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ALMOST EVERYWHERE CONVERGENCE OF
RIESZ–RAIKOV SERIES

BY

AI HUA FAN (CERGY-PONTOISE)

Let T be a d × d matrix with integer entries and with eigenvalues > 1
in modulus. Let f be a lipschitzian function of positive order. We prove
that the series

∑∞
n=1 cnf(Tnx) converges almost everywhere with respect

to Lebesgue measure provided that
∑∞

n=1 |cn|2 log2 n < ∞.

1. Introduction. Given an arbitrary nonatomic dynamical system
(X, T, µ). Suppose

0 ≤ cn ↓, cn = O(n−1),
∞∑

n=1

cn = ∞.

Then there exists a function f ∈ L∞(X) with
∫

f dµ = 0 such that

(1)
∞∑

n=1

cnf(Tnx)

diverges µ-a.e. ([3], [4], [8]). On the other hand, it is easy to exhibit some
specific functions like f = g − Tg with g ∈ L∞(X) for which the series (1)
converges µ-a.e. It is then natural to ask whether there are other classes of
functions such that the series (1) converges µ-a.e.

In this paper, we consider a special system (Td, T, dx) where T is an
endomorphism of Td and dx is Haar measure on Td. We prove that (1)
converges a.e. for any lipschitzian continuous function.

In reality, more can be proved. For f ∈ C(Td), we denote by ωf (·) the
modulus of continuity of f . For T ∈ Md(Z), we denote by ‖T‖ the operator
norm of T corresponding to a given norm on Rd. Our main result is

Theorem 1. Let Tn ∈ Md(Z) with det Tn 6= 0 and fn ∈ C(Td) with zero
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mean value and
∫
|fn| dx = O(1) (n ≥ 1). Suppose

(2) sup
n

ωfn
(τn,p) = O(p−σ) (σ > 0),

where

τn,p =
∞∑

k=0

‖T−1
n+1 . . . T−1

n+p+k‖ (n ≥ 1, p ≥ 1).

Then the series

(3)
∞∑

n=1

cnfn(TnTn−1 . . . T1x)

converges a.e. if one of the following conditions is satisfied :

σ > 1,

∞∑
n=1

|cn|2 log2 n < ∞,(4)

σ = 1,

∞∑
n=1

|cn|2nε log2 n < ∞ (for some ε > 0),(5)

σ < 1,

∞∑
n=1

|cn|2n1−σ log2 n < ∞.(6)

Corollary 1. Let T ∈ Md(Z) with all eigenvalues > 1 in modulus.
For any contiuous function f such that ωf (r) = O(log(1/r))−σ (for some
σ > 0), the series (1) converges a.e. provided one of the conditions (4)–(6)
is satisfied.

The proof of Theorem 1 is based on the following Theorem 2. For n ≥ 1,
let Xn be a finite group equipped with the discrete topology and let µn be a
probability measure on Xn. Consider then the infinite space X =

∏
Xn and

the infinite product measure µ =
⊗

µn. The topology of X can be defined
by the usual ultrametric. We denote by In(x) the n-cylinder containing x.
For f ∈ C(X), define

ωn(f) = sup
In(x)=In(y)

|f(x)− f(y)|.

Theorem 2. Let {fn}n≥1 be a sequence of continuous functions. Suppose
that fn does not depend upon the n−1 first coordinates and Eµfn = 0. Then

|Eµfnfn+p| ≤ ωn+p−1(fn) Eµ|fn+p|
for n ≥ 1 and p ≥ 1.

We shall follow the idea of [2], showing quasi-orthogonality. But our
techniques are different from those of [2]. In our case, we observe that the
general term of (3) is invariant under the action of some finite group which
becomes more and more dense when n increases and the group Td can be
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represented by a suitable infinite product of finite groups (see §3). The
problem then becomes one on an infinite product space which is treated in
§2. The deduction of Theorem 1 from Theorem 2 is given in §4.

We call (1) and (3) Riesz–Raikov series because of the first works of
D. A. Raikov ([5]) and of F. Riesz ([6]) in the case of one dimension.
A similar one-dimensional result is contained in [7].

2. Proof of Theorem 2. We will consider the infinite product measure
µ as a G-measure in the sense of [1]. Here is the description.

Let n ≥ 1. Define, for x = (x1, x2, . . .) ∈ X,

Fn(x) =
n∏

j=1

µj(xj).

We then have ∑
γ∈Γn

Fn(γ) = 1 (∀x ∈ X),

where Γn =
∏n

j=1 Xn. Γn will be viewed as a subgroup of X. So, for x ∈ X
and γ ∈ Γn, the group product γx will mean (x1+γ1, . . . , xn+γn, xn+1, . . .).
Denote by Fn the σ-field generated by all but the first n coordinates of X.
We have the following three facts:

Fact 1. The measure µ is actually the unique measure such that for any
n ≥ 1,

dµ

dµn
= Fn µ-a.e. where µn =

∑
γ∈Γn

µ ◦ γ,

µ ◦ γ being the image of µ under the action of γ.

Fact 2. For f ∈ L1(µ) we have

Eµ(f | Fn) =
∑

γ∈Γn

f(γx)Fn(γx).

Fact 3. For f ∈ C(X), the reverse martingale Eµ(f | Fn) converges
everywhere (even uniformly) to Eµf .

Facts 1 and 2 are easily verified and Fact 3 is a consequence of Fact 1 ([1]).
Let us now prove the estimate in Theorem 2. By Facts 3 and 2, we have

Eµfnfn+p = lim
N→∞

Eµ(fnfn+p | FN ) = lim
N→∞

∑
γ∈ΓN

fn(γx)fn+p(γx)FN (γx).

Let f̃n(x) = fn(x1, . . . , xn+p−1, 0, . . .). As fn = fn− f̃n + f̃n, the sum under
the limit is bounded by

ωn+p−1(fn)
∑

γ∈ΓN

|fn+p(γx)|FN (γx) +
∣∣∣ ∑

γ∈ΓN

f̃n(γx)fn+p(γx)FN (γx)
∣∣∣.
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Again by Facts 2 and 3, the first sum in the preceding expression has the
limit

lim
N→∞

∑
γ∈ΓN

|fn+p(γx)|FN (γx) = Eµ|fn+p|.

Since the function f̃n(x) depends only upon the first n + p− 1 coordinates
and the function fn+p does not depend upon the first n+ p− 1 coordinates,
the second sum can be written as( ∑

γ′∈Γn+p−1

f̃n(γ′x)Fn+p−1(γ′x)
)( ∑

γ′′∈Xn+p×...×XN

fn+p(γ′′x)
N∏

j=n+p

µj(γ′′x)
)
.

The first factor in the preceding product is independent of N and the second
one equals Eµ(fn+p | FN ) and thus tends to Eµfn+p = 0 as N → ∞. This
completes the proof of Theorem 2.

3. Some lemmas. Suppose the conditions of Theorem 1 are satisfied.
Before giving the proof of Theorem 1 in the next section, we give here some
lemmas.

Recall that Td = Rd/Zd is a quotient space. For simplicity, we introduce
the following notation. Let π be the natural projection from Rd onto Rd/Zd.
For x ∈ Rd, we write ẋ = π(x). By extension, if F is a map with values in
Rd, we write Ḟ = π ◦ F . Similarly, if t is a point of Td and G is a subgroup
of Td, we define [t]G = t + G which is the natural projection from Td into
Td/G.

Let Φ be an endomorphism of Rd defined by a nonsingular matrix with
integer entries and Ψ be its inverse. We denote by ϕ the induced homomor-
phism of Φ on Td. Then the relation between ϕ and Φ is π ◦ Φ = ϕ ◦ π,
i.e.

(7) Φ̇(x) = ϕ(ẋ).

The first lemma gives a correspondence between Td/ Ker ϕ and Ψ̇(D) where
D is the hypercube [0, 1)d.

Lemma 1. The map πϕ : Ψ̇(D) → Td/ Ker ϕ defined by πϕ(t) = [t]Ker ϕ

is one-to-one.

P r o o f. As D + Zd = Rd and Ψ is nonsingular, we have the equality

Ψ(D) + Ψ(Zd) = Rd.

Notice that Kerϕ = Ψ(Zd)/Zd. Thus the preceding equality implies that

Ψ̇(D) + Ker ϕ = Td.

This equality implies the surjectivity of πϕ. Suppose now we are given two
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points s and t in Ψ̇(D). Suppose that [s]Ker ϕ = [t]Ker ϕ. We then have

ϕ(s) = ϕ(t).

But s = Ψ̇(x) for some x ∈ D and t = Ψ̇(y) for some y ∈ D. These facts,
together with (7) and the last equality, imply Φ̇Ψ(x) = Φ̇Ψ(y), which means
x = y (mod Zd). Thus s = t, so we have proved the injectivity.

For n ≥ 1, we denote by Φn the endomorphism TnTn−1 . . . T1 and by ϕn

the induced homomorphism on Td. Let

Gn = Kerϕn, Gn = Td/Gn.

Obviously, {Gn}n≥1 is an increasing sequence of finite subgroups of Td. By
Lemma 1, Gn is identified with Ψ̇n(D). Now we introduce

Hn = Gn/Gn−1 (N ≥ 1)

(G0 = {0}).
Lemma 2. Given a point h ∈ Hn, there is one and only one point t ∈

Gn ∩ Ψ̇n−1(D) such that h = [t]Gn−1 .

P r o o f. Let t0 ∈ Gn be a representative of h. As Ψ̇n−1(D)+Gn−1 = Td,
there exist a g ∈ Gn−1 and a t ∈ Ψ̇n−1(D) such that t0 = t+g. So h = [t]Gn−1

and t ∈ Gn ∩ Ψ̇n−1(D) since g ∈ Gn−1 ⊂ Gn. Such a t is unique since each
point of Ψ̇n−1(D) corresponds to a unique coset of Gn.

Let ‖ · ‖ be a norm of Rd. We introduce the associated quotient metric
on Td defined by

d(x, y) = inf
z∈Zd

‖(x− y)− z‖.

This metric on Td is invariant under translations. We sometimes write
d(x, y) = ‖x− y‖Td . For two subsets A and B of Td, we denote by d(A,B)
the distance from A to B. By the two preceding lemmas, Gn and Hn can
be identified with subsets of Td. From now on Gn and Hn will denote their
corresponding subsets on Td. The following fact is evident.

Lemma 3. d(0, Gn) ≤ ‖Ψn‖ and d(0,Hn) ≤ ‖Ψn−1‖.
We therefore construct the infinite product X =

∏∞
n=1 Hn equipped with

the usual ultrametric, and the map q : X → Td defined by

q(h1, h2, . . .) =
∞∑

n=1

hn.

Lemma 4. The map q : X → Td is continuous and surjective.

P r o o f. We have the continuity because of (2) which implies∑
n

‖T−1
1 . . . T−1

n ‖ < ∞.
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Let Γn =
∏n

j=1 Hj . Then Γn can be regarded as a subset of X. Consider
the restriction of q to Γn. We claim that q(Γn) = Gn. In fact, first we
observe that q(Γn) ⊂ Gn. Suppose h′j , h

′′
j ∈ Hj (1 ≤ j ≤ n) and

h′1 + . . . + h′n = h′′1 + . . . + h′′n.

Then h′n − h′′n ∈ Gn−1. According to Lemma 1, this is impossible unless
h′n = h′′n. By induction, it follows that h′j = h′′j (1 ≤ j ≤ n). This proves
the injectivity of the restriction of q to Γn. However, the cardinality of Γn

is the same as that of Gn, so q(Γn) = Gn. By condition (2), the union of
Gn (n ≥ 1) is dense in G. Thus the closure of the image of q is G. But X
is compact and hence q is surjective.

Let {µn} be the sequence of probability mesures defined by

µn(h) = |Hn|−1 (h ∈ Hn).

Let µ =
⊗∞

n=1 µn and let qµ be the image by q of µ. That is to say, qµ is
the measure on Td characterized by

(8)
∫

Td

f dqµ =
∫

X

f ◦ q dµ (f ∈ C(Td)).

Lemma 5. If µ is defined as above, then qµ is Haar measure λ on Td.

P r o o f. {γ + Gn}γ∈Gn
being a partition of Td, we have

λ(γ + Gn) =
1

|Gn|
(γ ∈ Gn),

because ∑
γ∈Gn

λ(γ + Gn) = 1 and λ(γ + Gn) = λ(Gn).

Now given f ∈ C(Td), we have by Fact 2,∫
X

f ◦ qd µ = lim
n→∞

Eµ(f ◦ q | Fn) = lim
n→∞

∑
h1,...,hn

f ◦ q(h1, . . . , hn, xn+1, . . .).

Given ε > 0, f being uniformly continuous, there is a δ > 0 such that |f(x)−
f(y)| ≤ ε if ‖x− y‖Td < δ. Choose an N > 0 such that

∑
n≥N d(0, Gn) < δ.

Then for n ≥ N we have

1
|Gn|

∑
h1,...,hn

f ◦ q(h1, . . . , hn, xn+1, . . .) =
∑

γ∈Gn

f(γ)λ(γ + Gn) + O(ε).

The last sum tends to
∫

fdλ as N →∞.
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4. Proof of Theorem 1. Recall that a sequence {hn}n≥1 of elements
in a Hilbert space is said to be quasi-orthogonal if the bilinear form∑

n,m

〈hn, hm〉anbm

on `2(N∗)× `2(N∗) is bounded. Suppose that the Hilbert space is L2(X, µ)
for some measure space (X, µ). For a quasi-orthonormal sequence {hn} ⊂
L2(µ), we may apply Men’shov’s theorem ([9]), which says that the series∑

cnhn(x) converges µ-a.e. provided the numerical series
∑

|cn|2 log2 n
converges. So, in order to prove Theorem 1, it suffices ([2], p. 237) to show
the following estimate, uniform in n:

(9)
∫

Td

fn(TnTn−1 . . . T1x)fn+p(Tn+pTn+p−1 . . . T1x) dx = O(p−σ).

In fact, let hn(x) = fn(TnTn−1 . . . T1x). If σ > 1, the sequence {hn} is quasi-
orthogonal. If σ = 1, the sequence {n−ε/2hn} (∀ε > 0) is quasi-orthogonal.
If σ < 1, the sequence {n−(1−σ)/2hn} is quasi-orthogonal.

Now we deduce (9) from Theorem 2.
According to Lemma 5, we consider the sequence fn ◦ Φn ◦ q (n ≥ 1)

defined on X and apply Theorem 2 to it. Then to prove (9), it suffices to
show

(10) ωn+p−1(fn ◦ Φn ◦ q) = O(p−σ).

Suppose x = (xj) and y = (yj) belong to X and satisfy xj = yj for
1 ≤ j ≤ n + p− 1. We have

q(x)− q(y) =
∞∑

j=n+p

(xj − yj).

As xj , yj ∈ Hj ⊂ Gj−1, Lemma 2 implies that there exist ξ′j , ξ
′′
j ∈ D such

that
xj = Ψj−1ξ

′
j , yj = Ψj−1ξ

′′
j (mod Zd).

Then

‖Φn ◦ q(x)− Φn ◦ q(y)‖Td ≤
∥∥∥Φn

( ∞∑
j=n+p

Ψj(ξ′j − ξ′′j )
)∥∥∥

=
∥∥∥ ∞∑

j=n+p

ΦnΨj(ξ′j − ξ′′j )
∥∥∥ =

∞∑
j=n+p

‖T−1
n+1 . . . T−1

j ‖.

With this in mind, we can deduce (10) from (2).

P r o o f o f C o r o l l a r y. Let % be the spectral radius of T−1. By the
hypothesis, % < 1. Let % < %1 < 1. For n sufficiently large we have
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‖T−n‖ < %n
1 . Consequently,

τn,p = O
( ∞∑

k=0

%p+k
1

)
= O(%p

1).

This estimate and the hypothesis on f allow us to verify condition (2) of
Theorem 1 with σ > 0.
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