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SET MAPPINGS ON GENERALIZED LINEAR CONTINUA
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A major branch of combinatorial set theory concerns set mappings, i.e.,
functions f : X — P(X), where one seeks for a large free subset, that is, a
subset Y C X such that z ¢ f(y) for any two distinct z,y € Y. P. Erdés [2]
proved that if the ground set is the reals and f(x) is nowhere dense for x € R
then there is an infinite free set. Bagemihl [1] extended this by showing that
in fact an everywhere dense free set exists. Muthuvel became interested in
these questions for R, the linear continuum of zero-one sequences of length
k for k > w [3, 4]. He showed that under GCH if « is regular there always
exists a free set of cardinal k [4]. We improve this result by showing that
an everywhere dense free set exists.

If k is a regular cardinal then R, consists of all nonconstant functions f
from k into 2 = {0, 1} such that there is no last & < x such that f(a) = 0.
We order R, by the lexicographic ordering. Subsets of R, of the form
I(9) ={f € R, : f D g} where g : v — 2 for some v < k are the intervals.
So what we call intervals are really the nonempty dyadic intervals. Let Z be
the set of intervals; notice that |Z| = 2<% = k under GCH.

A set A C R, is everywhere dense if AN T # () for every interval I; A is
nowhere dense if for every interval I there is a subinterval I’ C I such that
ANT =0; Ais of first category if it is the union of x nowhere dense sets;
otherwise, it is of second category.

First we give a (probably well known) construction of a strong Luzin
type set in R.

LEMMA. (GCH) There is a set A = {r(a) : a < k™} C R, such that A
s of second category in every interval and whenever {x? : & < pla)} are
disjoint subsets of kT with p(a) < k then there is an S C k™, |S| = k, and
there are intervals Je (§ < p) such that p(a) = p (o € S) and if J; C Jg
are subintervals (§ < p) then there is an o € S such that r(xg) € J{ for
every € < L.
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Proof. First we remark that the assumption on |S| is inessential as it
is obvious from the other assumptions that if there is a good set then there
is one of cardinal k.

By GCH there are kT objects of the form ((d¢ : £ < p), F') where u < &,
d¢ are distinct functions v — 2 for some v < &, and F' is a function from
X I such that F(7,I) is always a subinterval of I. We can, therefore,
enumerate them as {((d¢ : { < p(a)), Fo) s a < k¥}.

To construct r(a) for a < k™ we re-order a as {5(7) : 7 < r} and deter-
mine successively the digits of r(«), or, in other words, define a descending
sequence of intervals {I% : 7 < k} and get r(«) as the unique element of the
intersection.

At step 7 < k shrink ({I% : 7/ < 7} to an interval fﬁ‘ such that

there is at most one d = d?(T) for some & < p(5(7)) such that fﬁ‘ C I(d).
This is possible as those intervals are disjoint. Then add a final 0 and 1
(this will ensure that r(«) has cofinally many zeroes and ones, i.e., r(«a) €
Ry). For 7 =0 let Z? be an arbitrary interval; we only require that every
interval should occur x* times as f(‘)l. Then let I& = FB(T)(ﬁ,IAS), where
¢ is the above index. Finally, as we have already said, {r(a)} = N{I2 :
T < K}

Assume now that this construction fails to meet the requirements of the
Lemma and {zg : { < p(a)} witness this. Then they are disjoint subsets
of kt for a < k1, u(a) < k. Without loss of generality, we can assume
that p(a) = p for @ < k™. We can also assume that there exists a v < &
such that r(zg)ly = d¢ for £ < p and these p functions from v into 2 are
different.

By our indirect assumption there is a function F' : 4 X T — 7 such that
given I¢ (§ < p) there is no v < ™ such that r(zg) € F(, I¢) for every
§ < p. There is an ¢ < & such that pu(e) = pand ((dg : § < p), F) = ((dg :
§<p), Fe).

Let now « be so large that e < x¢ for £ < pu. When r(:c?) was constructed

e occurred in the 7(&)th step for a 7(§) < k. We know that ffé) C I(de)

by assumption. Then we get the interval Ifé) =F(TI') foran I' = ffé)
But then {z¢ : { < u} contradict what was assumed about F'.

We need to show that A is of second category in every interval. Assume
not. Then there is an interval I and there are functions F* : T — T (for
¢ < k) such that I N A decomposes as I N A = |J{A¢ : £ < K}, FS(I') C T
for every I’ C I and Ag N F&(I') = () for ¢ < k. Put I = I(d). Then
(d, F%) occurs in the above enumeration at the a(&)th step (say). Select
a > a(€) such that E‘f = I. Then the successive digits of r(a) are so chosen
that r(a) € I, and for every & < k, r(a) € FS(I') for some I’ C I, ie.,
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r(a) € Ag, that is, r(a) € A, a contradiction. =

THEOREM. (GCH) If k is reqular and f(x) C R, is nowhere dense for
x € Ry then there is an everywhere dense free set.

Let A C R, be as in the Lemma. Enumerate Z as {1, : © < x}. For some
i < K the sequence {z¢ : & < p} is called bad if f(y) N{r(ze): & < p} #0
for all but first category many y in AN I,.

CLAIM. There is a 6 < Kkt such that no set {xe : & < p} with xg > §
(& < p) is bad.

Proof. Otherwise for every § < xT there is a bad set above it, so by
transfinite recursion we can choose disjoint bad sets {x? 1 & < p(a)}. The
Lemma gives S, p1, and certain intervals Je. As {zg : { < p} is bad for
a € S and |S| = k all but first category many elements r(y) of AN I,
have f(r(y)) N {r(zg) : € < p(a)} # 0. Let r(y) be such an element.
As f(r(y)) is nowhere dense there exist subintervals J{ C Jg¢ such that
JiN f(r(y)) = 0. But then, for some a € S, r(zg) € J¢ for § < i, and yet
fr(y) n{r(xg) : £ < pla)} # 0, a contradiction. =

If we now have § as in the Claim, we can select by transfinite induction
the free {r(z¢) : £ < K}, ®e > 6, r(xe) € AN I at every step we have a
second category set of good extensions. m
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