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MINIMAX THEOREMS WITH APPLICATIONS
TO CONVEX METRIC SPACES

BY

JÜRGEN K INDLER (DARMSTADT)

A minimax theorem is proved which contains a recent result of Pinelis
and a version of the classical minimax theorem of Ky Fan as special cases.
Some applications to the theory of convex metric spaces (farthest points,
rendez-vous value) are presented.

1. Preliminaries. Throughout this paper let two nonvoid sets X and
Y , a nonvoid convex subset C of R ∪ {−∞} and a function a : X × Y → C
with

sup
x∈X

a(x, y) ∈ C ∀y ∈ Y

be given. The following notation will be used:

• We set

sup a := sup{a(x, y) : x ∈ X, y ∈ Y },
a∗ := inf

y∈Y
sup
x∈X

a(x, y),

Y ∗ := {sup
x∈X

a(x, ·) = a∗} = {y ∈ Y : sup
x∈X

a(x, y) = a∗},

X̂ :=
⋂

y∈Y

{a(·, y) = sup a},

X(y) := {a(·, y) = sup
x∈X

a(x, y)}, y ∈ Y,

X(B) :=
⋂

y∈B

X(y), B ⊂ Y, with X(∅) = X,

R := {{a(·, y) ≥ λ} : y ∈ Y, λ ∈ R ∪ {−∞}},
B := smallest σ-algebra on X containing R and the singletons {x},

x ∈ X, and
H := {S ⊂ X : every function a(·, y), y ∈ Y, is constant on S}.
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• We denote by Ψ(C) the set of all functions ψ : C × C → C with the
following properties:

(1) ψ is concave,
(2) ψ is nondecreasing in both variables,
(3) α, β ∈ C ∩ R, α 6= β ⇒ ψ(α, β) < α ∨ β, and
(4) −∞, α ∈ C ⇒ ψ(α,−∞) = ψ(−∞, α) = −∞.

• A nonvoid system of subsets of some set is called (countably) compact
iff every (countable) subsystem with the finite intersection property has
nonvoid intersection.

Finally, the following reformulation of a recent “minimax theorem with
one-sided randomization” [12] will be used in the sequel:

Theorem A. Let R be countably compact , and suppose that for some
ψ ∈ Ψ(C),

(5) ∀y1, y2 ∈ Y ∃y0 ∈ Y ∀x ∈ X : a(x, y0) ≤ ψ(a(x, y1), a(x, y2)).

Then there exists a probability measure p∗ on B with

(6) inf
y∈Y

∫
a(·, y) dp∗ = inf

y∈Y
sup
x∈X

a(x, y).

P r o o f. Apply Theorem 2 in [12] to F = {−a(·, y) : y ∈ Y }, η(α) = α,
ξ(α, β) = −ψ(−α,−β), α, β ∈ D := −C.

• In the following we say that a is ψ-convex (w.r.t. some ψ ∈ Ψ(C)) iff
condition (5) is satisfied.

2. Main results. The following lemma summarizes some useful facts:

Lemma 1. (a) a∗ = −∞⇒ X(y∗) = X ∀y∗ ∈ Y ∗.
(b) X(y) ∈ R ∀y ∈ Y .
(c) If R is countably compact , then X(y) is nonvoid for every y ∈ Y .
(d) Condition (6) implies p∗(X(y∗)) = 1 for every y∗ ∈ Y ∗. In particu-

lar , X(Z) is nonvoid for every countable Z ⊂ Y ∗.

P r o o f. (a) and (b) are obvious, and (c) follows from the equality
X(y) =

⋂
n∈N{a(·, y) ≥ supx∈X a(x, y)− 1/n}, y ∈ Y .

(d) By (a) we may assume a∗ ∈ R. For y∗ ∈ Y ∗ we have a(·, y∗)−a∗ ≤ 0,
but (6) implies

∫
[a(·, y∗)− a∗] dp∗ ≥ 0, hence p∗(X(y∗)) = 1.

Now we can present our main results:

Theorem 1. Suppose that R is countably compact and a is ψ-convex
w.r.t. some ψ ∈ Ψ(C). Let x∗ ∈ X and y∗ ∈ Y ∗ satisfy

(7) a(x∗, y) ≥ a(x, y) ∀x ∈ X(y∗), y ∈ Y.
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Then (x∗, y∗) is a saddle point of a, i.e.,

a(x, y∗) ≤ a(x∗, y∗) ≤ a(x∗, y) ∀x ∈ X, y ∈ Y.

P r o o f. By Lemma 1(c) we have X(y∗) 6= ∅, hence x∗ ∈ X(y∗). Choose
p∗ according to Theorem A. Then, by Lemma 1(d), we obtain for arbitrary
x ∈ X and y ∈ Y ,

a(x, y∗) ≤ a∗ ≤
∫
a(·, y) dp∗

=
∫

X(y∗)

a(·, y) dp∗ ≤
∫

X(y∗)

a(x∗, y) dp∗ = a(x∗, y).

Theorem 2. Suppose that R is compact and a is ψ-convex w.r.t. some
ψ ∈ Ψ(C). Then

(a) X(Y ∗) is nonvoid , and
(b) X̂ is nonvoid iff Y ∗ = Y .

P r o o f. (a) Apply Theorem A and Lemma 1(b) and (d).
(b) Y ∗ = Y implies X̂ = X(Y ∗) ( 6= ∅ by (a)). Conversely, for x̂ ∈ X̂ we

have supx∈X a(x, z) ≤ infy∈Y a(x̂, y) ≤ a∗ for all z ∈ Y , hence Y = Y ∗.

3. Standard situations. As our formulation of Theorems 1 and 2 is
fairly abstract, it seems worthwhile to mention the standard situations:

R e m a r k 1. For λ ∈ (0, 1) we have µλ ∈ Ψ(R∪ {−∞}) for the weighted
arithmetic means µλ(α, β) = λα+ (1− λ)β.

If Y is a convex subset of some linear space, and if every a(x, ·), x ∈ X,
is convex, then a is µλ-convex for every λ ∈ (0, 1).

R e m a r k 2 (cf. [10]). Let X be a topological space.

(a) If X is compact and every function a(·, y), y ∈ Y , is upper semicon-
tinuous, then R is compact.

(b) If X is countably compact and every function a(·, y), y ∈ Y , is upper
semicontinuous, then R is countably compact.

(c) If X is pseudocompact (i.e., every continuous f : X → R is bounded)
and every function a(·, y), y ∈ Y , is continuous, then R is countably com-
pact.

P r o o f. (a) and (b) are obvious.
(c) Let {{a(·, yn) ≥ λn} : n ∈ N} ⊂ R have the finite intersection

property. Then f :=
∑

n∈M 2−n(a(·, yn) − λn) ∧ 0 ∨ (−1) with M := {n ∈
N : λn 6= −∞} is continuous with supx∈X f(x) = 0. Hence there exists an
x0 ∈ X with f(x0) = 0, for otherwise 1/f would be unbounded. Of course,
a(x0, yn) ≥ λn, n ∈ N.
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R e m a r k 3. For y∗ ∈ Y ∗ we have the implications

X(y∗) is a singleton ⇒ ∅ 6= X(y∗) ∈ H
⇒ condition (7) holds for every x∗ ∈ X(y∗).

Example 1. Let X be a topological space, Y a nonvoid set, and a :
X × Y → R ∪ {−∞} such that

(i) ∀y1, y2 ∈ Y ∃y0 ∈ Y ∀x ∈ X : a(x, y0) ≤ 1
2a(x, y1) + 1

2a(x, y2).

Assume, moreover, that either

(ii.1) X is countably compact, and every function a(·, y), y ∈ Y , is upper
semicontinuous, or

(ii.2)X is pseudocompact, and every function a(·, y), y ∈ Y , is continuous.

Then for every y∗ ∈ Y ∗ with X(y∗) ∈ H the set X(y∗) is nonvoid, and for
x∗ ∈ X the pair (x∗, y∗) is a saddle point of a iff x∗ ∈ X(y∗).

P r o o f. By Remark 2(b), resp. (c), and Lemma 1(c) every set X(y),
y ∈ Y , is nonvoid, and by Theorem 1 and Remarks 1–3 every pair (x∗, y∗)
with y∗ ∈ Y ∗ and x∗ ∈ X(y∗) ∈ H is a saddle point of a. Conversely, if
(x∗, y∗) is a saddle point, then, of course, y∗ ∈ Y ∗ and x∗ ∈ X(y∗).

Example 1 generalizes a recent minimax theorem of Pinelis which has
interesting applications in statistical decision theory [17], [18]. In contrast
to Pinelis we do not require any linear structure on the set Y . This makes it
possible to subsume also a version of the Ky Fan–König–Neumann minimax
theorem [6], [13], [15]:

Example 2.1. Let X and Y be countably compact topological spaces
and a : X × Y → R ∪ {−∞} be such that

(i) every function a(·, y), y ∈ Y , is upper semicontinuous,
(ii) every function a(x, ·), x ∈ X, is lower semicontinuous,
(iii) ∀x1, x2 ∈ X, x1 6= x2, ∃x0 ∈ X ∀y ∈ Y : a(x0, y) > 1

2a(x1, y) +
1
2a(x2, y),

(iv) ∀y1, y2 ∈ Y ∃y0 ∈ Y ∀x ∈ X: a(x, y0) ≤ 1
2a(x, y1) + 1

2a(x, y2).

Then a has a saddle point.

P r o o f. Condition (ii) implies Y ∗ 6= ∅, and (i) implies X(y∗) 6= ∅,
y∗ ∈ Y ∗, because X and Y are countably compact. From (iii) we infer
that every X(y∗), y∗ ∈ Y ∗, is a singleton. Now the assertion follows from
Example 1 and Remarks 1 and 3.

In connection with Example 2.1 the following result ought to be men-
tioned:
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Example 2.2. Let X be a pseudocompact and Y a countably compact
topological space, and let a : X × Y → R be continuous in each variable.
Suppose that

(i) ∀x1, x2 ∈ X ∃x0 ∈ X ∀y ∈ Y : a(x0, y) ≥ 1
2a(x1, y) + 1

2a(x2, y),
(ii) ∀y1, y2 ∈ Y ∃y0 ∈ Y ∀x ∈ X: a(x, y0) ≤ 1

2a(x, y1) + 1
2a(x, y2).

Then a has a saddle point.

P r o o f. Apply [5], Corollaire 1, and [11], Satz 3.12.

R e m a r k 4. An inspection of our proof shows that condition (iii) in
Example 2.1 can be replaced by the weaker assumption

(iii)∗ ∀x1, x2 ∈ X, x1 6= x2, ∀y∗ ∈ Y ∗ ∃x0 ∈ X: a(x0, y
∗) > a(x1, y

∗) ∧
a(x2, y

∗).

In view of Example 2.2 one might conjecture that Example 2.1 remains
true also when in condition (iii) “>” is replaced by “≥”. This is disproved,
however, by the following counter-example:

Example 2.3. The space X of all countable ordinal numbers, endowed
with the order topology, is sequentially compact and therefore countably
compact. Let Y = X and a(x, y) = 1(0) for x > y (x ≤ y). Then every
function a(·, y), y ∈ Y , is continuous and every function a(x, ·), x ∈ X, is
lower semicontinuous. But, of course, a has no saddle point.

Moreover, we have Y ∗ = Y but X(Y ∗) = ∅ and X̂ = ∅. This shows that
Theorem 2 is false if R is only assumed to be countably compact.

4. Convex metric spaces. In the following let (X, d) be a compact
metric space. Recall that δ(X) := sup(x,y)∈X×X d(x, y) is the diameter ,
R(X) := infy∈X supx∈X d(x, y) is the Chebyshev radius, and Z(X) := {y ∈
X : supx∈X d(x, y) = R(X)} is the Chebyshev center of X. Moreover, let
P (X) denote the set of all Baire probability measures on X. Then we call
G(X) := supp∈P (X) infy∈X

∫
d(·, y) dp the Gross value of X.

Suppose that for some ψ ∈ Ψ(C) with [0, δ(X)] ⊂ C we have

(8) ∀y1, y2 ∈ X ∃y0 ∈ X ∀x ∈ X : d(x, y0) ≤ ψ(d(x, y1), d(x, y2)).

Then (X, d) will be called Ψ -convex (w.r.t. ψ).

R e m a r k 5. Let µλ be as in Remark 1.

(a) Takahashi [20] calls a metric space convex iff it is Ψ -convex w.r.t.
every µλ, λ ∈ (0, 1). Of course, every convex subset of a normed space is of
this type. (Compare also [2].)

(b) Kijima [9] considers “µ1/2-convex” metric spaces. Also the convex
metric spaces studied by Yang Lu and Zhang Jingzong are of this type ([21],
Lemma 1).
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Example 3. Let (X, d) be a compact Ψ -convex metric space. Then

(a) the Chebyshev radius R(X) coincides with the Gross value G(X);
(b) the points in the Chebyshev center Z(X) have a common farthest

point in X;
(c) the following are equivalent:

(i) δ(X) > 0,
(ii) Z(X) 6= X,
(iii) δ(X) > R(X) (i.e., X contains a nondiametral point);
(iv) every point in the Chebyshev center Z(X) has at least two dif-

ferent farthest points in X;

(d) a continuous map T : X → X is constant iff every y ∈ X has a
unique farthest point in T (X).

Takahashi [20] proved the implication (i)⇒(iii) of (c) in the situation of
Remark 5(a), and Astaneh [1] established a result of type (i)⇒(iv) of (c) in
a Hilbert space setting.

P r o o f. For (a), (b), and (c), let Y = X and a = d. Then, in the
terminology of Section 1, Y ∗ coincides with the (nonvoid) Chebyshev center
Z(X), X(y) is the (nonvoid) set of farthest points of y in X, and B is the
Baire σ-algebra.

(a) By Theorem A and Remark 2 we have G(X) ≥ R(X); the converse
inequality is obvious.

(b) By Theorem 2(a) and Remark 2 there exists a point x̃ ∈ X(Y ∗), i.e.,
d(x̃, y∗) = supx∈X d(x, y∗) ∀y∗ ∈ Z(X).

(c) (i)⇒(ii). Assume that (ii) is violated, i.e., Y ∗ = Y . By Theorem 2(b)
and Remark 2 there is an x̂ ∈ X̂. This implies δ(X) = d(x̂, x̂) = 0 in
contradiction to (i).

(i)⇒(iv). Suppose that (iv) is violated, i.e., X(y∗) = {x∗} is a singleton
for some y∗ ∈ Y ∗. By Theorem 1 and Remarks 2 and 3 we obtain d(x, y∗) ≤
d(x∗, y) for all x ∈ X, y ∈ X; hence X = {y∗}, a contradiction.

As the implications (ii)⇔(iii)⇒(i) and (iv)⇒(i) are obvious, everything
is proved.

Finally, (d) follows by applying Theorem 1 and Remarks 2 and 3 to
the restriction a = d|T (X) × X. (The farthest point property yields the
existence of a pair (x∗, y∗) ∈ X × X with d(Tx, y∗) ≤ d(Tx∗, y) for all
x ∈ X, y ∈ X, and we arrive at T (X) = {y∗}.)

Now we recall a result of Gross which is an easy consequence of Theo-
rem A or one of its ancestors due to Glicksberg [7] or to Peck–Dulmage [16]
(compare [8] and also [4], [14], [19]).
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Theorem B (Gross). Let (X, d) be a compact connected metric space.
Then there exists a uniquely determined constant A(X) such that

∀x1, . . . , xn ∈ X, n ∈ N, ∃y ∈ X :
1
n

n∑
i=1

d(xi, y) = A(X).

This “rendez-vous value” A(X) coincides with the Gross value G(X).

We use this theorem to prove the following generalization of a result of
Esther and George Szekeres ([4], Theorem 5) and of Yang Lu and Zhang
Jingzong [21]:

Example 4. Let (X, d) be a compact metric space. Suppose that (X, d)
is ψ-convex w.r.t. some ψ ∈ Ψ(C), C ⊃ [0, δ(X)], satisfying

(9) ψ(0, α) + ψ(α, 0) ≤ α, 0 < α ≤ δ(X).

Then (X, d) is arcwise connected, and its rendez-vous value A(X) coincides
with the Chebyshev radius R(X).

P r o o f. By Theorem B and Example 3(a) it remains to show that (X, d)
is arcwise connected. By a well-known theorem of Menger ([3], Theorem 6.2)
it is sufficient to prove that for y1, y2 ∈ X, y1 6= y2, the “segment”

(y1, y2) := {y ∈ X : d(y1, y) + d(y, y2) = d(y1, y2)} − {y1, y2}
is nonvoid. We choose y0 ∈ X according to (8) and show that y0 ∈ (y1, y2):

From d(y1, y2) ≤ d(y1, y0) + d(y2, y0) ≤ ψ(d(y1, y1), d(y1, y2)) +
ψ(d(y2, y1), d(y2, y2)) ≤ d(y1, y2) (by (9)) we infer that d(y1, y2) = d(y1, y0)
+ d(y0, y2). Suppose that y0 = y2, say. Then d(y1, y2) = d(y1, y0) ≤
ψ(0, d(y1, y2)) contradicts condition (3).

R e m a r k 6. Condition (9) is satisfied for ψ = µλ as in Remark 1 and,
more generally, for every positively homogeneous ψ ∈ Ψ([0,∞)). It would
be interesting to know whether condition (9) is dispensable in Example 4.

REFERENCES

[1] A. A. Astaneh, On singletonness of uniquely remotal sets, Indian J. Pure Appl.
Math. 17 (9) (1986), 1137–1139.

[2] R. G. Bi lyeu, Metric definition of the linear structure, Proc. Amer. Math. Soc. 25
(1970), 205–206.

[3] L. M. Blumentha l and K. Menger, Studies in Geometry , Freeman, San Francisco,
1970.

[4] J. Cleary, S. A. Morr i s and D. Yost, Numerical geometry—numbers for shapes,
Amer. Math. Monthly 93 (1986), 260–275.

[5] M. De Wilde, Doubles limites ordonnées et théorèmes de minimax , Ann. Inst.
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Reçu par la Rédaction le 26.8.1993


