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THE SOLVABILITY OF
THE DIOPHANTINE EQUATION Dix? — Doy* = 1

BY

MAOHUA LE (ZHANJIANG)

1. Introduction. Let Z, N denote the sets of integers and positive
integers respectively. Let Dy, Dy € N such that ged(Dy, D2) = 1 and Dy D,
is not a square. Many papers concerning the equation
(].) D1$2 — D2y4 = ]_, T,y € N,

were written by Cohn, Ljunggren, Mairullin, Mordell and Oblath. In this
paper we deal with the solvability of (1). Clearly, if (x,y) is a solution of (1),
then (z,y?) is a solution of the equation

(2) Diu? —Dyv? =1, wu,ve’,

with z > 0 and y? > 0. Since Dy D, is not a square, (2) has a unique solution
(u1,v1) such that uy > 0, v1 > 0 and u;v/Dy + viv/ Doy < uy/Dy + vy/Da,
where (u,v) runs over all solutions of (2) with v > 0 and v > 0. The
solution (u1,v1) is called the least solution of (2). In this paper, using the
Ko—Terjanian—Rotkiewicz method (cf. [3]), we prove the following result:

THEOREM. If min(Dy, D) > 1, then (1) has solutions (x,y) if and only
if the least solution (u1,v1) of (2) satisfies

(3) v =dk?,  d,keN, dis square free,
and (¢ —2)/(2/Ds) is a square, where

(4) €1 =u1\/ D1 +viv/ Do, g1 =ui/ D1 —viv/Ds.

2. Lemmas

LEMMA 1 ([2]). For min(D1, D2) > 1, if (2) has solutions (u,v), then all
solutions (u,v) of (2) with u >0 and v > 0 are given by

uﬂ—l—vﬁ = (ulm+01@)t,

where t € N with 21t, and (u1,v1) is the least solution of (2).

1991 Mathematics Subject Classification: 11D25, 11A15.
Supported by the National Natural Science Foundation of China.

[165]



166 M.-H. LE

LEMMA 2 ([1, p. 117]). For any n € N and any complex numbers o, (3,
(/2] nin—i—1
n n __ A n—21 %
= S (M ek iy tasy

LEMMA 3. For min(Dy, D2) > 1, let (u,v) be a solution of (2) with u > 0,
v >0, and let

E = U/ D1+’U\/ DQ, ?zu\/Dl—v\/DQ.
Further, for any m € Z with 2¢m, let
(5) F(m) = ———

Then the F(m) € Z satisfy:
(i) F(m) = —F(—m).
(i) If m > 0, then F(m) € N satisfies F(m) =m (mod 4Dyv?).
(iii) For any m' € Z with 2¢m’, F(m) = F(m — 2m/) (mod F(m')).

Proof. Since e = 1, we have F(m) = —F(—m). For m > 0, by
Lemma 2, we get
_ (m—1)/2 .
em+ (—g)™ m(m—i—1 i1/ i
F = - = R _ m 2 7
(6) F(m) c+ (=9 ; ; < i1 >(€ £) (€8)
(m /2 m(m—1—1 )
— o 4D 2\(m—1)/2—1
SR ame

=m (mod 4Dyv?).

This implies (ii).
For any m, m’ € Z with 2¢fmm/, by Lemma 2, we have

€mfm’ _|_§mfm’ :6|mfm’| +§|mfm/|
|m—m/'|/2 .
(5
= J J—1

x (4Dyu?)m=m1/2=i ¢ 7,

Hence, from

— —2m’  =m—2m/ m —-m

gm —gm o™ — ¢ s (™ —F

—_— = (€E)m — + (Em m + Em m ) E—
E—F E—F

we see that (iii) is true. The lemma is proved.
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LEMMA 4. Let m,my € N with m > my > 1 and ged(m,my) = 1. Then

there exist mo, ..., Mg, a1,...,05_1 € N such that
(7) my>me>...>mg=1, 2{ma...ms,
(8) m = 2a1mq + d1mao, mji_1 = 2ajmj + 5jmj+1, 7=2,...,8—1,

where 0; € {—1,1} fori=1,...,s — 1.
Proof. Use the Euclidean algorithm.

LEMMA 5. Let m,my € N satisfy m > my > 1 and ged(m,m1) =1, and

let ma,...,mg,01,...,0s_1 be defined as in Lemma 4. Then
s—16;—1 m;—1 s—oami;—1 mj;iq—1
m — (_]_)Eizl T2 T2 +2j:1 =15 ,

my

where (m/my) is the Jacobi symbol.
Proof. This is clear from the basic properties of the Jacobi symbol.

LEMMA 6. Let m € N satisfy m > 1, m =1 (mod 4) and suppose m is

not a square. Then there exists my € N such that m > my > 1, 2tmy and
(m/mq) = —1.

Proof. By assumption, m = p; ...p,m’2, where p1,...,p, are distinct
odd primes and m’ € N with 2¢m/. Then there exists a non-residue a
modulo p;. Further, by the Chinese remainder theorem, there exists a b € N
such that

(9) b=a (modp;), b=1 (modp;), j=2,...,r
Let

_Jb if ged(b,m’) =1,
(10) C_{b—i—pl...pr if ged(b,m’) > 1.

Since ged (b, p1 ... pr) = 1 by (9), we see from (10) that ¢ € Z with ged(c, m)
= 1. Hence, by (9) and (10), we get

@6 (E)-6) @
() ()-()

Let ¢y, my € Z satisfy ¢o = ¢ (mod m), 0 < ¢g < m and

ml:{c(] if 2t co,

m—co if 2|cp.

Notice that m = 1 (mod 4) and 2¢m;. We see from (11) that (m/m4) = —1.
The lemma is proved.
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LEMMA 7. The equation
(12) F(m)=2%m,z€N, m>1, 2tm and m is not a square,
has no solution (m,z).

This is a special case (M = 1, L = 4u?D1) of Theorem 3 of [3].

3. Proof of Theorem. The sufficiency being clear, it suffices to prove
the necessity. Assume that (1) has solutions (z,y). Then (1) has a unique
solution (x1,y;) such that

(13) w17/ Dy + yiv/Da < 2/ Dy + y*/ Do,

where (z,y) runs over all solutions of (1). Notice that (z1,y?) is a solution
of (2) with z1,y? € N. Let (uy,v1) be the least solution of (2). By Lemma 1,
we have

(14) 21v/ D1 + yi\/Ds = (u1y/D1 +v1y/Da)’,

where t € N with 2{¢.
If t = 1, then (14) shows that v; = y? and the theorem holds. Let &1, &1
be defined as in (4), and let

g -z
Fi(m) = S
€1 — €1

for any m € Z with 2¢m. If ¢t > 1, then

(15) yi = 2\/_D72 =v1Fi(1),
by (14). We deduce from (15) that

(16) v = eyt

and

(17) Fi(t) = a1yt

where c¢1,y11,y12 € N satisfy ci1y11912 = y1. By Lemma 3(ii), we have
F(t) =t (mod vy), hence, by (16) and (17),

(18) t=0 (mod ¢q).

We now suppose that ¢ has a divisor p?, where p is an odd prime. Let
uzv/Dy +v2y/D2 = (u1/Dy + v1/D2)"?,
ug\/Dy + v/ Dy = (ulm+v1@)t/p2.

(19)
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By Lemma 1, (ug2,v2) and (us, vs) are solutions of (2) with us, va, us,vs € N.
Further, let

€2 = ug\/ D1 +vo/ Do, Eo =1us\/ D1 —v2v/Do,

(20)
€3 =uz\/ D1 +v3\/ Dy, E3=uz\/Di—v3\/Dao,
and let
et — et et — gt
21 Fy(m) =22 Fm)="2-2
( ) 2(m) £o _gz ) S(m) €3 _53 )

for any m € Z with 2¢m. Then, by (14), we have

2_812)_512]_2}1_7( )
yl - 2\/D72 = Va21L'2(P
This implies that

(22) vy =Yy, Falp) = oy,

where c2,9]1,912 € N satisfy coyj1ys = y1. By Lemma 3(ii), Fx(p) = p
(mod v2), hence, by (22), p = 0 (mod c¢3). This implies that either co = 1
or co = p. From (22), if co = 1, then F5(p) is a square, which is impossible
by Lemma 7. Therefore, co = p and

(23) ve=py,  Fa(p) = pyis,
by (22). On the other hand, we see from (19)—(21) that
(24) Vg = ’U3F3(p).
The combination of (23) and (24) yields
2 2

— J €3¥1115 _ ) C3PYT12:
25 V3 = F =
( ) s { 63py%12, 3(p) {039511,

where ¢3, Y111, Y112 € N satisfy c3y111y112 = ¥} Notice that F5(p) is never a
square by Lemma 7. By much the same argument as above, we can find from
(25) that c3 =1 or p, and v3 is a square. Since (us,vs) is a solution of (2),
it follows that (us,/vs) is a solution of (1) satisfying usv/Dy + v3v/Day <
r1v D1 + y?+v/Da by (19), which contradicts our assumption (13). Thus, ¢
is square free and so is ¢; by (18).

If t # c1, then t has an odd prime divisor ¢ with ¢fc; by (18). Let

(26) us/ D1 + Vg Dy = (ulv Dy + v/ Dg)t/q,
(27) €4 = Ugr\/ D1 4+ v4/ D2, g4 = ug\/ D1 — vg4r/ Do,
and let

eyt — &y’
28 Fu(m) =4 =4
(28) am) = ——
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for any m € Z with 2fm. Then, by (14) and (26)—(28), we have y? =
v4Fy(q), whence

(29) va = cayiy,  Fa(q) = catiy,

where ¢y, 413,914 € N satisfy cqy13y14 = y1. Using the same method, by
(26) and (29), we can prove that ¢4 = ¢ and

) 8i/q _gg/q
30 = = =——— =1 Fi(t/q).
(30) V4 = QY13 2/Ds v1F1(t/q)

Substituting (16) into (30) gives
2

q c1yir
Notice that Fi(t/q) € N and gfci;. We see from (31) that q|vyi1, q|vis,
q| Fi(t/q) and q|v; by (16), a contradiction. Thus, we deduce that t = ¢;
and the necessity is proved by (14) and (16), since ¢ is square free. The
proof is complete.

Remark. By much the same argument as in the proof of the Theorem,
we can prove a similar result for the case min(Dy, D) = 1.
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