COLLOQUIUM MATHEMATICUM

VOL. LXVIII

SET MAPPINGS ON GENERALIZED LINEAR CONTINUA

BҮ

PÉTER KOMJÁTH (BUDAPEST)

A major branch of combinatorial set theory concerns set mappings, i.e., functions $f: X \to P(X)$, where one seeks for a large free subset, that is, a subset $Y \subseteq X$ such that $x \notin f(y)$ for any two distinct $x, y \in Y$. P. Erdős [2] proved that if the ground set is the reals and f(x) is nowhere dense for $x \in \mathbb{R}$ then there is an infinite free set. Bagemihl [1] extended this by showing that in fact an everywhere dense free set exists. Muthuvel became interested in these questions for \mathbb{R}_{κ} , the linear continuum of zero-one sequences of length κ for $\kappa > \omega$ [3, 4]. He showed that under GCH if κ is regular there always exists a free set of cardinal κ [4]. We improve this result by showing that an everywhere dense free set exists.

If κ is a regular cardinal then \mathbb{R}_{κ} consists of all nonconstant functions f from κ into $2 = \{0, 1\}$ such that there is no last $\alpha < \kappa$ such that $f(\alpha) = 0$. We order \mathbb{R}_{κ} by the lexicographic ordering. Subsets of \mathbb{R}_{κ} of the form $I(g) = \{f \in \mathbb{R}_{\kappa} : f \supseteq g\}$ where $g : \gamma \to 2$ for some $\gamma < \kappa$ are the *intervals*. So what we call intervals are really the nonempty dyadic intervals. Let \mathcal{I} be the set of intervals; notice that $|\mathcal{I}| = 2^{<\kappa} = \kappa$ under GCH.

A set $A \subseteq \mathbb{R}_{\kappa}$ is everywhere dense if $A \cap I \neq \emptyset$ for every interval I; A is nowhere dense if for every interval I there is a subinterval $I' \subseteq I$ such that $A \cap I' = \emptyset$; A is of first category if it is the union of κ nowhere dense sets; otherwise, it is of second category.

First we give a (probably well known) construction of a strong Luzin type set in \mathbb{R}_{κ} .

LEMMA. (GCH) There is a set $A = \{r(\alpha) : \alpha < \kappa^+\} \subseteq \mathbb{R}_{\kappa}$ such that Ais of second category in every interval and whenever $\{x_{\xi}^{\alpha} : \xi < \mu(\alpha)\}$ are disjoint subsets of κ^+ with $\mu(\alpha) < \kappa$ then there is an $S \subseteq \kappa^+$, $|S| = \kappa$, and there are intervals J_{ξ} ($\xi < \mu$) such that $\mu(\alpha) = \mu$ ($\alpha \in S$) and if $J'_{\xi} \subseteq J_{\xi}$ are subintervals ($\xi < \mu$) then there is an $\alpha \in S$ such that $r(x_{\xi}^{\alpha}) \in J'_{\xi}$ for every $\xi < \mu$.

Research partially supported by Hungarian Science Research Fund No. T014105.

¹⁹⁹¹ Mathematics Subject Classification: 03E05, 04A20.

Proof. First we remark that the assumption on |S| is inessential as it is obvious from the other assumptions that if there is a good set then there is one of cardinal κ .

By GCH there are κ^+ objects of the form $((d_{\xi} : \xi < \mu), F)$ where $\mu < \kappa$, d_{ξ} are distinct functions $\gamma \to 2$ for some $\gamma < \kappa$, and F is a function from $\mu \times \mathcal{I}$ such that $F(\tau, I)$ is always a subinterval of I. We can, therefore, enumerate them as $\{((d_{\xi}^{\alpha} : \xi < \mu(\alpha)), F_{\alpha}) : \alpha < \kappa^+\}$.

To construct $r(\alpha)$ for $\alpha < \kappa^+$ we re-order α as $\{\beta(\tau) : \tau < \kappa\}$ and determine successively the digits of $r(\alpha)$, or, in other words, define a descending sequence of intervals $\{I^{\alpha}_{\tau} : \tau < \kappa\}$ and get $r(\alpha)$ as the unique element of the intersection.

At step $\tau < \kappa$ shrink $\bigcap \{I_{\tau'}^{\alpha} : \tau' < \tau\}$ to an interval $\widehat{I}_{\tau}^{\alpha}$ such that there is at most one $d = d_{\xi}^{\beta(\tau)}$ for some $\xi < \mu(\beta(\tau))$ such that $\widehat{I}_{\tau}^{\alpha} \subseteq I(d)$. This is possible as those intervals are disjoint. Then add a final 0 and 1 (this will ensure that $r(\alpha)$ has cofinally many zeroes and ones, i.e., $r(\alpha) \in \mathbb{R}_{\kappa}$). For $\tau = 0$ let \widehat{I}_{0}^{α} be an arbitrary interval; we only require that every interval should occur κ^+ times as \widehat{I}_{0}^{α} . Then let $I_{\tau}^{\alpha} = F_{\beta(\tau)}(\xi, \widehat{I}_{\tau}^{\alpha})$, where ξ is the above index. Finally, as we have already said, $\{r(\alpha)\} = \bigcap \{I_{\tau}^{\alpha} : \tau < \kappa\}$.

Assume now that this construction fails to meet the requirements of the Lemma and $\{x_{\xi}^{\alpha}: \xi < \mu(\alpha)\}$ witness this. Then they are disjoint subsets of κ^+ for $\alpha < \kappa^+$, $\mu(\alpha) < \kappa$. Without loss of generality, we can assume that $\mu(\alpha) = \mu$ for $\alpha < \kappa^+$. We can also assume that there exists a $\gamma < \kappa$ such that $r(x_{\xi}^{\alpha})|\gamma = d_{\xi}$ for $\xi < \mu$ and these μ functions from γ into 2 are different.

By our indirect assumption there is a function $F : \mu \times \mathcal{I} \to \mathcal{I}$ such that given I_{ξ} ($\xi < \mu$) there is no $\alpha < \kappa^+$ such that $r(x_{\xi}^{\alpha}) \in F(\xi, I_{\xi})$ for every $\xi < \mu$. There is an $\varepsilon < \kappa^+$ such that $\mu(\varepsilon) = \mu$ and $((d_{\xi} : \xi < \mu), F) = ((d_{\xi}^{\varepsilon} : \xi < \mu), F_{\varepsilon})$.

Let now α be so large that $\varepsilon < x_{\xi}^{\alpha}$ for $\xi < \mu$. When $r(x_{\xi}^{\alpha})$ was constructed ε occurred in the $\tau(\xi)$ th step for a $\tau(\xi) < \kappa$. We know that $\widehat{I}_{\tau(\xi)}^{x_{\xi}^{\alpha}} \subseteq I(d_{\xi})$ by assumption. Then we get the interval $I_{\tau(\xi)}^{x_{\xi}^{\alpha}} = F(\xi, I')$ for an $I' = \widehat{I}_{\tau(\xi)}^{x_{\xi}^{\alpha}}$. But then $\{x_{\xi}^{\alpha} : \xi < \mu\}$ contradict what was assumed about F.

We need to show that A is of second category in every interval. Assume not. Then there is an interval I and there are functions $F^{\xi} : \mathcal{I} \to \mathcal{I}$ (for $\xi < \kappa$) such that $I \cap A$ decomposes as $I \cap A = \bigcup \{A_{\xi} : \xi < \kappa\}, F^{\xi}(I') \subseteq I'$ for every $I' \subseteq I$ and $A_{\xi} \cap F^{\xi}(I') = \emptyset$ for $\xi < \kappa$. Put I = I(d). Then (d, F^{ξ}) occurs in the above enumeration at the $\alpha(\xi)$ th step (say). Select $\alpha > \alpha(\xi)$ such that $\widehat{I}_0^{\alpha} = I$. Then the successive digits of $r(\alpha)$ are so chosen that $r(\alpha) \in I$, and for every $\xi < \kappa, r(\alpha) \in F^{\xi}(I')$ for some $I' \subseteq I$, i.e., $r(\alpha) \not\in A_{\xi}$, that is, $r(\alpha) \not\in A$, a contradiction.

THEOREM. (GCH) If κ is regular and $f(x) \subseteq \mathbb{R}_{\kappa}$ is nowhere dense for $x \in \mathbb{R}_{\kappa}$ then there is an everywhere dense free set.

Let $A \subseteq \mathbb{R}_{\kappa}$ be as in the Lemma. Enumerate \mathcal{I} as $\{I_{\mu} : \mu < \kappa\}$. For some $\mu < \kappa$ the sequence $\{x_{\xi} : \xi < \mu\}$ is called *bad* if $f(y) \cap \{r(x_{\xi}) : \xi < \mu\} \neq \emptyset$ for all but first category many y in $A \cap I_{\mu}$.

CLAIM. There is a $\delta < \kappa^+$ such that no set $\{x_{\xi} : \xi < \mu\}$ with $x_{\xi} > \delta$ $(\xi < \mu)$ is bad.

Proof. Otherwise for every $\delta < \kappa^+$ there is a bad set above it, so by transfinite recursion we can choose disjoint bad sets $\{x_{\xi}^{\alpha}: \xi < \mu(\alpha)\}$. The Lemma gives S, μ , and certain intervals J_{ξ} . As $\{x_{\xi}^{\alpha}: \xi < \mu\}$ is bad for $\alpha \in S$ and $|S| = \kappa$ all but first category many elements r(y) of $A \cap I_{\mu}$ have $f(r(y)) \cap \{r(x_{\xi}^{\alpha}): \xi < \mu(\alpha)\} \neq \emptyset$. Let r(y) be such an element. As f(r(y)) is nowhere dense there exist subintervals $J'_{\xi} \subseteq J_{\xi}$ such that $J'_{\xi} \cap f(r(y)) = \emptyset$. But then, for some $\alpha \in S$, $r(x_{\xi}^{\alpha}) \in J'_{\xi}$ for $\xi < \mu$, and yet $f(r(y)) \cap \{r(x_{\xi}^{\alpha}): \xi < \mu(\alpha)\} \neq \emptyset$, a contradiction.

If we now have δ as in the Claim, we can select by transfinite induction the free $\{r(x_{\xi}) : \xi < \kappa\}, x_{\xi} > \delta, r(x_{\xi}) \in A \cap I_{\xi}$ at every step we have a second category set of good extensions.

REFERENCES

- F. Bagemihl, The existence of an everywhere dense independent set, Michigan Math. J. 20 (1973), 1–2.
- [2] P. Erdős, Some remarks on set theory III, ibid. 2 (1953-54), 51-57.
- [3] K. Muthuvel, Nowhere dense set mappings on the generalized linear continua, Order 7 (1990), 179–182.
- [4] —, Large free set, Colloq. Math. 63 (1992), 107–109.

DEPARTMENT OF COMPUTER SCIENCE R. EÖTVÖS UNIVERSITY BUDAPEST, MÚZEUM KRT. 6–8 1088 HUNGARY E-mail: KOPE@CS.ELTE.HU

Reçu par la Rédaction le 7.3.1994