C OLLOQUIUM MATHEMATICUM

MINIMAX THEOREMS WITH APPLICATIONS
 TO CONVEX METRIC SPACES

BY
JÜRGEN KINDLER (DARMSTADT)
A minimax theorem is proved which contains a recent result of Pinelis and a version of the classical minimax theorem of Ky Fan as special cases. Some applications to the theory of convex metric spaces (farthest points, rendez-vous value) are presented.

1. Preliminaries. Throughout this paper let two nonvoid sets X and Y, a nonvoid convex subset C of $\mathbb{R} \cup\{-\infty\}$ and a function $a: X \times Y \rightarrow C$ with

$$
\sup _{x \in X} a(x, y) \in C \quad \forall y \in Y
$$

be given. The following notation will be used:

- We set

$$
\sup a:=\sup \{a(x, y): x \in X, y \in Y\}
$$

$$
a^{*}:=\inf _{y \in Y} \sup _{x \in X} a(x, y)
$$

$$
Y^{*}:=\left\{\sup _{x \in X} a(x, \cdot)=a^{*}\right\}=\left\{y \in Y: \sup _{x \in X} a(x, y)=a^{*}\right\}
$$

$$
\widehat{X}:=\bigcap_{y \in Y}\{a(\cdot, y)=\sup a\}
$$

$$
X(y):=\left\{a(\cdot, y)=\sup _{x \in X} a(x, y)\right\}, \quad y \in Y
$$

$$
X(B):=\bigcap_{y \in B} X(y), \quad B \subset Y, \quad \text { with } X(\emptyset)=X
$$

$$
\mathcal{R}:=\{\{a(\cdot, y) \geq \lambda\}: y \in Y, \lambda \in \mathbb{R} \cup\{-\infty\}\}
$$

$\mathcal{B}:=$ smallest σ-algebra on X containing \mathcal{R} and the singletons $\{x\}$, $x \in X$, and
$\mathcal{H}:=\{S \subset X:$ every function $a(\cdot, y), y \in Y$, is constant on $S\}$.

[^0]- We denote by $\Psi(C)$ the set of all functions $\psi: C \times C \rightarrow C$ with the following properties:
(1) ψ is concave,
(2) ψ is nondecreasing in both variables,
(3) $\alpha, \beta \in C \cap \mathbb{R}, \alpha \neq \beta \Rightarrow \psi(\alpha, \beta)<\alpha \vee \beta$, and
(4) $-\infty, \alpha \in C \Rightarrow \psi(\alpha,-\infty)=\psi(-\infty, \alpha)=-\infty$.
- A nonvoid system of subsets of some set is called (countably) compact iff every (countable) subsystem with the finite intersection property has nonvoid intersection.

Finally, the following reformulation of a recent "minimax theorem with one-sided randomization" [12] will be used in the sequel:

Theorem A. Let \mathcal{R} be countably compact, and suppose that for some $\psi \in \Psi(C)$,
(5) $\quad \forall y_{1}, y_{2} \in Y \exists y_{0} \in Y \forall x \in X: a\left(x, y_{0}\right) \leq \psi\left(a\left(x, y_{1}\right), a\left(x, y_{2}\right)\right)$.

Then there exists a probability measure p^{*} on \mathcal{B} with

$$
\begin{equation*}
\inf _{y \in Y} \int a(\cdot, y) d p^{*}=\inf _{y \in Y} \sup _{x \in X} a(x, y) \tag{6}
\end{equation*}
$$

Proof. Apply Theorem 2 in [12] to $F=\{-a(\cdot, y): y \in Y\}, \eta(\alpha)=\alpha$, $\xi(\alpha, \beta)=-\psi(-\alpha,-\beta), \alpha, \beta \in D:=-C$.

- In the following we say that a is ψ-convex (w.r.t. some $\psi \in \Psi(C)$) iff condition (5) is satisfied.

2. Main results. The following lemma summarizes some useful facts:

Lemma 1. (a) $a^{*}=-\infty \Rightarrow X\left(y^{*}\right)=X \forall y^{*} \in Y^{*}$.
(b) $X(y) \in \mathcal{R} \forall y \in Y$.
(c) If \mathcal{R} is countably compact, then $X(y)$ is nonvoid for every $y \in Y$.
(d) Condition (6) implies $p^{*}\left(X\left(y^{*}\right)\right)=1$ for every $y^{*} \in Y^{*}$. In particular, $X(Z)$ is nonvoid for every countable $Z \subset Y^{*}$.

Proof. (a) and (b) are obvious, and (c) follows from the equality $X(y)=\bigcap_{n \in \mathbb{N}}\left\{a(\cdot, y) \geq \sup _{x \in X} a(x, y)-1 / n\right\}, y \in Y$.
(d) By (a) we may assume $a^{*} \in \mathbb{R}$. For $y^{*} \in Y^{*}$ we have $a\left(\cdot, y^{*}\right)-a^{*} \leq 0$, but (6) implies $\int\left[a\left(\cdot, y^{*}\right)-a^{*}\right] d p^{*} \geq 0$, hence $p^{*}\left(X\left(y^{*}\right)\right)=1$.

Now we can present our main results:
Theorem 1. Suppose that \mathcal{R} is countably compact and a is ψ-convex w.r.t. some $\psi \in \Psi(C)$. Let $x^{*} \in X$ and $y^{*} \in Y^{*}$ satisfy

$$
\begin{equation*}
a\left(x^{*}, y\right) \geq a(x, y) \quad \forall x \in X\left(y^{*}\right), y \in Y \tag{7}
\end{equation*}
$$

Then $\left(x^{*}, y^{*}\right)$ is a saddle point of a, i.e.,

$$
a\left(x, y^{*}\right) \leq a\left(x^{*}, y^{*}\right) \leq a\left(x^{*}, y\right) \quad \forall x \in X, y \in Y
$$

Proof. By Lemma 1(c) we have $X\left(y^{*}\right) \neq \emptyset$, hence $x^{*} \in X\left(y^{*}\right)$. Choose p^{*} according to Theorem A. Then, by Lemma 1(d), we obtain for arbitrary $x \in X$ and $y \in Y$,

$$
\begin{aligned}
a\left(x, y^{*}\right) & \leq a^{*} \leq \int a(\cdot, y) d p^{*} \\
& =\int_{X\left(y^{*}\right)} a(\cdot, y) d p^{*} \leq \int_{X\left(y^{*}\right)} a\left(x^{*}, y\right) d p^{*}=a\left(x^{*}, y\right)
\end{aligned}
$$

Theorem 2. Suppose that \mathcal{R} is compact and a is ψ-convex w.r.t. some $\psi \in \Psi(C)$. Then
(a) $X\left(Y^{*}\right)$ is nonvoid, and
(b) \widehat{X} is nonvoid iff $Y^{*}=Y$.

Proof. (a) Apply Theorem A and Lemma 1(b) and (d).
(b) $Y^{*}=Y$ implies $\widehat{X}=X\left(Y^{*}\right)(\neq \emptyset$ by (a)). Conversely, for $\widehat{x} \in \widehat{X}$ we have $\sup _{x \in X} a(x, z) \leq \inf _{y \in Y} a(\widehat{x}, y) \leq a^{*}$ for all $z \in Y$, hence $Y=Y^{*}$.
3. Standard situations. As our formulation of Theorems 1 and 2 is fairly abstract, it seems worthwhile to mention the standard situations:

Remark 1. For $\lambda \in(0,1)$ we have $\mu_{\lambda} \in \Psi(\mathbb{R} \cup\{-\infty\})$ for the weighted arithmetic means $\mu_{\lambda}(\alpha, \beta)=\lambda \alpha+(1-\lambda) \beta$.

If Y is a convex subset of some linear space, and if every $a(x, \cdot), x \in X$, is convex, then a is μ_{λ}-convex for every $\lambda \in(0,1)$.

Remark 2 (cf. [10]). Let X be a topological space.
(a) If X is compact and every function $a(\cdot, y), y \in Y$, is upper semicontinuous, then \mathcal{R} is compact.
(b) If X is countably compact and every function $a(\cdot, y), y \in Y$, is upper semicontinuous, then \mathcal{R} is countably compact.
(c) If X is pseudocompact (i.e., every continuous $f: X \rightarrow \mathbb{R}$ is bounded) and every function $a(\cdot, y), y \in Y$, is continuous, then \mathcal{R} is countably compact.

Proof. (a) and (b) are obvious.
(c) Let $\left\{\left\{a\left(\cdot, y_{n}\right) \geq \lambda_{n}\right\}: n \in \mathbb{N}\right\} \subset \mathcal{R}$ have the finite intersection property. Then $f:=\sum_{n \in M} 2^{-n}\left(a\left(\cdot, y_{n}\right)-\lambda_{n}\right) \wedge 0 \vee(-1)$ with $M:=\{n \in$ $\left.\mathbb{N}: \lambda_{n} \neq-\infty\right\}$ is continuous with $\sup _{x \in X} f(x)=0$. Hence there exists an $x_{0} \in X$ with $f\left(x_{0}\right)=0$, for otherwise $1 / f$ would be unbounded. Of course, $a\left(x_{0}, y_{n}\right) \geq \lambda_{n}, n \in \mathbb{N}$.

Remark 3. For $y^{*} \in Y^{*}$ we have the implications

$$
\begin{aligned}
X\left(y^{*}\right) \text { is a singleton } & \Rightarrow \emptyset \neq X\left(y^{*}\right) \in \mathcal{H} \\
& \Rightarrow \text { condition }(7) \text { holds for every } x^{*} \in X\left(y^{*}\right)
\end{aligned}
$$

Example 1. Let X be a topological space, Y a nonvoid set, and a : $X \times Y \rightarrow \mathbb{R} \cup\{-\infty\}$ such that
(i) $\forall y_{1}, y_{2} \in Y \exists y_{0} \in Y \forall x \in X: a\left(x, y_{0}\right) \leq \frac{1}{2} a\left(x, y_{1}\right)+\frac{1}{2} a\left(x, y_{2}\right)$.

Assume, moreover, that either
(ii.1) X is countably compact, and every function $a(\cdot, y), y \in Y$, is upper semicontinuous, or
(ii.2) X is pseudocompact, and every function $a(\cdot, y), y \in Y$, is continuous.

Then for every $y^{*} \in Y^{*}$ with $X\left(y^{*}\right) \in \mathcal{H}$ the set $X\left(y^{*}\right)$ is nonvoid, and for $x^{*} \in X$ the pair $\left(x^{*}, y^{*}\right)$ is a saddle point of a iff $x^{*} \in X\left(y^{*}\right)$.

Proof. By Remark 2(b), resp. (c), and Lemma 1(c) every set $X(y)$, $y \in Y$, is nonvoid, and by Theorem 1 and Remarks $1-3$ every pair $\left(x^{*}, y^{*}\right)$ with $y^{*} \in Y^{*}$ and $x^{*} \in X\left(y^{*}\right) \in \mathcal{H}$ is a saddle point of a. Conversely, if $\left(x^{*}, y^{*}\right)$ is a saddle point, then, of course, $y^{*} \in Y^{*}$ and $x^{*} \in X\left(y^{*}\right)$.

Example 1 generalizes a recent minimax theorem of Pinelis which has interesting applications in statistical decision theory [17], [18]. In contrast to Pinelis we do not require any linear structure on the set Y. This makes it possible to subsume also a version of the Ky Fan-König-Neumann minimax theorem [6], [13], [15]:

Example 2.1. Let X and Y be countably compact topological spaces and $a: X \times Y \rightarrow \mathbb{R} \cup\{-\infty\}$ be such that
(i) every function $a(\cdot, y), y \in Y$, is upper semicontinuous,
(ii) every function $a(x, \cdot), x \in X$, is lower semicontinuous,
(iii) $\forall x_{1}, x_{2} \in X, x_{1} \neq x_{2}, \exists x_{0} \in X \forall y \in Y: a\left(x_{0}, y\right)>\frac{1}{2} a\left(x_{1}, y\right)+$ $\frac{1}{2} a\left(x_{2}, y\right)$,
(iv) $\forall y_{1}, y_{2} \in Y \exists y_{0} \in Y \forall x \in X: a\left(x, y_{0}\right) \leq \frac{1}{2} a\left(x, y_{1}\right)+\frac{1}{2} a\left(x, y_{2}\right)$.

Then a has a saddle point.
Proof. Condition (ii) implies $Y^{*} \neq \emptyset$, and (i) implies $X\left(y^{*}\right) \neq \emptyset$, $y^{*} \in Y^{*}$, because X and Y are countably compact. From (iii) we infer that every $X\left(y^{*}\right), y^{*} \in Y^{*}$, is a singleton. Now the assertion follows from Example 1 and Remarks 1 and 3.

In connection with Example 2.1 the following result ought to be mentioned:

Example 2.2. Let X be a pseudocompact and Y a countably compact topological space, and let $a: X \times Y \rightarrow \mathbb{R}$ be continuous in each variable. Suppose that
(i) $\forall x_{1}, x_{2} \in X \exists x_{0} \in X \forall y \in Y: a\left(x_{0}, y\right) \geq \frac{1}{2} a\left(x_{1}, y\right)+\frac{1}{2} a\left(x_{2}, y\right)$,
(ii) $\forall y_{1}, y_{2} \in Y \exists y_{0} \in Y \forall x \in X: a\left(x, y_{0}\right) \leq \frac{1}{2} a\left(x, y_{1}\right)+\frac{1}{2} a\left(x, y_{2}\right)$.

Then a has a saddle point.
Proof. Apply [5], Corollaire 1, and [11], Satz 3.12.
Remark 4. An inspection of our proof shows that condition (iii) in Example 2.1 can be replaced by the weaker assumption
(iii)* $\forall x_{1}, x_{2} \in X, x_{1} \neq x_{2}, \forall y^{*} \in Y^{*} \exists x_{0} \in X: a\left(x_{0}, y^{*}\right)>a\left(x_{1}, y^{*}\right) \wedge$ $a\left(x_{2}, y^{*}\right)$.

In view of Example 2.2 one might conjecture that Example 2.1 remains true also when in condition (iii) " $>$ " is replaced by " \geq ". This is disproved, however, by the following counter-example:

Example 2.3. The space X of all countable ordinal numbers, endowed with the order topology, is sequentially compact and therefore countably compact. Let $Y=X$ and $a(x, y)=1(0)$ for $x>y(x \leq y)$. Then every function $a(\cdot, y), y \in Y$, is continuous and every function $a(x, \cdot), x \in X$, is lower semicontinuous. But, of course, a has no saddle point.

Moreover, we have $Y^{*}=Y$ but $X\left(Y^{*}\right)=\emptyset$ and $\widehat{X}=\emptyset$. This shows that Theorem 2 is false if \mathcal{R} is only assumed to be countably compact.
4. Convex metric spaces. In the following let (X, d) be a compact metric space. Recall that $\delta(X):=\sup _{(x, y) \in X \times X} d(x, y)$ is the diameter, $R(X):=\inf _{y \in X} \sup _{x \in X} d(x, y)$ is the Chebyshev radius, and $Z(X):=\{y \in$ $\left.X: \sup _{x \in X} d(x, y)=R(X)\right\}$ is the Chebyshev center of X. Moreover, let $P(X)$ denote the set of all Baire probability measures on X. Then we call $G(X):=\sup _{p \in P(X)} \inf _{y \in X} \int d(\cdot, y) d p$ the Gross value of X.

Suppose that for some $\psi \in \Psi(C)$ with $[0, \delta(X)] \subset C$ we have
(8) $\forall y_{1}, y_{2} \in X \exists y_{0} \in X \forall x \in X: d\left(x, y_{0}\right) \leq \psi\left(d\left(x, y_{1}\right), d\left(x, y_{2}\right)\right)$.

Then (X, d) will be called Ψ-convex (w.r.t. ψ).
Remark 5. Let μ_{λ} be as in Remark 1.
(a) Takahashi [20] calls a metric space convex iff it is Ψ-convex w.r.t. every $\mu_{\lambda}, \lambda \in(0,1)$. Of course, every convex subset of a normed space is of this type. (Compare also [2].)
(b) Kijima [9] considers " $\mu_{1 / 2}$-convex" metric spaces. Also the convex metric spaces studied by Yang Lu and Zhang Jingzong are of this type ([21], Lemma 1).

Example 3. Let (X, d) be a compact Ψ-convex metric space. Then
(a) the Chebyshev radius $R(X)$ coincides with the Gross value $G(X)$;
(b) the points in the Chebyshev center $Z(X)$ have a common farthest point in X;
(c) the following are equivalent:
(i) $\delta(X)>0$,
(ii) $Z(X) \neq X$,
(iii) $\delta(X)>R(X)$ (i.e., X contains a nondiametral point);
(iv) every point in the Chebyshev center $Z(X)$ has at least two different farthest points in X;
(d) a continuous map $T: X \rightarrow X$ is constant iff every $y \in X$ has a unique farthest point in $T(X)$.

Takahashi [20] proved the implication (i) \Rightarrow (iii) of (c) in the situation of Remark 5(a), and Astaneh [1] established a result of type (i) \Rightarrow (iv) of (c) in a Hilbert space setting.

Proof. For (a), (b), and (c), let $Y=X$ and $a=d$. Then, in the terminology of Section 1, Y^{*} coincides with the (nonvoid) Chebyshev center $Z(X), X(y)$ is the (nonvoid) set of farthest points of y in X, and \mathcal{B} is the Baire σ-algebra.
(a) By Theorem A and Remark 2 we have $G(X) \geq R(X)$; the converse inequality is obvious.
(b) By Theorem 2(a) and Remark 2 there exists a point $\widetilde{x} \in X\left(Y^{*}\right)$, i.e., $d\left(\widetilde{x}, y^{*}\right)=\sup _{x \in X} d\left(x, y^{*}\right) \forall y^{*} \in Z(X)$.
(c) $(\mathrm{i}) \Rightarrow$ (ii). Assume that (ii) is violated, i.e., $Y^{*}=Y$. By Theorem 2(b) and Remark 2 there is an $\widehat{x} \in \widehat{X}$. This implies $\delta(X)=d(\widehat{x}, \widehat{x})=0$ in contradiction to (i).
$(\mathrm{i}) \Rightarrow(\mathrm{iv})$. Suppose that (iv) is violated, i.e., $X\left(y^{*}\right)=\left\{x^{*}\right\}$ is a singleton for some $y^{*} \in Y^{*}$. By Theorem 1 and Remarks 2 and 3 we obtain $d\left(x, y^{*}\right) \leq$ $d\left(x^{*}, y\right)$ for all $x \in X, y \in X$; hence $X=\left\{y^{*}\right\}$, a contradiction.

As the implications (ii) \Leftrightarrow (iii) \Rightarrow (i) and (iv) \Rightarrow (i) are obvious, everything is proved.

Finally, (d) follows by applying Theorem 1 and Remarks 2 and 3 to the restriction $a=d \mid T(X) \times X$. (The farthest point property yields the existence of a pair $\left(x^{*}, y^{*}\right) \in X \times X$ with $d\left(T x, y^{*}\right) \leq d\left(T x^{*}, y\right)$ for all $x \in X, y \in X$, and we arrive at $T(X)=\left\{y^{*}\right\}$.)

Now we recall a result of Gross which is an easy consequence of Theorem A or one of its ancestors due to Glicksberg [7] or to Peck-Dulmage [16] (compare [8] and also [4], [14], [19]).

Theorem B (Gross). Let (X, d) be a compact connected metric space. Then there exists a uniquely determined constant $A(X)$ such that

$$
\forall x_{1}, \ldots, x_{n} \in X, n \in \mathbb{N}, \exists y \in X: \quad \frac{1}{n} \sum_{i=1}^{n} d\left(x_{i}, y\right)=A(X)
$$

This "rendez-vous value" $A(X)$ coincides with the Gross value $G(X)$.
We use this theorem to prove the following generalization of a result of Esther and George Szekeres ([4], Theorem 5) and of Yang Lu and Zhang Jingzong [21]:

Example 4. Let (X, d) be a compact metric space. Suppose that (X, d) is ψ-convex w.r.t. some $\psi \in \Psi(C), C \supset[0, \delta(X)]$, satisfying

$$
\begin{equation*}
\psi(0, \alpha)+\psi(\alpha, 0) \leq \alpha, \quad 0<\alpha \leq \delta(X) \tag{9}
\end{equation*}
$$

Then (X, d) is arcwise connected, and its rendez-vous value $A(X)$ coincides with the Chebyshev radius $R(X)$.

Proof. By Theorem B and Example 3(a) it remains to show that (X, d) is arcwise connected. By a well-known theorem of Menger ([3], Theorem 6.2) it is sufficient to prove that for $y_{1}, y_{2} \in X, y_{1} \neq y_{2}$, the "segment"

$$
\left(y_{1}, y_{2}\right):=\left\{y \in X: d\left(y_{1}, y\right)+d\left(y, y_{2}\right)=d\left(y_{1}, y_{2}\right)\right\}-\left\{y_{1}, y_{2}\right\}
$$

is nonvoid. We choose $y_{0} \in X$ according to (8) and show that $y_{0} \in\left(y_{1}, y_{2}\right)$:
From $d\left(y_{1}, y_{2}\right) \leq d\left(y_{1}, y_{0}\right)+d\left(y_{2}, y_{0}\right) \leq \psi\left(d\left(y_{1}, y_{1}\right), d\left(y_{1}, y_{2}\right)\right)+$ $\psi\left(d\left(y_{2}, y_{1}\right), d\left(y_{2}, y_{2}\right)\right) \leq d\left(y_{1}, y_{2}\right)$ (by (9)) we infer that $d\left(y_{1}, y_{2}\right)=d\left(y_{1}, y_{0}\right)$ $+d\left(y_{0}, y_{2}\right)$. Suppose that $y_{0}=y_{2}$, say. Then $d\left(y_{1}, y_{2}\right)=d\left(y_{1}, y_{0}\right) \leq$ $\psi\left(0, d\left(y_{1}, y_{2}\right)\right)$ contradicts condition (3).

Remark 6. Condition (9) is satisfied for $\psi=\mu_{\lambda}$ as in Remark 1 and, more generally, for every positively homogeneous $\psi \in \Psi([0, \infty))$. It would be interesting to know whether condition (9) is dispensable in Example 4.

REFERENCES

[1] A. A. Astaneh, On singletonness of uniquely remotal sets, Indian J. Pure Appl. Math. 17 (9) (1986), 1137-1139.
[2] R. G. Bilyeu, Metric definition of the linear structure, Proc. Amer. Math. Soc. 25 (1970), 205-206.
[3] L. M. Blumenthal and K. Menger, Studies in Geometry, Freeman, San Francisco, 1970.
[4] J. Cleary, S. A. Morris and D. Yost, Numerical geometry—numbers for shapes, Amer. Math. Monthly 93 (1986), 260-275.
[5] M. De Wilde, Doubles limites ordonnées et théorèmes de minimax, Ann. Inst. Fourier (Grenoble) 24 (1974), 181-188.
[6] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.
[7] I. Glicksberg, Minimax theorem for upper and lower semi-continuous payoffs, The RAND Corporation Research Memorandum RM-478 (1950).
[8] O. Gross, The rendezvous value of a metric space, in: Advances in Game Theory, Ann. of Math. Stud. 52, Princeton Univ. Press, 1964, 49-53.
[9] Y. Kijima, Fixed points of nonexpansive self-maps of a compact metric space, J. Math. Anal. Appl. 123 (1987), 114-116.
[10] J. Kindler, Minimaxtheoreme und das Integraldarstellungsproblem, Manuscripta Math. 29 (1979), 277-294.
[11] -, Minimaxtheoreme für die diskrete gemischte Erweiterung von Spielen und ein Approximationssatz, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 473485.
[12] -, Minimax theorems with one-sided randomization, Acta Math. Hungar., to appear.
[13] H. König, Über das von Neumannsche Minimax-Theorem, Arch. Math. (Basel) 19 (1968), 482-487.
[14] S. A. Morris and P. Nickolas, On the average distance property of compact connected metric spaces, Arch. Math. (Basel) 40 (1983), 459-463.
[15] M. Neumann, Bemerkungen zum von Neumannschen Minimaxtheorem, ibid. 29 (1977), 96-105.
[16] J. E. L. Peck and A. L. Dulmage, Games on a compact set, Canad. J. Math. 9 (1957), 450-458.
[17] I. F. Pinelis, On minimax risk, Theory Probab. Appl. 35 (1990), 104-109.
[18] -, On minimax estimation of regression, ibid., 500-512.
[19] W. Stadje, A property of compact connected spaces, Arch. Math. (Basel) 36 (1981), 275-280.
[20] W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kōdai Math. Sem. Rep. 22 (1970), 142-149.
[21] L. Yang and J. Zhang, Average distance constants of some compact convex space, J. China Univ. Sci. Tech. 17 (1987), 17-23.

FACHBEREICH MATHEMATIK
TECHNISCHE HOCHSCHULE DARMSTADT
SCHLOSSGARTENSTR. 7
D-64289 DARMSTADT, GERMANY

[^0]: 1991 Mathematics Subject Classification: 49J35, 54E35.

