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ALMOST EVERYWHERE CONVERGENCE OF
RIESZ-RAIKOV SERIES

BY

Al HUA FAN (CERGY-PONTOISE)

Let T be a d x d matrix with integer entries and with eigenvalues > 1
in modulus. Let f be a lipschitzian function of positive order. We prove
that the series >~ ¢, f(T™z) converges almost everywhere with respect
to Lebesgue measure provided that >-°°  |c,|?log® n < oc.

1. Introduction. Given an arbitrary nonatomic dynamical system
(X, T, ). Suppose

0<cnl, cn=0(n1), ch = o0.
n=1
Then there exists a function f € L>°(X) with [ fdu = 0 such that

(1) > caf(T"x)

diverges p-a.e. ([3], [4], [8]). On the other hand, it is easy to exhibit some
specific functions like f = g — T'g with g € L*°(X) for which the series (1)
converges p-a.e. It is then natural to ask whether there are other classes of
functions such that the series (1) converges p-a.e.

In this paper, we consider a special system (T% T,dx) where T is an
endomorphism of T? and dr is Haar measure on T¢. We prove that (1)
converges a.e. for any lipschitzian continuous function.

In reality, more can be proved. For f € C(T¢), we denote by wy(-) the
modulus of continuity of f. For T' € My(Z), we denote by ||T’|| the operator
norm of T corresponding to a given norm on RY. Our main result is

THEOREM 1. Let T,, € My(Z) with det T, # 0 and f, € C(T?) with zero
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mean value and [ |f,|dz = O(1) (n > 1). Suppose
(2) supwy, (Tnp) = O(p~7) (0 >0),

where
o
Tn,p = Z ||Tn_—‘,}1 e Tn—+1p+kH (n>1, p>1).
k=0

Then the series

(3) > enfalTnTooy ... Thz)
n=1
converges a.e. if one of the following conditions is satisfied:
(o 0]
(4) o>1, Z lcn|? log? n < oo,
n=1
o
(5) o=1, Z|Cn|2n€log2n< 0o (for some e > 0),
n=1
(6) o<1, Z len|?nt =7 log? n < oo.
n=1

COROLLARY 1. Let T € My(Z) with all eigenvalues > 1 in modulus.
For any contivous function f such that ws(r) = O(log(1/r))~7 (for some
o > 0), the series (1) converges a.e. provided one of the conditions (4)—(6)
s satisfied.

The proof of Theorem 1 is based on the following Theorem 2. For n > 1,
let X, be a finite group equipped with the discrete topology and let u, be a
probability measure on X,,. Consider then the infinite space X =[] X, and
the infinite product measure p = ) p,,. The topology of X can be defined
by the usual ultrametric. We denote by I,,(x) the n-cylinder containing x.
For f € C(X), define

wa(f) = sup  [f(z) = f(y)l.

THEOREM 2. Let { f, }n>1 be a sequence of continuous functions. Suppose
that fy, does not depend upon the n—1 first coordinates and E,, f,, = 0. Then

By frfrtpl < wntp—1(fn) Epl frspl
form>1andp>1.

We shall follow the idea of [2], showing quasi-orthogonality. But our
techniques are different from those of [2]. In our case, we observe that the
general term of (3) is invariant under the action of some finite group which
becomes more and more dense when n increases and the group T? can be
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represented by a suitable infinite product of finite groups (see §3). The
problem then becomes one on an infinite product space which is treated in
§2. The deduction of Theorem 1 from Theorem 2 is given in §4.

We call (1) and (3) Riesz—Raikov series because of the first works of
D. A. Raikov ([5]) and of F. Riesz ([6]) in the case of one dimension.
A similar one-dimensional result is contained in [7].

2. Proof of Theorem 2. We will consider the infinite product measure
p as a G-measure in the sense of [1]. Here is the description.
Let n > 1. Define, for = (21, 22,...) € X,

Fo(z) = Hﬂj(%‘)~

We then have
Y F.y)=1 (vzeX),
’YEFn
where I, = H;‘:l X,,. I, will be viewed as a subgroup of X. So, for z € X
and v € I,, the group product vz will mean (z1 471, ..., Tn+Yn, Tnti,---)-
Denote by F"™ the o-field generated by all but the first n coordinates of X.
We have the following three facts:
Fact 1. The measure u is actually the unique measure such that for any
n>1,
d
lag F, pu-a.e. where p, = Z 1o,
dpiy,
vEln
oy being the image of pu under the action of .

FACT 2. For f € L'(u) we have
Eu(f | F*) =D f(a)Fu(yx).

Y€l
Fact 3. For f € C(X), the reverse martingale E,(f | F™) converges
everywhere (even uniformly) to E, f.

Facts 1 and 2 are easily verified and Fact 3 is a consequence of Fact 1 ([1]).
Let us now prove the estimate in Theorem 2. By Facts 3 and 2, we have

Eufofatp = Wm Eu(foforp | F¥) = lim > fo(y2) fagp(y2) Py ().
yel'n

Let fn(:n) = fo(®1,. .., Tntp-1,0,...). As fr, = f,, —fn—l—fn, the sum under
the limit is bounded by

wnp-i(f) D [wen () Fw (@) + | 32 Fal3) farp12) P (1) .

yel'n yel'n
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Again by Facts 2 and 3, the first sum in the preceding expression has the
limit
]\}Enoo Z | frtp (YO EN(v2) = Byl fatpl-

yel'n

Since the function ]?n(:r:) depends only upon the first n + p — 1 coordinates
and the function f,,4, does not depend upon the first n+p — 1 coordinates,
the second sum can be written as

(X A0DFma0@) (Y fe() 1 1i(7'2)).

Y E€lmtp—1 V' EXppp X XX N j=n+p

The first factor in the preceding product is independent of N and the second
one equals E,(fn4p | FV) and thus tends to E, f,1, = 0 as N — co. This
completes the proof of Theorem 2. m

3. Some lemmas. Suppose the conditions of Theorem 1 are satisfied.
Before giving the proof of Theorem 1 in the next section, we give here some
lemmas.

Recall that T¢ = R?/Z% is a quotient space. For simplicity, we introduce
the following notation. Let 7 be the natural projection from R¢ onto R%/Z4.
For z € R, we write & = 7(z). By extension, if F' is a map with values in
R?, we write F' = 7o F. Similarly, if ¢ is a point of T% and G is a subgroup
of T, we define [t|¢ = t + G which is the natural projection from T? into
T¢/G.

Let @ be an endomorphism of R? defined by a nonsingular matrix with
integer entries and ¥ be its inverse. We denote by ¢ the induced homomor-
phism of @ on T?. Then the relation between ¢ and ® is T o ® = @ o,
ie.

(7) O(z) = ¢(i).
The first lemma gives a correspondence between T/ Ker ¢ and (D) where
D is the hypercube [0,1)¢.

LEMMA 1. The map ©, : (D) — T/ Ker ¢ defined by m,(t) = [tlker o
s one-to-one.

Proof. As D+ Z¢ = R? and ¥ is nonsingular, we have the equality
(D) +w(z%) = R%

Notice that Ker ¢ = ¥(Z%)/Z?. Thus the preceding equality implies that
(D) + Ker ¢ = T¢,

This equality implies the surjectivity of m,. Suppose now we are given two
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points s and ¢ in ¥(D). Suppose that [s]kerp = [tlker - We then have

p(s) = o(t).

But s = ¥(z) for some z € D and t = ¥(y) for some y € D. These facts,
together with (7) and the last equality, imply ®¥(z) = ®¥(y), which means
r =1y (mod Z%). Thus s = t, so we have proved the injectivity. m

For n > 1, we denote by @, the endomorphism 7,,7;,_1 ...7T1 and by ¢,
the induced homomorphism on T¢. Let

G, =Keryp,, G" :Td/Gn.
Obviously, {G,,}»>1 is an increasing sequence of finite subgroups of T¢. By
Lemma 1, G™ is identified with ¥, (D). Now we introduce
H,=G,/Gn-1 (N=>1)

(Go ={0}).
LEMMA 2. Given a point h € H,, there is one and only one point t €
G, NY,,_1(D) such that h = [t]a
Proof. Let tg € G, be a representative of h. As Q;/n_l(D) +G,o1 =T4,
thereexistag € Gy,—1 and at € ¥,,_1 (D) such that ¢ = t+¢. Soh = [t]a, _,
and t € Gn N W'n_l(D) since g € G,,—1 C G. Such a t is unique since each
point of ¥,,_1(D) corresponds to a unique coset of G,,. m

n—1"°

Let || - || be a norm of R%. We introduce the associated quotient metric
on T? defined by

d(e,) = inf o = y) 2|
This metric on T¢ is invariant under translations. We sometimes write
d(z,y) = ||z — y||pe. For two subsets A and B of T?, we denote by d(A, B)
the distance from A to B. By the two preceding lemmas, G and H,, can

be identified with subsets of T¢. From now on G™ and H,, will denote their
corresponding subsets on T¢. The following fact is evident.

LEMMA 3. d(0,G™) < [|Wn]| and d(0, Hy) < [|[¥n_1]].

We therefore construct the infinite product X = [, H,, equipped with
the usual ultrametric, and the map ¢ : X — T¢ defined by

q(hl,hz, .. ) = Z hn
n=1

LEMMA 4. The map q: X — T¢ is continuous and surjective.

Proof. We have the continuity because of (2) which implies

DTt T < oo
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Let I, = H?:l Hj;. Then I', can be regarded as a subset of X. Consider
the restriction of ¢ to I,. We claim that ¢(I3,) = G,. In fact, first we
observe that q(I',) C Gy. Suppose h},h} € H; (1 <j <n) and
i+ ...+ h, =h+...+h.

Then h], — h!! € G,,—1. According to Lemma 1, this is impossible unless
h;, = h;,. By induction, it follows that h’ = hY (1 < j < n). This proves
the injectivity of the restriction of ¢ to I',. However, the cardinality of I,
is the same as that of G,,, so ¢(I},) = G,. By condition (2), the union of
G, (n >1) is dense in G. Thus the closure of the image of ¢ is G. But X
is compact and hence ¢ is surjective. m

Let {p,} be the sequence of probability mesures defined by
pin(h) = ‘Hn’_l (h € Hp).

Let p = @, ~, ftn, and let gu be the image by ¢ of . That is to say, gu is
the measure on T¢ characterized by

(8) [ fdap= [ foqdu (fecC(T?).
X

Td
LEMMA 5. If i is defined as above, then qu is Haar measure X on T¢.

Proof. {y+ G"},cq, being a partition of T?, we have

Ay +G") = Gl (v € Gn),

because
Y A +GY) =1 and Ay+G")=AG").
v€Gn

Now given f € C(T9), we have by Fact 2,

J feadu= lim Ey(foq|F") = lim Y foqlhu,....hn,Tnis,...).
X hi,...,y hn

Given € > 0, f being uniformly continuous, there is a 6 > 0 such that |f(z)—
f(y)| <eif ||z —y|lre <. Choose an N > 0 such that > - d(0,G") < 4.
Then for n > N we have B

LN Foqlhe b ) = S FAG +GY) 4 Oe).
vooshin

|Gn YEGn

|/’L1

The last sum tends to [ fd\ as N — co. m
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4. Proof of Theorem 1. Recall that a sequence {h,},>1 of elements
in a Hilbert space is said to be quasi-orthogonal if the bilinear form

> (s ) @b

n,m
on /2(N*) x ¢*(N*) is bounded. Suppose that the Hilbert space is L?(X, i)
for some measure space (X, u). For a quasi-orthonormal sequence {h,} C
L?(u), we may apply Men’shov’s theorem ([9]), which says that the series
S ¢phn(z) converges p-a.e. provided the numerical series S |c,|?log? n
converges. So, in order to prove Theorem 1, it suffices ([2], p. 237) to show
the following estimate, uniform in n:

(9) f Fa(TnToy ... T0x) frgp(ToipToip1-.. Thz)dz = O(p~°).
Td
In fact, let hy,(z) = fr (T Th—1 ... Tix). If 0 > 1, the sequence {h,, } is quasi-
orthogonal. If o = 1, the sequence {n~°/2h,} (Ve > 0) is quasi-orthogonal.
If o < 1, the sequence {n~(1=9)/2h, } is quasi-orthogonal.
Now we deduce (9) from Theorem 2.
According to Lemma 5, we consider the sequence f,, o @, 0q (n > 1)

defined on X and apply Theorem 2 to it. Then to prove (9), it suffices to
show

(10) Wngp-1(fno®Proq) =0(p~7).

Suppose & = (z;) and y = (y;) belong to X and satisfy z; = y; for
1<j<n+p—1. We have

[eo]

g(x) —qy) = > (z; —y;).

Jj=n+p

As z;,y; € H; C G~!, Lemma 2 implies that there exist £i, & € D such
that

Tj = j—lf;w Yj = j—1§3-/ (modZd).
Then

45”( i ;(&5 — ﬁ)H

j=n+p
= X e - = S Imd T

j=n+p j=n+p
With this in mind, we can deduce (10) from (2). =

@ 0 a(2) = Bn 0 q(y)]e < |

Proof of Corollary. Let o be the spectral radius of 7-!. By the
hypothesis, o < 1. Let 9p < 91 < 1. For n sufficiently large we have
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1T~ < of. Consequently,

Top = O(i Q’f+k) = 0(dh).
k=0

This estimate and the hypothesis on f allow us to verify condition (2) of
Theorem 1 with ¢ > 0. =

[9]
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