COLLOQUIUM MATHEMATICUM

CRITERION FOR A FIELD TO BE ABELIAN

The following theorem of Kummer is known (see [1], p. 11):
Let $\alpha \in P_{p}^{*}, p$ a prime, $P_{p}=\mathbb{Q}\left(\zeta_{p}\right), \zeta_{p}=e^{2 \pi i / p}$. Assume that α is of order p with respect to $\left(P_{p}^{*}\right)^{p}$. Let $\sigma=\left(\zeta_{p} \rightarrow \zeta_{p}^{\varrho}\right)$, where ϱ is a primitive root $\bmod p$. The extension $P_{p}(\sqrt[p]{\alpha}) / \mathbb{Q}$ is abelian if and only if the number $\alpha^{\sigma-\varrho}$ is a p th power in P_{p}.
H. Hasse gives in [1], p. 11, a more general result:

Let F, M be algebraic number fields such that $F \subseteq M$ and the extension M / F is cyclic. Assume that $\zeta_{n} \in M$. Let σ denote a generator of $G(M / F)$, $\zeta_{n}^{\sigma}=\zeta_{n}^{\varrho}$. Let $\alpha \in M$. Assume that α is of order n with respect to M^{n}. Put $L=M(\sqrt[n]{\alpha})$. The extension L / F is abelian if and only if the number $\alpha^{\sigma-\varrho}$ is an nth power in M.

The aim of this paper is to prove a similar theorem which contains the above result. Namely, we have the following:

Theorem. Let F be a field and n a positive integer not divisible by the characteristic of F. Let M / F be an abelian extension of finite degree and $L=M(\sqrt[n]{\alpha})$ for some $\alpha \in M^{*}$. Further, let $\sigma_{1}, \ldots, \sigma_{i}$ be a basis of $G\left(M\left(\zeta_{n}\right) / F\right)$ with $\zeta_{n}^{\sigma_{j}}=\zeta_{n}^{a_{j}}, a_{j} \in \mathbb{Z}$. The extension L / F is abelian if and only if there exist $A_{1}, \ldots, A_{r} \in M^{*}$ such that

$$
\begin{gather*}
\alpha^{\sigma_{j}-a_{j}}=A_{j}^{n} \quad(1 \leq j \leq r) \tag{1}\\
A_{j}^{\sigma_{i}-a_{i}}=A_{i}^{\sigma_{j}-a_{j}} \quad(1 \leq i, j \leq r) \tag{2}
\end{gather*}
$$

Corollary 1. Let F be a field and n a positive integer not divisible by the characteristic of F. Let the extension $M\left(\zeta_{n}\right) / F$ be cyclic and $L=$ $M(\sqrt[n]{\alpha})$ for some $\alpha \in M^{*}$. Further, let σ be a generator of $G\left(M\left(\zeta_{n}\right) / F\right)$ with $\zeta_{n}^{\sigma}=\zeta_{n}^{a}, a \in \mathbb{Z}$. The extension L / F is abelian if and only if the number $\alpha^{\sigma-a}$ is an nth power in M.

Remark1. Corollary 1 contains Hasse's result quoted above.

[^0]Corollary 2 (A. Schinzel [3]). Let F be a field and n a positive integer not divisible by the characteristic of F. A binomial $x^{n}-\alpha$ has an abelian Galois group over F if and only if $\alpha^{w_{n}}=\gamma^{n}$, where $\gamma \in F$ and w_{n} is the number of nth roots of unity contained in F.

Proof of Theorem. Let $\alpha=\beta^{n}, L=M(\beta)$ and $\bar{L}=L\left(\zeta_{n}\right)$.
Necessity. Assume that the extension L / F is abelian. Then \bar{L} / F and \bar{L} / M are also abelian. Put $G=G(\bar{L} / F)$ and $H=G(\bar{L} / M)$. Let $\bar{\sigma}_{j} \in G$ with $\bar{\sigma}_{j}=\sigma_{j}$ on $M\left(\zeta_{n}\right)$, and $\tau \in H$. We have $\beta^{\tau}=\zeta_{n}^{k} \beta, \beta^{\bar{\sigma}_{j} \tau}=\beta^{\tau \bar{\sigma}_{j}}=$ $\zeta_{n}^{a_{j} k} \beta^{\bar{\sigma}_{j}}$ and

$$
\begin{equation*}
\beta^{\left(\bar{\sigma}_{j}-a_{j}\right) \tau}=\beta^{\bar{\sigma}_{j}-a_{j}}=: A_{j} \in M^{*} . \tag{3}
\end{equation*}
$$

Hence $\alpha^{\sigma_{j}-a_{j}}=A_{j}^{n}$. Thus (1) holds.
$\operatorname{By}(3), A_{j}^{\sigma_{i}-a_{i}}=A_{j}^{\bar{\sigma}_{i}-a_{i}}=\beta^{\left(\bar{\sigma}_{j}-a_{j}\right)\left(\bar{\sigma}_{i}-a_{i}\right)}=\beta^{\left(\bar{\sigma}_{i}-a_{i}\right)\left(\bar{\sigma}_{j}-a_{j}\right)}=A_{i}^{\sigma_{j}-a_{j}}$. Thus (2) holds.

Sufficiency. Assume that conditions (1) and (2) hold. We shall prove that the extension L / F is abelian. It is enough to prove that \bar{L} / F is abelian. We have $F \subseteq M \subseteq L \subseteq \bar{L}$. Since $M / F, L / M$ and \bar{L} / L are separable, so is \bar{L} / F.

Let $\bar{\sigma}$ be an arbitrary isomorphism of \bar{L} over F with $\bar{\sigma}=\sigma$ on $M\left(\zeta_{n}\right)$, $\sigma \in G\left(M\left(\zeta_{n}\right) / F\right)$. We have

$$
\begin{equation*}
M=F(\gamma) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{L}=F\left(\beta, \gamma, \zeta_{n}\right) . \tag{5}
\end{equation*}
$$

Since the extension M / F is normal,

$$
\begin{equation*}
\gamma^{\bar{\sigma}} \in M \subseteq \bar{L} \tag{6}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\zeta_{n}^{\bar{\sigma}} \in \bar{L} \tag{7}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sigma=\sigma_{1}^{t_{1}} \ldots \sigma_{r}^{t_{r}}, \quad t_{j} \in \mathbb{Z}, 0 \leq t_{j}<h_{j}, h_{j}=\operatorname{ord} \sigma_{j} . \tag{8}
\end{equation*}
$$

Put

$$
\begin{equation*}
A_{\sigma}:=\prod_{j=1}^{r} A_{j}^{a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j}-1} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r} r}} \frac{\sigma_{j}^{t_{j}-a_{j}}}{\sigma_{j}-a_{j}} . \tag{9}
\end{equation*}
$$

Obviously $A_{\sigma} \in M^{*}$. We now show that

$$
\begin{equation*}
\alpha^{\sigma-a}=A_{\sigma}^{n}, \quad \text { where } \quad a=a_{1}^{t_{1}} \ldots a_{r}^{t_{r}} \tag{10}
\end{equation*}
$$

We have

$$
\begin{aligned}
& a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}}\left(\sigma_{j}^{t_{j}}-a_{j}^{t_{j}}\right)+a_{1}^{t_{1}} \ldots a_{j}^{t_{j}} \sigma_{j+2}^{t_{j+2}} \ldots \sigma_{r}^{t_{r}}\left(\sigma_{j+1}^{t_{j+1}}-a_{j+1}^{t_{j+1}}\right) \\
& \quad=a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j}^{t_{j}} \ldots \sigma_{r}^{t_{r}}-a_{1}^{t_{1}} a_{j+1}^{t_{j+1}} \sigma_{j+2}^{t_{j+2}} \ldots \sigma_{r}^{t_{r}} \quad \text { for } 1 \leq j \leq r-1 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sigma-a=\sum_{j=1}^{r} a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}}\left(\sigma_{j}^{t_{j}}-a_{j}^{t_{j}}\right) \tag{11}
\end{equation*}
$$

By (11), (1) and (9),

$$
\begin{aligned}
\alpha^{\sigma-a} & =\prod_{j=1}^{r} \alpha^{\left(\sigma_{j}-a_{j}\right) a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}} \frac{\sigma_{j}^{t_{j}-a} a_{j}^{t_{j}}}{\sigma_{j}-a_{j}}} \\
& =\left(\prod_{j=1}^{r} A_{j}^{a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}} \frac{\sigma_{j}^{t_{j}}-a_{j}^{t_{j}}}{\sigma_{j}-a_{j}}}\right)^{n}=A_{\sigma}^{n}
\end{aligned}
$$

Thus (10) holds.
By (10), $\beta^{\bar{\sigma} n}=\alpha^{\bar{\sigma}}=\alpha^{\sigma}=\alpha^{a} A_{\sigma}^{n}=\left(\beta^{a} A_{\sigma}\right)^{n}$. Hence

$$
\begin{equation*}
\beta^{\bar{\sigma}}=\zeta_{n}^{u} \beta^{a} A_{\sigma} \in \bar{L} \tag{12}
\end{equation*}
$$

Since the extension \bar{L} / F is separable and, by (5)-(7) and (12), normal, it is a Galois extension and $\bar{\sigma}$ is an automorphism.

Let $\bar{\tau}$ be any automorphism of \bar{L} over F with $\bar{\tau}=\tau$ on $M\left(\zeta_{n}\right), \tau \in$ $G\left(M\left(\zeta_{n}\right) / F\right)$. Since the extension M / F is abelian we have, by (4),

$$
\begin{equation*}
\gamma^{\bar{\sigma} \bar{\tau}}=\gamma^{\bar{\tau} \bar{\sigma}} \tag{13}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
\zeta_{n}^{\bar{\sigma} \bar{\tau}}=\zeta_{n}^{\bar{\tau} \bar{\sigma}} \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\tau=\sigma_{1}^{u_{1}} \ldots \sigma_{r}^{u_{r}}, \quad u_{i} \in \mathbb{Z}, 0 \leq u_{i}<h_{i}, h_{i}=\operatorname{ord} \sigma_{i} . \tag{15}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
A_{\sigma}^{\tau-b}=A_{\tau}^{\sigma-a}, \quad \text { where } \quad b=a_{1}^{u_{1}} \ldots a_{r}^{u_{r}} . \tag{16}
\end{equation*}
$$

By (15) and (11),

$$
\begin{equation*}
\tau-b=\sum_{i=1}^{r} a_{1}^{u_{1}} \ldots a_{i-1}^{u_{i-1}} \sigma_{i+1}^{u_{i+1}} \ldots \sigma_{r}^{u_{r}}\left(\sigma_{i}^{u_{i}}-a_{i}^{u_{i}}\right) \tag{17}
\end{equation*}
$$

By (15) and (9),

$$
\begin{equation*}
A_{\tau}=\prod_{i=1}^{r} A_{i}^{a_{1}^{u_{1}} \ldots a a_{i-1}^{u_{i-1}} \sigma_{i+1}^{u_{i+1}} \ldots \sigma_{r}^{u_{r}} \frac{\sigma_{i}^{u_{i}}-a_{i}^{u_{i}}}{\sigma_{i}-a_{i}}} . \tag{18}
\end{equation*}
$$

By (2), (9), (17), (18) and (11),

$$
\begin{aligned}
A_{\sigma}^{\tau-b} & =\prod_{j=1}^{r} \prod_{i=1}^{r} A_{j}^{\left(\sigma_{i}-a_{i}\right) a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}} \frac{\sigma_{j}^{t_{j}}-a_{j}^{t_{j}}}{\sigma_{j}-a_{j}} a_{1}^{u_{1}} \ldots a_{i-1}^{u_{i-1}} \sigma_{i+1}^{u_{i+1}} \ldots \sigma_{r}^{u_{r}} \frac{\sigma_{i}^{u_{i}-a_{i}^{u_{i}}}}{\sigma_{i}-a_{i}}} \\
& =\prod_{i=1}^{r} \prod_{j=1}^{r} A_{i}^{\left(\sigma_{j}-a_{j}\right) a_{1}^{u_{1}} \ldots a_{i-1}^{u_{i-1}} \sigma_{i+1}^{u_{i+1}} \ldots \sigma_{r}^{u_{r}} \frac{\sigma_{i}^{u_{i}-a_{i}^{u_{i}}}}{\sigma_{i}-a_{i}} a_{1}^{t_{1}} \ldots a_{j-1}^{t_{j-1}} \sigma_{j+1}^{t_{j+1}} \ldots \sigma_{r}^{t_{r}} \frac{\sigma_{j}^{t_{j}}-a_{j}^{t_{j}}}{\sigma_{j}-a_{j}}} \\
& =A_{\tau}^{\sigma-a .}
\end{aligned}
$$

Thus (16) holds.
By (12),

$$
\begin{equation*}
\beta^{\bar{\tau}}=\zeta_{n}^{v} \beta^{b} A_{\tau} . \tag{19}
\end{equation*}
$$

By (8),
(20)

$$
\zeta_{n}^{\bar{\sigma}}=\zeta_{n}^{\sigma}=\zeta_{n}^{a_{1}^{t_{1}} \ldots a_{1}^{t_{r}}}=\zeta_{n}^{a} .
$$

Similarly,

$$
\begin{equation*}
\zeta_{n}^{\bar{\tau}}=\zeta_{n}^{b} \tag{21}
\end{equation*}
$$

By (12) and (19)-(21),

$$
\begin{align*}
& \beta^{\bar{\sigma} \bar{\tau}}=\zeta_{n}^{u b+v a} \beta^{a b} A_{\tau}^{a} A_{\sigma}^{r}, \tag{22}\\
& \beta^{\bar{\tau} \bar{\sigma}}=\zeta_{n}^{u b+v a} \beta^{a b} A_{\sigma}^{b} A_{\tau}^{\sigma} . \tag{23}
\end{align*}
$$

By (16), $A_{\tau}^{a} A_{\sigma}^{\tau}=A_{\sigma}^{b} A_{\tau}^{\sigma}$. By (22) and (23),

$$
\begin{equation*}
\beta^{\bar{\sigma} \bar{\tau}}=\beta^{\bar{\tau} \bar{\sigma}} . \tag{24}
\end{equation*}
$$

By (5), (24), (13) and (14) the extension \bar{L} / F is abelian.
Proof of Corollary 2. We put $M=F$ in the Theorem. It is enough to prove that $\alpha^{1-a_{j}}=A_{j}^{n}$ and $A_{j}^{1-a_{i}}=A_{i}^{1-a_{j}}\left(A_{i}, A_{j} \in F\right) \Leftrightarrow \alpha^{w_{n}}=\gamma^{n}$ $(\gamma \in F)$.

By Galois theory $w_{n}=\left(1-a_{1}, \ldots, 1-a_{r}, n\right)$. Hence $\alpha^{1-a_{j}}=A_{j}^{n} \Leftrightarrow$ $\alpha^{w_{n}}=\gamma^{n}$. It is enough to prove that $\alpha^{1-a_{j}}=A_{j}^{n} \Rightarrow A_{j}^{1-a_{i}}=A_{i}^{1-a_{j}}$. Assume that $\alpha^{1-a_{j}}=A_{j}^{n}$. Then

$$
\alpha^{1-a_{j}}=\alpha^{w_{n}\left(1-a_{j}\right) / w_{n}}=\gamma^{n\left(1-a_{j}\right) / w_{n}}=A_{j}^{n} .
$$

Hence $A_{j}=\zeta_{w_{n}}^{x_{j}} \gamma^{\left(1-a_{j}\right) / w_{n}}$ and

$$
A_{j}^{1-a_{i}}=\gamma^{\left(1-a_{j}\right)\left(1-a_{i}\right) / w_{n}}=A_{i}^{1-a_{j}}
$$

Remark 2. In special cases conditions (1) and (2) in the Theorem can be replaced just by (1). We have such a situation in Corollaries 1 and 2. In general we cannot drop (2). This is shown by the following example:
$F=\mathbb{Q}, M=P_{4}, n=8, \alpha=-4, L=P_{4}(\sqrt[8]{-4})$. Put $\sigma_{1}=\left(\zeta_{8} \rightarrow \zeta_{8}^{-1}\right)$, $\sigma_{2}=\left(\zeta_{8} \rightarrow \zeta_{8}^{5}\right), a_{1}=-1, a_{2}=5$. Then (1) is satisfied:

$$
\alpha^{\sigma_{1}-a_{1}}=(-4)^{2}=A_{1}^{8}, \quad \alpha^{\sigma_{2}-a_{2}}=(-4)^{-4}=A_{2}^{8}
$$

where $A_{1}=\zeta_{4}^{i}\left(1-\zeta_{4}\right), A_{2}=\zeta_{4}^{j}\left(1+\zeta_{4}\right)^{-2}, A_{1}, A_{2} \in P_{4}, i, j$ are arbitrary rational integers. However, the extension L / F is not abelian. Otherwise by Corollary 2 we would have $\alpha^{2}=16=\gamma^{8}$ with $\gamma \in \mathbb{Q}$, which is impossible. The condition (2) is not satisfied. Indeed, $A_{1}^{\sigma_{2}-a_{2}}=-1 / 4, A_{2}^{\sigma_{1}-a_{1}}=1 / 4$.

Remark 3. In the case $F=\mathbb{Q}, M=P_{m}$, where $P_{m}=\mathbb{Q}\left(\zeta_{m}\right)$ and $m(n-1)$ is even, there is a simple criterion for abelianity. Namely, the extension L / F is abelian if and only if α is of the form

$$
\alpha=\zeta \tau(\chi)^{n} \gamma^{n}
$$

where $\zeta, \gamma \in P_{m}, \zeta$ is a root of unity, χ is some proper character with conductor f and of order k such that $(m, f)=1$ or $2, k \mid(n, m)$ and $\tau(\chi)$ is the normalized proper Gaussian sum corresponding to χ, with $\tau(\chi)^{n} \in P_{m}$. This follows from Kronecker-Weber's theorem and from the Theorem in [4].

Remark 4. Below we give a new proof of Corollary 2 connected with the proof of the Theorem (in fact, with the proof of necessity). This proof is much shorter than other known proofs of Corollary 2 (see [3], [5] and [2], p. 435).

Proof. Sufficiency. Assume that $\alpha^{w_{n}}=\gamma^{n}, \gamma \in F$. Put $\alpha=\beta^{n}$, $\gamma=\beta_{1}^{w_{n}}$. We have $\beta_{1} \in F^{a b}\left(\zeta_{w_{n}} \in F\right)$ and $\beta=\zeta_{n w_{n}}^{a} \beta_{1} \in F^{a b}$. Thus the extension $F\left(\beta, \zeta_{n}\right) / F$ is abelian.

Necessity. Assume that the Galois group of $x^{n}-\alpha$ is abelian. Put $\alpha=\beta^{n}, G=G\left(F\left(\beta, \zeta_{n}\right) / F\right), H=G\left(F\left(\zeta_{n}\right) / F\right)$ and $\sigma_{a}=\left(\zeta_{n} \rightarrow \zeta_{n}^{a}\right)$. Let $\sigma, \tau \in G$ with $\sigma=\sigma_{a}$ on $F\left(\zeta_{n}\right)$. We have $\beta^{\tau}=\zeta_{n}^{j} \beta, \beta^{\sigma \tau}=\beta^{\tau \sigma}=\zeta_{n}^{a j} \beta^{\sigma}$ and $\beta^{(\sigma-a) \tau}=\beta^{\sigma-a}=A_{a} \in F$. Hence $\alpha^{1-a}=A_{a}^{n}$. By Galois theory $w_{n}=$ g.c.d. ${ }_{\sigma_{a} \in H}(\{1-a\}, n)$. Hence $\alpha^{w_{n}}=\gamma^{n}, \gamma \in F$.

REFERENCES

[1] H. Hasse, Invariante Kennzeichnung relativ-abelscher Zahlkörper mit vorgegebener Galoisgruppe über einem Teilkörper des Grundkörpers, Abh. Deutsch. Akad. Wiss. 8 (1947), 5-56.
[2] G. Karpilowsky, Topics in Field Theory, North-Holland, Amsterdam, 1989.
[3] A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), 245-274.
[4] J. Wójcik, Powers of cyclotomic numbers, Comment. Math. 32 (1992), 213-223.
[5] W. Y. Yelez, On normal binomials, ibid. 36 (1980), 113-124.

[^0]: 1991 Mathematics Subject Classification: Primary 11R20.

