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THE SOLVABILITY OF
THE DIOPHANTINE EQUATION D1x

2 −D2y
4 = 1

BY

MAOHUA LE (ZHANJIANG)

1. Introduction. Let Z, N denote the sets of integers and positive
integers respectively. Let D1, D2 ∈ N such that gcd(D1, D2) = 1 and D1D2

is not a square. Many papers concerning the equation

(1) D1x
2 −D2y

4 = 1, x, y ∈ N,

were written by Cohn, Ljunggren, Măırullin, Mordell and Obláth. In this
paper we deal with the solvability of (1). Clearly, if (x, y) is a solution of (1),
then (x, y2) is a solution of the equation

(2) D1u
2 −D2v

2 = 1, u, v ∈ Z,

with x > 0 and y2 > 0. Since D1D2 is not a square, (2) has a unique solution
(u1, v1) such that u1 > 0, v1 > 0 and u1

√
D1 + v1

√
D2 ≤ u

√
D1 + v

√
D2,

where (u, v) runs over all solutions of (2) with u > 0 and v > 0. The
solution (u1, v1) is called the least solution of (2). In this paper, using the
Ko–Terjanian–Rotkiewicz method (cf. [3]), we prove the following result:

Theorem. If min(D1, D2) > 1, then (1) has solutions (x, y) if and only
if the least solution (u1, v1) of (2) satisfies

(3) v1 = dk2, d, k ∈ N, d is square free,

and (εd
1 − εd

1)/(2
√

D2) is a square, where

(4) ε1 = u1

√
D1 + v1

√
D2, ε1 = u1

√
D1 − v1

√
D2.

2. Lemmas

Lemma 1 ([2]). For min(D1, D2) > 1, if (2) has solutions (u, v), then all
solutions (u, v) of (2) with u > 0 and v > 0 are given by

u
√

D1 + v
√

D2 = (u1

√
D1 + v1

√
D2)t,

where t ∈ N with 2 - t, and (u1, v1) is the least solution of (2).
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Lemma 2 ([1, p. 117]). For any n ∈ N and any complex numbers α, β,

αn + βn =
[n/2]∑
i=0

(−1)i n

i

(
n− i− 1

i− 1

)
(α + β)n−2i(αβ)i.

Lemma 3. For min(D1, D2) > 1, let (u, v) be a solution of (2) with u > 0,
v > 0, and let

ε = u
√

D1 + v
√

D2, ε = u
√

D1 − v
√

D2.

Further , for any m ∈ Z with 2 - m, let

(5) F (m) =
εm − εm

ε− ε
.

Then the F (m) ∈ Z satisfy :

(i) F (m) = −F (−m).
(ii) If m > 0, then F (m) ∈ N satisfies F (m) ≡ m (mod 4D2v

2).
(iii) For any m′ ∈ Z with 2 - m′, F (m) ≡ F (m− 2m′) (mod F (m′)).

P r o o f. Since εε = 1, we have F (m) = −F (−m). For m > 0, by
Lemma 2, we get

F (m) =
εm + (−ε)m

ε + (−ε)
=

(m−1)/2∑
i=0

m

i

(
m− i− 1

i− 1

)
(ε− ε)m−2i−1(εε)i(6)

=
(m−1)/2∑

i=0

m

i

(
m− i− 1

i− 1

)
(4D2v

2)(m−1)/2−i

≡ m (mod 4D2v
2).

This implies (ii).
For any m,m′ ∈ Z with 2 - mm′, by Lemma 2, we have

εm−m′
+ εm−m′

= ε|m−m′| + ε|m−m′|

=
|m−m′|/2∑

j=0

(−1)j |m−m′|
j

(
|m−m′| − j − 1

j − 1

)
× (4D1u

2)|m−m′|/2−j ∈ Z.

Hence, from

εm − εm

ε− ε
= (εε)m′

(
εm−2m′ − εm−2m′

ε− ε

)
+ (εm−m′

+ εm−m′
)
(

εm′ − εm′

ε− ε

)
we see that (iii) is true. The lemma is proved.
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Lemma 4. Let m,m1 ∈ N with m > m1 > 1 and gcd(m,m1) = 1. Then
there exist m2, . . . ,ms, a1, . . . , as−1 ∈ N such that

(7) m1 > m2 > . . . > ms = 1, 2 - m2 . . .ms,

(8) m = 2a1m1 + δ1m2, mj−1 = 2ajmj + δjmj+1, j = 2, . . . , s− 1,

where δi ∈ {−1, 1} for i = 1, . . . , s− 1.

P r o o f. Use the Euclidean algorithm.

Lemma 5. Let m,m1 ∈ N satisfy m > m1 > 1 and gcd(m,m1) = 1, and
let m2, . . . ,ms, δ1, . . . , δs−1 be defined as in Lemma 4. Then(

m

m1

)
= (−1)Σ

s−1
i=1

δi−1
2 ·mi−1

2 +Σs−2
j=1

mj−1
2 ·

mj+1−1
2 ,

where (m/m1) is the Jacobi symbol.

P r o o f. This is clear from the basic properties of the Jacobi symbol.

Lemma 6. Let m ∈ N satisfy m > 1, m ≡ 1 (mod 4) and suppose m is
not a square. Then there exists m1 ∈ N such that m > m1 > 1, 2 - m1 and
(m/m1) = −1.

P r o o f. By assumption, m = p1 . . . prm
′2, where p1, . . . , pr are distinct

odd primes and m′ ∈ N with 2 - m′. Then there exists a non-residue a
modulo p1. Further, by the Chinese remainder theorem, there exists a b ∈ N
such that

(9) b ≡ a (mod p1), b ≡ 1 (mod pj), j = 2, . . . , r.

Let

(10) c =
{

b if gcd(b, m′) = 1,
b + p1 . . . pr if gcd(b, m′) > 1.

Since gcd(b, p1 . . . pr) = 1 by (9), we see from (10) that c ∈ Z with gcd(c,m)
= 1. Hence, by (9) and (10), we get(

c

m

)
=

(
c

p1

)
. . .

(
c

pr

)(
c

m′2

)
=

(
c

p1

)
. . .

(
c

pr

)
(11)

=
(

b

p1

)
. . .

(
b

pr

)
=

(
a

p1

)
= −1.

Let c0,m1 ∈ Z satisfy c0 ≡ c (mod m), 0 ≤ c0 < m and

m1 =
{

c0 if 2 - c0,
m− c0 if 2 | c0.

Notice that m ≡ 1 (mod 4) and 2 - m1. We see from (11) that (m/m1) = −1.
The lemma is proved.
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Lemma 7. The equation

(12) F (m) = z2, m, z ∈ N, m > 1, 2 - m and m is not a square,

has no solution (m, z).

This is a special case (M = 1, L = 4u2D1) of Theorem 3 of [3].

3. Proof of Theorem. The sufficiency being clear, it suffices to prove
the necessity. Assume that (1) has solutions (x, y). Then (1) has a unique
solution (x1, y1) such that

(13) x1

√
D1 + y2

1

√
D2 ≤ x

√
D1 + y2

√
D2,

where (x, y) runs over all solutions of (1). Notice that (x1, y
2
1) is a solution

of (2) with x1, y
2
1 ∈ N. Let (u1, v1) be the least solution of (2). By Lemma 1,

we have

(14) x1

√
D1 + y2

1

√
D2 = (u1

√
D1 + v1

√
D2)t,

where t ∈ N with 2 - t.
If t = 1, then (14) shows that v1 = y2

1 and the theorem holds. Let ε1, ε1

be defined as in (4), and let

F1(m) =
εm
1 − εm

1

ε1 − ε1

for any m ∈ Z with 2 - m. If t > 1, then

(15) y2
1 =

εt
1 − εt

1

2
√

D2

= v1F1(t),

by (14). We deduce from (15) that

(16) v1 = c1y
2
11

and

(17) F1(t) = c1y
2
12,

where c1, y11, y12 ∈ N satisfy c1y11y12 = y1. By Lemma 3(ii), we have
F (t) ≡ t (mod v1), hence, by (16) and (17),

(18) t ≡ 0 (mod c1).

We now suppose that t has a divisor p2, where p is an odd prime. Let

(19)
u2

√
D1 + v2

√
D2 = (u1

√
D1 + v1

√
D2)t/p,

u3

√
D1 + v3

√
D2 = (u1

√
D1 + v1

√
D2)t/p2

.
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By Lemma 1, (u2, v2) and (u3, v3) are solutions of (2) with u2, v2, u3, v3 ∈ N.
Further, let

(20)
ε2 = u2

√
D1 + v2

√
D2, ε2 = u2

√
D1 − v2

√
D2,

ε3 = u3

√
D1 + v3

√
D2, ε3 = u3

√
D1 − v3

√
D2,

and let

(21) F2(m) =
εm
2 − εm

2

ε2 − ε2
, F3(m) =

εm
3 − εm

3

ε3 − ε3
,

for any m ∈ Z with 2 - m. Then, by (14), we have

y2
1 =

εp
2 − εp

2

2
√

D2

= v2F2(p).

This implies that

(22) v2 = c2y
′2
11, F2(p) = c2y

′2
12,

where c2, y
′
11, y

′
12 ∈ N satisfy c2y

′
11y

′
12 = y1. By Lemma 3(ii), F2(p) ≡ p

(mod v2), hence, by (22), p ≡ 0 (mod c2). This implies that either c2 = 1
or c2 = p. From (22), if c2 = 1, then F2(p) is a square, which is impossible
by Lemma 7. Therefore, c2 = p and

(23) v2 = py′2
11, F2(p) = py′2

12,

by (22). On the other hand, we see from (19)–(21) that

(24) v2 = v3F3(p).

The combination of (23) and (24) yields

(25) v3 =
{

c3y
2
111,

c3py2
112,

F3(p) =
{

c3py2
112,

c3y
2
111,

where c3, y111, y112 ∈ N satisfy c3y111y112 = y′
11. Notice that F3(p) is never a

square by Lemma 7. By much the same argument as above, we can find from
(25) that c3 = 1 or p, and v3 is a square. Since (u3, v3) is a solution of (2),
it follows that (u3,

√
v3) is a solution of (1) satisfying u3

√
D1 + v3

√
D2 <

x1

√
D1 + y2

1

√
D2 by (19), which contradicts our assumption (13). Thus, t

is square free and so is c1 by (18).
If t 6= c1, then t has an odd prime divisor q with q - c1 by (18). Let

(26) u4

√
D1 + v4

√
D2 = (u1

√
D1 + v1

√
D2)t/q,

(27) ε4 = u4

√
D1 + v4

√
D2, ε4 = u4

√
D1 − v4

√
D2,

and let

(28) F4(m) =
εm
4 − εm

4

ε4 − ε4
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for any m ∈ Z with 2 - m. Then, by (14) and (26)–(28), we have y2
1 =

v4F4(q), whence

(29) v4 = c4y
2
13, F4(q) = c4y

2
14,

where c4, y13, y14 ∈ N satisfy c4y13y14 = y1. Using the same method, by
(26) and (29), we can prove that c4 = q and

(30) v4 = qy2
13 =

ε
t/q
1 − ε

t/q
1

2
√

D2

= v1F1(t/q).

Substituting (16) into (30) gives

(31) F1

(
t

q

)
=

qy2
13

c1y2
11

.

Notice that F1(t/q) ∈ N and q - c1. We see from (31) that q | y11, q | y13,
q |F1(t/q) and q | v1 by (16), a contradiction. Thus, we deduce that t = c1

and the necessity is proved by (14) and (16), since t is square free. The
proof is complete.

R e m a r k. By much the same argument as in the proof of the Theorem,
we can prove a similar result for the case min(D1, D2) = 1.
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