COLLOQUIUM MATHEMATICUM

VOL. LXVIII 1995 FASC. 2

MINIMAX THEOREMS WITH APPLICATIONS
TO CONVEX METRIC SPACES

BY

JURGEN KINDLER (DARMSTADT)

A minimax theorem is proved which contains a recent result of Pinelis
and a version of the classical minimax theorem of Ky Fan as special cases.
Some applications to the theory of convex metric spaces (farthest points,
rendez-vous value) are presented.

1. Preliminaries. Throughout this paper let two nonvoid sets X and
Y, a nonvoid convex subset C' of RU {—o00} and a functiona: X xY — C
with

sup a(z,y) € C VyeY
zeX

be given. The following notation will be used:
o We set
supa := sup{a(x,y) :z € X,y € Y},

a® := inf sup a(z,y),
YEY geXx

Y* = {sup a(z,) = a’} = {y € Y : sup a(w,y) = a’},
zeX reX

X := ({al~y) =supa},

yey

X(y) =A{al,y) = Sup a(z,y)}, yevy,

X(B):= (] X(y), BcCY, withX(0) =X,
yEB
R:={{a(,y) > A}t:yeY, e RU{—o0}},
B := smallest o-algebra on X containing R and the singletons {z},
z € X, and
H :={S C X : every function a(-,y),y € Y, is constant on S}.
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e We denote by ¥(C) the set of all functions ¢ : C' x C — C with the
following properties:

(1) 4 is concave,
(2) % is nondecreasing in both variables,
3) a,peCnNR,a#p=vap)<aVp and
(4) —o0,a€C = ¢Y(a,—0) =1p(—o0,a) = —o0.

e A nonvoid system of subsets of some set is called (countably) compact
iff every (countable) subsystem with the finite intersection property has
nonvoid intersection.

Finally, the following reformulation of a recent “minimax theorem with
one-sided randomization” [12] will be used in the sequel:

THEOREM A. Let R be countably compact, and suppose that for some
P ev(C),
(5) vyhyQ ey Eiyo ceY Vre X: a(xay()) < w(a(x7y1)7a<x7y2))'

Then there exists a probability measure p* on B with
(6) ylgg [ a(,y)dp* = ;25522 a(z,y).

Proof. Apply Theorem 2 in [12] to F' = {—a(-,y) : y € Y}, n(a) = «a,
g(a7ﬁ) = —1/)(—06, _B)a aaﬁ eD:=-C.

e In the following we say that a is ¢-convexr (w.r.t. some ¢p € ¥(C)) iff
condition (5) is satisfied.

2. Main results. The following lemma summarizes some useful facts:

LEMMA 1. (a) a* = —oc0o = X (y*) = X Vy* e Y*.

(b) X(y) e RVyeY.

(¢) If R is countably compact, then X (y) is nonvoid for every y € Y.

(d) Condition (6) implies p* (X (y*)) = 1 for every y* € Y*. In particu-
lar, X (Z) is nonvoid for every countable Z C Y*.

Proof. (a) and (b) are obvious, and (c) follows from the equality

X(y) = mnGN{a('ay) > SUPge x a(:c,y) - 1/”}7 [AS Y.
(d) By (a) we may assume a* € R. For y* € Y* we have a(-,y*) —a* <0,

but (6) implies [[a(-,y*) — a*]dp* > 0, hence p*(X (y*)) = 1. B
Now we can present our main results:

THEOREM 1. Suppose that R is countably compact and a is -convex
w.r.t. some Yy € ¥(C). Let z* € X and y* € Y™ satisfy

(7) a(z",y) =2 a(z,y) VeeX(y), yeV
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Then (z*,y*) is a saddle point of a, i.e.,
a(z,y”) <alz*,y") <a(z*,y) VeeX, yev.

Proof. By Lemma 1(c) we have X (y*) # 0, hence 2* € X (y*). Choose
p* according to Theorem A. Then, by Lemma 1(d), we obtain for arbitrary
reXandyey,

a(%y*) S a* S fa(ay) dp*

= f a('ay) dp* < f a(m*,y) dp* :(I(LU*,:[/).
X (") X(y")
THEOREM 2. Suppose that R is compact and a is -convex w.r.t. some
Y e ¥(C). Then

(a) X(Y™*) is nonvoid, and
(b) X is nonvoid iff Y* =Y.

Proof. (a) Apply Theorem A and Lemma 1(b) and (d).
(b) Y* =Y implies X = X (Y*) (# 0 by (a)). Conversely, for 7 € X we
have sup,cx a(z, 2) < infyey a(z,y) < a* for all z € Y, hence Y =Y.

3. Standard situations. As our formulation of Theorems 1 and 2 is
fairly abstract, it seems worthwhile to mention the standard situations:

Remark 1. For A € (0,1) we have py € ¥(RU{—o0}) for the weighted
arithmetic means px(a, f) = Aa+ (1 — \)g.

If Y is a convex subset of some linear space, and if every a(zx,-), z € X,
is convex, then a is py-convex for every A € (0, 1).

Remark 2 (cf. [10]). Let X be a topological space.

(a) If X is compact and every function a(-,y), y € Y, is upper semicon-
tinuous, then R is compact.

(b) If X is countably compact and every function a(-,y), y € Y, is upper
semicontinuous, then R is countably compact.

(c) If X is pseudocompact (i.e., every continuous f : X — R is bounded)
and every function a(+,y), y € Y, is continuous, then R is countably com-
pact.

Proof. (a) and (b) are obvious.

(c) Let {{a(-,yn) > An} : n € N} C R have the finite intersection
property. Then f:=3> 1, 27"(a(-,yn) — An) AOV (=1) with M := {n €
N : A, # —oo} is continuous with sup,cx f(z) = 0. Hence there exists an
xo € X with f(zg) = 0, for otherwise 1/f would be unbounded. Of course,
a(zo,Yn) > An, n € N.
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Remark 3. For y* € Y* we have the implications

X(y*) is a singleton = 0 # X(y*) € H
= condition (7) holds for every z* € X (y*).

ExXAMPLE 1. Let X be a topological space, Y a nonvoid set, and a :
X xY — RU{—o00} such that

(i) Vyr,y2 €Y Jyo € Y Vo € X : a(w,y0) < a(z,y1) + 3a(z,y2).
Assume, moreover, that either

(ii.1) X is countably compact, and every function a(-,y), y € Y, is upper
semicontinuous, or
(ii.2) X is pseudocompact, and every function a(-,y), y € Y, is continuous.

Then for every y* € Y* with X (y*) € H the set X (y*) is nonvoid, and for
x* € X the pair (z*,y*) is a saddle point of a iff z* € X (y*).

Proof. By Remark 2(b), resp. (c), and Lemma 1(c) every set X (y),
y € Y, is nonvoid, and by Theorem 1 and Remarks 1-3 every pair (z*,y*)
with y* € Y* and z* € X(y*) € H is a saddle point of a. Conversely, if
(z*,y*) is a saddle point, then, of course, y* € Y* and z* € X (y*).

Example 1 generalizes a recent minimax theorem of Pinelis which has
interesting applications in statistical decision theory [17], [18]. In contrast
to Pinelis we do not require any linear structure on the set Y. This makes it
possible to subsume also a version of the Ky Fan—K&énig-Neumann minimax
theorem [6], [13], [15]:

ExaAMPLE 2.1. Let X and Y be countably compact topological spaces
and a: X xY — RU{—o00} be such that

(i) every function a(-,y), y € Y, is upper semicontinuous,
(ii) every function a(z,-), z € X, is lower semicontinuous,
) (i) V1,29 € X, 1 # @, Jxg € X Yy € Y: a(xg,y) > %a(xl,y) +
70(72,Y),
(iv) Vy1,y2 €Y Jyg € Y Vz € X: a(x,yo) < %a(az,yl) + %a(x,yg).
Then a has a saddle point.

Proof. Condition (ii) implies Y* # (), and (i) implies X (y*) # 0,
y* € Y*, because X and Y are countably compact. From (iii) we infer
that every X (y*), y* € Y™, is a singleton. Now the assertion follows from
Example 1 and Remarks 1 and 3.

In connection with Example 2.1 the following result ought to be men-
tioned:
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ExaMpPLE 2.2. Let X be a pseudocompact and Y a countably compact
topological space, and let a : X x Y — R be continuous in each variable.
Suppose that

(i) Vo1,20 € X Jzg € X Vy € Y: a(wo,y) > a(z1,y) + 3a(x2,Y),
(ii) Vy1,y2 €Y Jyo € Y Vo € X: a(z,y0) < 2a(z,y1) + 3a(z, y2).

Then a has a saddle point.
Proof. Apply [5], Corollaire 1, and [11], Satz 3.12.

Remark 4. An inspection of our proof shows that condition (iii) in
Example 2.1 can be replaced by the weaker assumption

(iii)* Vay,29 € X, 21 # 29, Yy* € Y* Jzp € X: a(xo,y*) > alz1,y™) A
a(xa,y*).
In view of Example 2.2 one might conjecture that Example 2.1 remains

true also when in condition (iii) “>" is replaced by “>". This is disproved,
however, by the following counter-example:

ExaMPLE 2.3. The space X of all countable ordinal numbers, endowed
with the order topology, is sequentially compact and therefore countably
compact. Let Y = X and a(z,y) = 1(0) for x > y (z < y). Then every
function a(-,y), y € Y, is continuous and every function a(z,-), z € X, is
lower semicontinuous. But, of course, a has no saddle point.

Moreover, we have Y* =Y but X(Y*) = 0 and X = (). This shows that
Theorem 2 is false if R is only assumed to be countably compact.

4. Convex metric spaces. In the following let (X, d) be a compact
metric space. Recall that §(X) := sup(, yyexxx d(z,y) is the diameter,
R(X) :=inf e x sup,cx d(z,y) is the Chebyshev radius, and Z(X) := {y €
X :sup,ex d(z,y) = R(X)} is the Chebyshev center of X. Moreover, let
P(X) denote the set of all Baire probability measures on X. Then we call
G(X) = sup,ep(x) infyex [ d(-,y) dp the Gross value of X.

Suppose that for some ¢ € ¥(C') with [0,0(X)] C C we have

(8)  Vyi,y2 € X Jyo € X Vo € X 1 d(z,y0) < ¥(d(x, y1),d(x,y2)).
Then (X, d) will be called ¥-convez (w.r.t. ).
Remark 5. Let puy be as in Remark 1.

(a) Takahashi [20] calls a metric space convex iff it is ¥-convex w.r.t.
every pix, A € (0,1). Of course, every convex subset of a normed space is of
this type. (Compare also [2].)

(b) Kijima [9] considers “u/o-convex” metric spaces. Also the convex
metric spaces studied by Yang Lu and Zhang Jingzong are of this type ([21],
Lemma 1).
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ExAMPLE 3. Let (X, d) be a compact ¥-convex metric space. Then

(a) the Chebyshev radius R(X) coincides with the Gross value G(X);

(b) the points in the Chebyshev center Z(X) have a common farthest
point in X;

(c) the following are equivalent:

(i) 6(X) >0

(i) Z(X) # X,

(iii) 0(X) > R(X) (i.e., X contains a nondiametral point);

(iv) every point in the Chebyshev center Z(X) has at least two dif-
ferent farthest points in X;

(d) a continuous map 7" : X — X is constant iff every y € X has a
unique farthest point in 7'(X).

Takahashi [20] proved the implication (i)=-(iii) of (c¢) in the situation of
Remark 5(a), and Astaneh [1] established a result of type (i)=-(iv) of (c) in
a Hilbert space setting.

Proof. For (a), (b), and (c), let Y = X and a = d. Then, in the
terminology of Section 1, Y* coincides with the (nonvoid) Chebyshev center
Z(X), X(y) is the (nonvoid) set of farthest points of y in X, and B is the
Baire o-algebra.

(a) By Theorem A and Remark 2 we have G(X) > R(X); the converse
inequality is obvious.

(b) By Theorem 2(a) and Remark 2 there exists a point = € X (Y™), i.e.,
d(z,y*) = sup,ex d(z,y*) Yy* € Z(X).

(c) (i)=(ii). Assume that (ii) is violated, i.e., Y* =Y. By Theorem 2(b)
and Remark 2 there is an © € X. This implies 0(X) = d(Z,Z) = 0 in
contradiction to (i).

(i)=(iv). Suppose that (iv) is violated, i.e., X (y*) = {z*} is a singleton
for some y* € Y*. By Theorem 1 and Remarks 2 and 3 we obtain d(z, y*) <
d(z*,y) for all x € X, y € X; hence X = {y*}, a contradiction.

As the implications (ii)<(iii)=-(i) and (iv)=-(i) are obvious, everything
is proved.

Finally, (d) follows by applying Theorem 1 and Remarks 2 and 3 to
the restriction @ = d|T(X) x X. (The farthest point property yields the
existence of a pair (z*,y*) € X x X with d(Tz,y*) < d(Tz*,y) for all
re X, ye X, and we arrive at T'(X) = {y*}.)

Now we recall a result of Gross which is an easy consequence of Theo-
rem A or one of its ancestors due to Glicksberg [7] or to Peck-Dulmage [16]
(compare [8] and also [4], [14], [19]).
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THEOREM B (Gross). Let (X,d) be a compact connected metric space.
Then there exists a uniquely determined constant A(X) such that

1 n
o € X, Cye X =S d(zi,y) = AX).
Vai,...,z, € X, neN, Jye n; (xi,y) = A(X)

This “rendez-vous value” A(X) coincides with the Gross value G(X).

We use this theorem to prove the following generalization of a result of
Esther and George Szekeres ([4], Theorem 5) and of Yang Lu and Zhang
Jingzong [21]:

EXAMPLE 4. Let (X, d) be a compact metric space. Suppose that (X, d)
is 1-convex w.r.t. some ¢ € ¥(C), C D [0,0(X)], satisfying

(9) P(0,0) +Y(,0) <, 0<a<d(X).

Then (X, d) is arcwise connected, and its rendez-vous value A(X) coincides
with the Chebyshev radius R(X).

Proof. By Theorem B and Example 3(a) it remains to show that (X, d)
is arcwise connected. By a well-known theorem of Menger ([3], Theorem 6.2)
it is sufficient to prove that for y1,y2 € X, y1 # y2, the “segment”

(y1,92) = {y € X 2 d(y1,y) + d(y,y2) = d(y1,y2)} — {y1, 42}
is nonvoid. We choose yo € X according to (8) and show that yo € (y1,¥2):
From d(yi,y2) < d(y1,90) + d(y2,50) < »(d(yr,51), dyr,v2)) +
Y(d(y2,y1), d(y2, y2)) < d(y1,y2) (by (9)) we infer that d(y1,y2) = d(y1,y0)

+ d(yo,y2). Suppose that yo = yo, say. Then d(yi,y2) = d(y1,%) <
¥(0,d(y1,y2)) contradicts condition (3).

Remark 6. Condition (9) is satisfied for ¢y = p) as in Remark 1 and,
more generally, for every positively homogeneous ¢ € ¥([0,00)). It would
be interesting to know whether condition (9) is dispensable in Example 4.
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