it suffices to prove that for all ¢’ and
2 in @, there exists a real number # such that neither e?¢’ nor e* 2’ belongs
to Z. Keeping ¢’ and 2’ fixed, let p and g denote the analytic polynomials in
C given by p(A) = Q(A2’) and ¢(\) = Q(A{’). By a contradiction argument,
we assume that the product polynomial pq is identically zero on the unit
circle. It follows that one polynomial, say p, is identically zero in the complex
plane C; but this contradicts the hypothesis p(0) = ¢(0) =1. =

3.2. Proof of Theorem 1 and of the necessity part of Theorem 2 in w. In
the sequel, for each compact set A in C", we let L*, (D) denote the subspace
of LP(D,dV) consisting of functions supported in A.

We assume that P, (resp. PJ) is bounded on LP(w,dV). Then by
(14), it is easy to deduce that Py (resp. Pf) is bounded from L% (£2) to
LP(K N £2,dV). In view of Theorems 1 and 2 in {2, it is then enough to
prove the following lemma:

LEMMA 3.4. Assume that Pq (resp. Pgy) is bounded from L% (£2) to
LP(K N 2,dV). Then Pq (resp. Pg) is bounded on LP(§2,dV).

Proof. At the end of the proof of Theorem 2 in {2, we proved the
analogous result in I" for the kernel k(¢, y); we again use the same argument.
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Let P denote either Py or Pf and let Q(-,-) be its kernel. Since P is
bounded from L% (£2) to LP(K N §2,dV), there exists a constant C), such
that for each C*° function f in {2 with compact support,

I ecareave]| e

{¢cen:|¢I<1}  {zen:|z|<1}
<G, [ fEPVE).
{z€2:|z|<1}
Dilating the balls IV times and using the homogeneity of the kernel @) yields
p
[ [ ecarmae)| ave

{Ce2|CISN}  {z€82:z|<N}
<G, [ fEPAV(z)
{z€82:]2|<N}
for each C* function f with compact support. When we let N tend to
infinity, we conclude that P is bounded on LP(f2). =

3.3. Proof of the sufficiency part of Theorem 2 in w. Since ®~1({oc})
is obviously contained in Z, the following lemma is a straightforward con-
sequence of Theorem 2 in {2 and (14):

LEMMA 3.5. Let K’ be a compact set in C" such that K'NZ = 0 and
the interior of K' Nw is nonempty. Then for each p € (2"71_2, 2:__22), P is
bounded from L% (w) to LP(K Nw,dV).

Now, in view of Lemma 3.3, since W X w is compact, its open covering
{70 x 0*(2)) 1 (¢, 7)) € x W}
contains a finite covering {e~% (Ojl X (9?) :j =1,...,N} and the set
K' = UL((/T}U(’T]?) is a compact set in C™ such that K/ NZ = 0.

Thus, for all positive functions f and g, we get

[ 1Bu(¢ ) (N g(¢") av (=) av(¢)

wXw

N
> [ 1Bu(¢',2)|f(2)g(¢) AV (') avV (')

J=1 =9 (9]1. xe 1% OJZ

IN

[ [ IBu(C 2)f(e 2 ) gle () dv () dV (()),

K'Nw K'Nw

IN
e

since w is circular. By Lemma 3.5, it is then easy to conclude that P} is
bounded on LP(w,dV’) when p € (2"7: 2 277::22). This concludes the proof of
Theorem 2 in w. m
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4. Proofs of Theorems 3 and 4

4.1. Proof of Theorem 4. Since P, is a self-adjoint operator, it suffices
to prove that P, is unbounded from L? (w,dV) to L'(w,dV) when p/ €
(1, 3737;2). Furthermore, as at the beginning of the proof of Theorem 1 in
w (cf. 3.2), it is enough to prove that for such a p’, Py is unbounded from

L%(Q) to LY(K N 2,dV). Let b, 7 € (0,1/2), denote the Euclidean ball of
radius 7/(100n), centered at (i7/16,i7,0,...,0). This ball is contained in
£2; then by the mean value formula, there exists a constant C,, such that for
each s € 2 and each 7 € (0,1/2),

Poxe, (€) = Cpum®"Bg((, (i1/16,i1,0, . .., 0)).
Hence, by (3), we get

(15) [ 1P2xs. (Q)1dV(¢) > € 1(7/16,7,0,....,0)
KN

where, for each y € I', we set

(16) I(y) = i k(t,y) dt.

{tert<1,t2<1}
The key lemma is the following:

LEMMA 4.1. There exists a constant C,, such that, for each y € I' such
that y1 < y2/16 and y2 < 1/2,

(17) 1(y) = Cuyy "7,
Proof. Let b denote the ball in R"~2 given by

b= {(t3,...,tn) D> ity <1-y +Zy§-/y2}.
J=3 j=3

Then for each (t3,...,t,) € b, the interval {t; € R: 377 512/ts < t; < 1}
contains the interval {t; : 0 < t; — Z?:?) t5/ty <41 — Z?:?) Y3 /y2}. Now, in
view of (8), we get

> %2)

I(y) > C, —
(y) = <y1 s

1
—n/2
xf(t2+y2)*”/2( f(p(y,tg,...,tn)dtg...dtn) dts.
0 b

On the other hand, under the assumption y; < y5/16, the ball b contains
the ball

n 2 n 2

Yal; Y2 (t2 + y2) 2 j=3t;
V=< (t ...tnzg . — J == :
{( 3 ’ ) <y] to > < to Y1 Yo )

Jj=3
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thus,

S, yf»)l [tz(tz + yz)} n/2-1

[ o2 dts.. . dt, > C, <y1 -
b Y2

Y2
Furthermore, since yo < 1/2, we get
1
I(y) > Coyy "/*1! f (t2 +y2) 1572 Lty > Cryy P
1/2
In view of (17), the left hand side of (15) is greater than C,,73"/?*; thus,
the boundedness of Py from L (£2) to L'(K N $2,dV) implies the existence

of a constant C), such that, for each 7 < 1/2, /241 < CpTQ”/ " Therefore
the condition p’ > 4n/(3n + 2) is necessary. This concludes the proof of
Theorem 4.

4.2. Proof of Theorem 3. Let (E) denote the estimate
p
E) J ( J \Bw<<’7z’>ldV<C’)) dV (2') < co.

w

It is easy to reduce Theorem 3 to the following equivalence: (E) holds

if and only if p € (O, %) Furthermore, in view of the end of the proof

of Theorem 2 in w (cf. 3.3), estimate (E) is equivalent to the following
estimate: for each compact set K’ in C" such that K' N Z = (),

P
(E) J () 1Bu¢ 2)lavz)) av(c) < oc.

K'Nw K'nw
When carried over to the unbounded domain {2, estimate (E’) takes the
following form:

(E") [ (f 1Baalav) avie) < o,

KN2 KN
where K = {z € C" : |z| < 1}. But in view of Proposition 2.3, (E”) is
equivalent to
(18) I, = |/ (I(t))P dt < oo,
{telrt1<1,t2<1}

where I(t) is the integral given by (16).
We first assume (18). In view of (17),

1/2
I,>C, f 752—(71/2—1)19 dt — C;j f 7j;L—l—(n/Q—l)p dts.
{teF:t1§t2/16,t2<1/2} 0

This last integral converges only if p < 2n/(n — 2). This proves the necessity.
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Conversely, assume that p < 2n/(n — 2). To get (18), the key lemma is
the following:

LEMMA 4.2. There exists a constant C, such that for each t € I' such
that t1 < ty < 1, the integral I(t) given by (16) satisfies

n
-1
I(t) < Cuty ™/*7Y log4(t1 — 1! Zt?) .

=3
Proof. In view of (8), we get
1

2
(19) f k(t,y) dy; < m(tg + yg)_n/2[gp(t,y27 . ,yn)]_”/QH.

IR TL T
Integrating next with respect to dys ... dy, gives
(20) f [QO(t, Y2, .- 7yn)]_n/2+1 dy3 . dyn - ]1(t7y2) +I2(t7?/2)7

Z?;gy]2-<y2
where I (t, y2) is the integral over the set

= ta > o (y; — yats/t2)? > gty
E = 3, :g Y2 < yo, = < ”}
1 {(y yn) =~ J yg(t2+u2) to

and I5(t,y2) is the integral over the set

= ty D5 (yj — yatj/t2)? S gt
EzZ{(yg,-..,yn):E Y7 <y, S ’ >t H}
=3

L=
y2(ta + u2) to

Clearly I1(t,y2) is bounded by (¢; — Z?:s t?/t2>_n/2+1‘E1’, which gives
yalta +92) "7
to '

Since 0 < t; < ty < 1 implies that 2?23 t? < ty, we get

n/2—-1 n 29 —n/2+1
to +u t.
Ix(t,y2) < [92(22)} f [Z <yj - y2j> ] dys . ..dy,,

t2 t2

(21) Il(t,yg) S Cn|:

j=3
where the integral on the right hand side is taken over

{(y& ey Yn) = E?:?’ t?/m)yQ(tQ t 1) < i (yj - y2tj)2 < 4y2}.

to to

j=3
Thus,

n/2—1 n _
Ya(t2 + y2) i ,2) !
(22)  Lo(t,ys) < O [b] log4<t1—t2 > B:tj) .
=
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Now, from (18), (20), (21) and (22), we conclude the proof by integrating
over ys. m

We can now prove (18) under the assumption that p < 2n/(n —2). In
view of Lemma 4.2, it is enough to prove that, for such a p,

RN AIDY =L AN
(23) i t; t - dt < oo
{tel0<t1<ta<1} 2

for some € > 0. But for € < 1/p, this integral is equal to
1
Csp ]‘t;t—l—gp—(n/2—1)p dts.
0

For p < 2n/(n—2), we may take ¢ < inf{l/p,n/p — n/2 + 1} to have
convergence. m

Remark. In view of the homogeneity of the Bergman kernel of the
unbounded domain {2, it is easy to show that the statements analogous to
Theorems 3 and 4 are false in 2. However, the following local statements
hold:

THEOREM 4.3. The operator Pf, is bounded from L9 (£2) to LP(K N
2,dV) if and only if p < 2n/(n — 2).

THEOREM 4.4. The Bergman projection Pq is unbounded from L3 (S2)
to LP(K N §2,dV') when p > 4n/(n — 2).

5. Proofs of Theorems 6 and 7

5.1. The Szegé projection of w: preliminary results. The Shilov bound-
ary Ogw of the Lie ball w of C™", n > 3, is given by

Oow = {ewx :0€0,2m),x € Sy}

where S,,_1 denotes the unit sphere of R”. An invariant measure on Jdyw
is do(er) = df du(z), where du is the Lebesgue measure on S,,_;. The
Szegd and Bergman kernels of w are respectively given by the following
formulae [9]: for e?z € dow and ¢’ € @ such that ¢’ # ez,

S.(¢ e?x) =1, {1 —2e Wy e ( Zn: C;-z)] 7n/2;
j=1

respectively for ¢’ and 2’ in C™,

B.((, ) =1 [1 _ 207 (En: <§2) (izf)} -
j=1

Jj=1
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On the other hand, the Szeg6 kernel of §2 is given by (cf. [8])
n —n/2
SQ(S + Zt,fE) = Cn |:(Sl — X1 + itl)(SQ — X2 + Y,tg) — Z(Sj - IEj + itj)Q 5
j=3
where s 4 it € {2 and = € R". So, in view of (11), for all ¢/ € W\ Z and
er € Jyw \ Z such that ¢’ # ez,
(24) [Su (¢, e a)]? = [Sa(@(C), B(e”x))]* T (¢ JB(ex).

We shall use the following lemma;:

LEMMA 5.1. Let E denote the complement of ®~1({oo}) in dow. There
exists a C* real function 1 in R™ such that for each ez € E, if s = ®(ex),
then

do(e?z) = n(s)ds.
Moreover, if A is a compact set in R™, then there exist two positive constants
c and C such that for each s € A,
c<In(s)) <C.
Proof. @: E — R" is a C* diffeomorphism. =

5.2. Proof of Theorem 6. By a contradiction argument, we assume that
there exists a p € (1,00), p # 2, such that the Szegd projection of w is
bounded on LP(Jyw,do). Then there exists a constant C, such that for
each compact set K’ in C" satisfying K’ N Z = () and for each C* function
f with compact support in dyw,

. . . . p .
f lim f S, (ree, e ) f(ex) da(ew:v)‘ do(e'¥¢)

r—1
K’ﬂaow K’ﬂ@ow

<G [ (@) do(ex).

K’ﬁ@ow

We are going to carry over this estimate to the Shilov boundary R of the
tube 2. We set s = ®('%¢), u = P(e'x) and we define a family of curves
in 2 by 7,.(s) = @(re¥€), r € [0,1). Then vo(s) = e, and lim, 1 v,(s) = s.
Moreover, in view of (24) and Lemma 5.1, one easily shows that there exists
a constant C), such that for each C*> function g with compact support in
the unit ball of R™,

(25) ‘ll“i [ SQ(’yT(S),u)g(u)du‘pdsng [ lg(s)Pds.
[s|<1 lul<1 ls|<1

Then the analytic continuation to {2 of its Szegd projection belongs to
H?(£2) and hence (cf. [13], p. 119), it has restricted nontangential lim-
its for almost every s € R™. Moreover, the boundary value function in this



98 D. BEKOLLE AND A. BONAMI

sense coincides with the Szeg6 projection Spg of g. On the other hand, for
s € R™ fixed, the curve {7,(s) : 0 <r < 1} is the image by @ of a radius in
w; then it is easy to show that there exists a proper subcone I of I" and a
positive number « such that for each s in the compact set {s € R™ : |s| < 1},

(i) the imaginary part of y(s) belongs to Iy and
(i) [Rer(5) — 5| < afTm 4, (5)].

(The curve r — ~,(s), which goes inside I" from s, has a tangent vector

d%fy(s) |r—1 whose imaginary part is # 0 and belongs to some proper subcone.

So Im ,-(s) is in some proper subcone of I" for 1—r small by Taylor’s formula.
All constants may be uniformly bounded on compact sets.)

So, by restricted nontangential convergence, for |s| < 1,

}1_)1111 f So(yr(s),u)g(u) du = Spg(s) ae.,
R"

and by Fatou’s lemma, we deduce from (25) that

(26) [ Seg)|ds<c, [ et s
)

{seR™:|s|<1}

Dilating the balls N times in (26) and using the homogeneity of the Szegd
kernel yields

[ ISegs)Pds<C, [ lg(s)lPds
{seR™:|s|<N} R™

for g compactly supported.

Now, when we let N tend to infinity, we conclude that for each C*
function g with compact support,

[ 18ags)lPds < C, [ lg(s)lP ds.
Rﬂ, Rn

This contradicts the negative result for the tube 2 stated as Theorem 5 in
the introduction. m

5.3. Proof of Theorem 7. Assume that S, is bounded from L*>(dyw) to
L1(Qyw,do). We carry over this estimate to the Shilov boundary R™ of (2.
As in the proof of Theorem 6 (see 5.2), in view of (24) and Lemma 5.1, we
have the following: there exists a constant C, such that for each bounded
function g supported in the closed ball b = {s € R™ : |s| < y/n},

(27) [ 1a9()l* ds < Cyllgle.
b
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Thus, in the particular case where g is the characteristic function of bN(—1"),
estimate (27) implies

|/ (I(t))P dt < oo,

{ter:t1<1,t2<1}

where I(t) is the integral given by (16). Now, one realizes that this last
estimate is nothing but estimate (18) and we proved in 5.2 that the condition
p < 2n/(n —2) is necessary for its validity. This concludes the proof of

Theorem 7.
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