COLLOQUIUM MATHEMATICUM

VOL. LXVIII

1995

A SINGULAR INITIAL VALUE PROBLEM FOR SECOND AND THIRD ORDER DIFFERENTIAL EQUATIONS

BY

WOJCIECH MYDLARCZYK (WROCŁAW)

1. Introduction. In this paper we consider two nonlinear second and third order differential equations with homogeneous initial values. First we study the equation

(1.1)
$$u''(x) = g(x)u(x)^{\beta} \quad (x > 0, \ -1 < \beta < 1),$$

with the initial condition

(1.2)
$$u(0) = u'(0) = 0.$$

Next we apply the existence and uniqueness results obtained for the problem (1.1), (1.2) to the study of the initial value problem

(1.3)
$$u''' = g(u(x)),$$

(1.4)
$$u(0) = u'(0) = u''(0) = 0.$$

Throughout the paper we assume that g satisfies the conditions

(1.5)
$$g \in C(0,\infty), \quad g(x) \ge 0 \text{ for } x > 0,$$

(1.6) there exists $m \ge 0$ such that $x^m g(x)$ is bounded as $x \to 0+$,

(1.7)
$$0 < \int_{0}^{\delta} g(s) s^{\beta} \, ds < \infty \quad \text{for some } \delta > 0.$$

Recently the equation (1.1) with $g \leq 0$ and $-1 < \beta < 0$ was considered in [3], [4] as a model for some problems of applied mathematics. Unfortunately, the technical arguments used therein involved the concavity properties of solutions. Therefore those methods are inapplicable in our case, where u is convex.

The results obtained in this paper generalize previous ones in [8], where the initial value problem (1.3), (1.4) was considered with g satisfying (1.6) with m = 1/2.

 $Key\ words\ and\ phrases:$ initial value problems for second and third order differential equations, blowing up solutions.

¹⁹⁹¹ Mathematics Subject Classification: 45D05, 45G10.

W. MYDLARCZYK

We are interested in the existence of nonnegative solutions $u \in C[0, \infty) \cap C^2(0, \infty)$ to the problem (1.1), (1.2) and we study the maximal solution of this problem in the sense of [6].

Using the method of the initial values perturbation we see that the initial value problem

$$u_{\varepsilon}''(x) = g(x)u_{\varepsilon}(x)^{\beta} \qquad (x > \varepsilon),$$
$$u_{\varepsilon}(\varepsilon) = u_{\varepsilon}'(\varepsilon) = 0,$$

where $0 < \beta < 1$ and $\varepsilon > 0$ is chosen so that $g(\varepsilon) > 0$, has a solution u_{ε} positive for $x > \varepsilon$. Taking $u_{\varepsilon}(x) = 0$ for $0 \le x < \varepsilon$ the function u_{ε} becomes a solution of (1.1), (1.2). Hence it follows easily that in the case $0 < \beta < 1$ the maximal solution of (1.1), (1.2), if it exists, is positive for x > 0. If $-1 < \beta \le 0$ the same result is obtained immediately.

Before stating our results we introduce some auxiliary definitions and notations.

Let g satisfy (1.5), (1.6). We put

(1.8)
$$g^*(x) = x^{-m} \sup_{0 < s < x} s^m g(s)$$
 for $x > 0$.

We easily see that $g(x) \leq g^*(x)$ for x > 0 and $x^m g^*(x)$ is nondecreasing. We will deal with two function classes \mathcal{K}_0 and \mathcal{K}^* defined as follows:

$$\mathcal{K}_0 = \{g : g \text{ satisfies } (1.5), (1.6) \text{ and } x^m g(x) \text{ is nondecreasing}\}$$

$$\mathcal{K}^* = \{g : g \text{ satisfies } (1.5) - (1.7) \text{ and } \sup_{0 < x} G^*(x) / G(x) < \infty \},\$$

where

$$G(x) = \int_{0}^{x} g(s)s^{\beta} ds, \qquad G^{*}(x) = \int_{0}^{x} g^{*}(s)s^{\beta} ds.$$

Some a priori estimates of solutions to (1.1), (1.2) are established in the following theorem and remark.

THEOREM 1.1. Let $g \in \mathcal{K}_0$, $-1 < \beta < 1$ and u be a solution to (1.1), (1.2) positive for x > 0. Then there exist constants c_1 , $c_2 > 0$ such that

(1.9)
$$c_1 x \left(\frac{u(x)}{x}\right)^{1-\beta} \le \int_0^x (x-s)g(s)s^\beta \, ds \le c_2 x \left(\frac{u(x)}{x}\right)^{1-\beta}$$

Remark 1.1. If $g \in \mathcal{K}^*$ and $-1 < \beta \leq 0$, then the a priori estimates in (1.9) are still valid.

The existence result for (1.1), (1.2) is stated in the following theorem and its corollary.

THEOREM 1.2. Let $g \in \mathcal{K}_0$. Then the condition (1.7) is necessary and sufficient for the existence of a unique solution to the problem (1.1), (1.2) positive for x > 0.

COROLLARY 1.2. Let $g \in \mathcal{K}^*$. Then the problem (1.1), (1.2) has a maximal solution. If $-1 < \beta \leq 0$, then it is the unique solution positive for x > 0.

The above results applied to the study of the problem (1.3), (1.4) allow us to obtain

THEOREM 1.3. Let $g \in \mathcal{K}^*$. Then the problem (1.3), (1.4) has a unique continuous solution u positive for x > 0 if and only if

(1.10)
$$\int_{0}^{\delta} \left\{ s^{1/2} \int_{0}^{s} (s-t)g(t)t^{-1/2} dt \right\}^{-1/3} ds < \infty$$

for some $\delta > 0$.

We also give a condition for the blow-up of solutions which means that there exists $0 < L < \infty$ such that $\lim_{x \to L^{-}} u(x) = \infty$.

THEOREM 1.4. Let $g \in \mathcal{K}^*$. The continuous solution u to (1.3), (1.4) positive for x > 0 blows up if and only if

$$\int_{0}^{\infty} \left\{ s^{1/2} \int_{0}^{s} (s-t)g(t)t^{-1/2} dt \right\}^{-1/3} ds < \infty.$$

The condition (1.10) is called the generalized Osgood condition for the problem (1.3), (1.4). Such conditions for ordinary differential equations $u^{(n)}(x) = g(u(x))$ with homogeneous initial values, and more generally for convolution type integral equations $u(x) = \int_0^x k(x-s)g(u(s)) ds$, have been widely studied (see [5], [7], [2]). Unfortunately, only the case of nondecreasing functions g was considered there. Theorems 1.3 and 1.4 of the present paper are corresponding results obtained for functions g which can oscillate at 0. Some examples of the problem (1.3), (1.4) with g like $|\sin(1/x)|$ have been given in [8].

2. Proofs of theorems. Technical arguments used in our considerations employ the fact that the considered solutions u are convex. Some properties of convex functions needed in the sequel are collected in the following lemma.

LEMMA 2.1. Let $w''(x) \ge 0$ for x > 0 and $w(x) = \int_0^x (x - s)w''(s) ds$. Then

(i) xw' - w and w/x are nondecreasing for x > 0;

if $x^m w''$ is nondecreasing for some $m \ge 0$, then

(ii)
$$(xw' - w)^2 \le 2x^2w''w + mw(xw' - w)$$
 $(x > 0);$

W. MYDLARCZYK

if $w'' \in \mathcal{K}^*$, then for each $\gamma \in (-1/2, \infty)$ there exist constants $c_1(\gamma), c_2(\gamma) > 0$ such that

(iii)
$$c_1(\gamma)x\left(\frac{w(x)}{x}\right)^{1+\gamma} \leq \int_0^x (x-s)w''(s)\left(\frac{w(s)}{s}\right)^\gamma ds$$
$$\leq c_2(\gamma)x\left(\frac{w(x)}{x}\right)^{1+\gamma} \quad (x>0).$$

Proof. The property (i) is well known for convex functions.

Since xw' - w and $x^m w''$ are nondecreasing, (ii) can be obtained as follows:

$$x^{m}(xw'-w)^{2} = 2\int_{0}^{x} s^{m+1}w''(sw'-w) \, ds + m \int_{0}^{x} s^{m-1}(sw'-w)^{2} \, ds$$
$$\leq 2x^{m+2}w''w + mx^{m}w(xw'-w) \qquad (x>0).$$

To prove (iii) we first consider an auxiliary function \widetilde{w} defined by $\widetilde{w}(x) = \int_0^x (x-s)(w'')^*(s) ds$, where $(w'')^*$ is defined by (1.8). We will show that \widetilde{w} satisfies (iii). Since $x^m \widetilde{w}''$ is nondecreasing and

$$\frac{1}{1+\gamma} \left(x \left(\frac{\widetilde{w}(x)}{x} \right)^{1+\gamma} \right)'' \\ = \widetilde{w}''(x) \left(\frac{\widetilde{w}(x)}{x} \right)^{\gamma} + \gamma x^{-3} (x \widetilde{w}'(x) - \widetilde{w}(x))^2 \left(\frac{\widetilde{w}(x)}{x} \right)^{\gamma-1} \quad (\gamma \neq -1),$$

the required estimates will be obtained by an application of (ii).

In the case $-1/2 < \gamma \leq 0$ we derive the inequalities

$$\frac{1}{1+\gamma} \left(x \left(\frac{\widetilde{w}(x)}{x} \right)^{1+\gamma} \right)'' \leq \widetilde{w}''(x) \left(\frac{\widetilde{w}(x)}{x} \right)^{\gamma};$$

$$(2.1) \quad (1+2\gamma)\widetilde{w}''(x) \left(\frac{\widetilde{w}(x)}{x} \right)^{\gamma}$$

$$\leq \frac{1}{1+\gamma} \left(x \left(\frac{\widetilde{w}(x)}{x} \right)^{1+\gamma} \right)'' - \frac{m\gamma}{1+\gamma} \left(\left(\frac{\widetilde{w}(x)}{x} \right)^{1+\gamma} \right)'$$

valid for x > 0, which give the inequality (iii) for \widetilde{w} with

$$\widetilde{c}_1(\gamma) = \frac{1}{1+\gamma}$$
 and $\widetilde{c}_2(\gamma) = \frac{1-m\gamma}{(1+\gamma)(1+2\gamma)}.$

In the case $\gamma > 0$ we can proceed as previously to derive two inequalities as (2.1) with reverse signs, from which it follows that the right inequality in (iii) is true for any $\gamma > 0$ with $\tilde{c}_2(\gamma) = 1/(1+\gamma)$ and the left one for $0 < \gamma < 1/m$ with $\tilde{c}_1(\gamma) = (1 - m\gamma)/((1 + \gamma)(1 + 2\gamma))$. To complete the proof of (iii) for \widetilde{w} we employ the Jensen inequality

$$\frac{1}{\widetilde{w}(x)} \int_{0}^{x} (x-s)\widetilde{w}''(s) \left(\frac{\widetilde{w}(s)}{s}\right)^{n\gamma} ds \ge \left(\frac{1}{\widetilde{w}(x)} \int_{0}^{x} (x-s)\widetilde{w}''(s) \left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds\right)^{n\gamma} ds$$
which for $\alpha > 0$ and $n > 1$

valid for $\gamma > 0$ and n > 1.

We also easily verify that

(2.2)
$$\lim_{\gamma \to 0+} \widetilde{c}_1(\gamma) = \lim_{\gamma \to 0+} \widetilde{c}_2(\gamma) = 1.$$

Now we are ready to consider w. By the definition of \mathcal{K}^* we have

(2.3) $A\widetilde{w}'(x) \le w'(x) \le \widetilde{w}'(x) \quad (x > 0),$ for some constant 0 < A < 1. Since $w''(x) < \widetilde{w}''(x)$, from (2.3) we get

$$w''(x)\left(\frac{w(x)}{x}\right)^{\gamma} \le \max(1, A^{\gamma})\widetilde{w}''(x)\left(\frac{\widetilde{w}(x)}{x}\right)^{\gamma} \quad (x > 0, \ \gamma > -1/2),$$

which gives the right inequality in (iii) with $c_2(\gamma) = \max(1, A^{\gamma})A^{-(1+\gamma)}\tilde{c}_2(\gamma)$ for $\gamma > -1/2$.

We prove the left inequality in two steps.

When $\gamma \in (-1/2, 0]$, the proof is easy because $(w(s)/s)^{\gamma}$ is a nonincreasing function. In that case we can take $c_1(\gamma) = 1$.

In the case $\gamma > 0$ we first observe that

(2.4)
$$\int_{0}^{x} (x-s)w''(s)\left(\frac{w(s)}{s}\right)^{\gamma} ds \ge A^{\gamma} \int_{0}^{x} (x-s)w''(s)\left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds$$

for x > 0. An integration by parts applied to the integral on the right hand side and an application of (2.3) allow us to write

$$(2.5) \qquad \int_{0}^{x} (x-s)w''(s)\left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds \ge \int_{0}^{x} (x-s)\widetilde{w}''(s)\left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds + (A-1)\int_{0}^{x} \widetilde{w}'(s)\left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds \qquad (x>0).$$

The second integral on the right hand side can be estimated as follows:

(2.6)
$$\frac{1}{1+\gamma} x \left(\frac{\widetilde{w}(x)}{x}\right)^{1+\gamma} \leq \int_{0}^{x} \widetilde{w}'(x) \left(\frac{\widetilde{w}(s)}{s}\right)^{\gamma} ds$$
$$\leq x \left(\frac{\widetilde{w}(x)}{x}\right)^{1+\gamma} \quad (x>0).$$

Combining (2.4)–(2.6) we get

$$\int_{0}^{x} (x-s)w''(s)\left(\frac{w(s)}{s}\right)^{\gamma} ds \ge c_1(\gamma)x\left(\frac{\widetilde{w}(x)}{x}\right)^{1+\gamma} \quad (x>0)$$

with $c_1(\gamma) = A^{\gamma}(\tilde{c}_1(\gamma) + A - 1)$. Since in view of (2.2), $\lim_{\gamma \to 0+} c_1(\gamma) = A$, the left inequality in (iii) is valid for small $0 < \gamma$. For other values of $\gamma > 0$, we can use the same arguments as those based on the application of the Jensen inequality used in the case of \widetilde{w} .

The a priori estimates for solutions to the problem (1.1), (1.2) can be derived as follows.

Proof of Theorem 1.1. First we note that $u''(s)(u(s)/s)^{-\beta} = g(s)s^{\beta}$. We obtain, as in the proof of Lemma 1.1(ii), the inequality

$$x^{m}(xu'-u)^{2} = 2\int_{0}^{x} s^{m+3}u''(s)\left(\frac{u(s)}{s}\right)^{-\beta} \left(\frac{u(s)}{s}\right)' \left(\frac{u(s)}{s}\right)^{\beta} ds$$
$$+ m\int_{0}^{x} s^{m-1}(su'-u)^{2} ds$$
$$\leq \frac{2}{1+\beta}x^{m+2}u''u + mx^{m}u(xu'-u)$$

valid for x > 0, from which it follows that

(2.7)
$$(xu'(x) - u(x))^2 \le \frac{2}{1+\beta}x^2u''(x)u(x) + mu(x)(xu'(x) - u(x)) \quad (x > 0)$$

Since

(2.8)
$$\frac{1}{1-\beta} \left(x \left(\frac{u(x)}{x} \right)^{1-\beta} \right)'' = u''(x) \left(\frac{u(x)}{x} \right)^{-\beta} - \beta x^{-3} (xu'(x) - u(x))^2 \left(\frac{u(x)}{x} \right)^{-\beta-1} \quad (x > 0),$$

in the case $0 < \beta$ we can apply (2.7) to obtain the following two inequalities:

$$\frac{1}{1-\beta} \left(x \left(\frac{u(x)}{x} \right)^{1-\beta} \right)^{\prime\prime} \leq u^{\prime\prime}(x) \left(\frac{u(x)}{x} \right)^{-\beta},$$
$$\frac{1-\beta}{1+\beta} u^{\prime\prime}(x) \left(\frac{u(x)}{x} \right)^{-\beta} \leq \frac{1}{1-\beta} \left(x \left(\frac{u(x)}{x} \right)^{1-\beta} \right)^{\prime\prime} + \frac{m\beta}{1-\beta} \left(\left(\frac{u(x)}{x} \right)^{1-\beta} \right)^{\prime}$$
valid for $x > 0$, which give the required estimates with

$$c_1 = \frac{1}{1-\beta}$$
 and $c_2 = \frac{(1+m\beta)(1+\beta)}{(1-\beta)^2}$

Now we can consider the case of $-1 < \beta \leq 0$. From (2.8) we get

(2.9)
$$0 \le u''(x) \left(\frac{u(x)}{x}\right)^{-\beta} \le \frac{1}{1-\beta} \left(x \left(\frac{u(x)}{x}\right)^{1-\beta}\right)'' \quad (x > 0)$$
which gives the right inequality in (1.9) with $c_2 = 1/(1-\beta)$.

nequality

The left inequality can be proved as follows. In view of (2.9) we define an auxiliary function $w(x) = \int_0^x (x-s)g(s)s^\beta ds$ and obtain the inequality

$$w(x) \le \frac{1}{1-\beta} x \left(\frac{u(x)}{x}\right)^{1-\beta} \quad (x>0),$$

from which it follows that

0

$$\leq u''(x) = g(x)u^{\beta}(x)$$

$$\leq (1-\beta)^{\beta/(1-\beta)}w''(x)\left(\frac{w(x)}{x}\right)^{\beta/(1-\beta)} \qquad (x>0).$$

Since for $-1 < \beta \leq 0$ we have $-1/2 < \beta/(1-\beta) \leq 0$, by an application of Lemma 1.1(iii) we obtain the inequality

$$u(x) \le (1-\beta)^{\beta/(1-\beta)} \int_0^x (x-s)w''(s) \left(\frac{w(s)}{s}\right)^{\beta/(1-\beta)} ds$$
$$\le c_2 x \left(\frac{w(x)}{x}\right)^{1/(1-\beta)}$$

valid for x > 0, from which the required inequality follows immediately.

Proof of Remark 1.1. The proof is exactly the same as that of Theorem 1.1 in the case of $-1 < \beta \le 0$.

Now we are ready to consider the existence problem for (1.1), (1.2).

Proof of Theorem 1.2. In view of the proved a priori estimates the necessity part of the theorem is obvious.

Now assuming that the condition (1.7) is satisfied we can define auxiliary functions $w(x) = \int_0^x (x-s)g(s)s^\beta ds$ and $\varphi(x) = x(w(x)/x)^{1/(1-\beta)}$ (x > 0). We look for solutions to (1.1), (1.2) in the function cone

 $\mathcal{X}_{\beta} = \{v \in C[0,\infty) : \text{there exist constants } c_1, c_2 > 0 \text{ such that}$

$$c_1\varphi(x) \le v(x) \le c_2\varphi(x), \ x > 0\}$$

as fixed points of the integral operator

$$T_{\beta}v(x) = \int_{0}^{x} (x-s)g(s)v^{\beta}(s) \, ds$$

defined on \mathcal{X}_{β} . Since

$$T_{\beta}\varphi(x) = \int_{0}^{x} (x-s)w''(s)(w(s)/s)^{\beta/(1-\beta)} ds$$

and $\beta/(1-\beta) > -1/2$ for $-1 < \beta < 1$, from Lemma 1.1(iii) and the monotonicity properties of T_{β} it follows that T_{β} maps \mathcal{X}_{β} into \mathcal{X}_{β} .

We introduce a pseudometric ρ in \mathcal{X}_{β} by

$$\varrho(v_1, v_2) = \ln \frac{M(v_1 \mid v_2)}{m(v_1 \mid v_2)} \quad (v_1, v_2 \in \mathcal{X}_\beta),$$

where

$$m(v_1 \mid v_2) = \inf_{s>0} \frac{v_1(s)}{v_2(s)}, \quad M(v_1 \mid v_2) = \sup_{s>0} \frac{v_1(s)}{v_2(s)}$$

which becomes a metric $\tilde{\varrho}$ in the quotient space $\tilde{\mathcal{X}}_{\beta} = \mathcal{X}_{\beta}/\sim$, where

 $v_1 \sim v_2$ if and only if $v_1 = \lambda v_2$ for some $\lambda > 0$.

Moreover, $(\widetilde{\mathcal{X}}_{\beta}, \widetilde{\varrho})$ is a complete metric space (see [1], [9]).

Since $T_{\beta}(\lambda v) = \lambda^{\beta} T_{\beta}(v)$ for any $v \in \mathcal{X}_{\beta}$ and $\lambda > 0$, we can consider T_{β} on $\widetilde{\mathcal{X}}_{\beta}$. From the monotonicity properties of T_{β} it follows that

$$\widetilde{\varrho}(T_{\beta}\widetilde{v}_1, T_{\beta}\widetilde{v}_2) \leq |\beta|\widetilde{\varrho}(\widetilde{v}_1, \widetilde{v}_2) \quad \text{ for any } \widetilde{v}_1, \widetilde{v}_2 \in \widetilde{\mathcal{X}}_{\beta},$$

which allows us to find a unique solution $u \in \mathcal{X}_{\beta}$ to the problem (1.1), (1.2) by a contraction argument. In view of the a priori estimates (1.9) this must be the unique solution of that problem positive for x > 0.

Proof of Corollary 1.2. The same arguments as those used in the proof of Theorem 1.2 show that the problem (1.1), (1.2) has a unique solution u in \mathcal{X}_{β} . We will prove that it is maximal.

In the case $-1 < \beta \leq 0$ the proof is easy because in view of Remark 1.1, u must be the unique continuous solution to (1.1), (1.2).

In the case $0 < \beta < 1$, for any solution v to (1.1), (1.2) we get

$$v(x) = \int_{0}^{x} (x-s)g(s)s^{\beta} \left(\frac{v(s)}{s}\right)^{\beta} ds$$
$$\leq \int_{0}^{x} (x-s)g(s)s^{\beta} ds \left(\frac{v(x)}{x}\right)^{\beta} \quad (x>0)$$

Hence it follows that $v(x) \leq \varphi(x)$ for x > 0. Therefore we can find a constant c > 0 such that $v(x) \leq cu(x)$ for x > 0, and by using an iteration process we obtain the inequality

$$v(x) = T^n v(x) \le T^n(cu)(x) = c^{\beta^n} u(x) \quad (x > 0),$$

which gives the required result as $n \to \infty$.

Now we consider the initial value problem for the third order differential equation. Substituting $v(x) = 2^{-2/3}u'(u^{-1}(x))^2$ in the problem (1.3), (1.4), where u^{-1} is the inverse function to u, we see that v satisfies

(2.10)
$$v''(x) = g(x)v^{-1/2}(x) \quad (x > 0)$$
$$v(0) = v'(0) = 0.$$

Proof of Theorems 1.3 and 1.4. Since $v^{-1/2}(x) = 2^{1/3}(u^{-1})'(x)$, it suffices to apply the estimates

$$c_1 x \left(\frac{v(x)}{x}\right)^{3/2} \le \int_0^x (x-s)g(s)s^{-1/2} \, ds \le c_2 x \left(\frac{v(x)}{x}\right)^{3/2} \quad (x>0)$$

for solutions of (2.10) obtained by Remark 1.1.

REFERENCES

- P. J. Bushell, On a class of Volterra and Fredholm nonlinear integral equations, Math. Proc. Cambridge Philos. Soc. 79 (1976), 329–335.
- [2] P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, ibid. 106 (1989), 547–552.
- [3] F.-H. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear Anal. 21 (1993), 397–406.
- [4] J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order ordinary differential equations, J. Differential Equations 79 (1989), 62-78.
- [5] G. Gripenberg, On the uniqueness of solutions of Volterra equations, J. Integral Equations 2 (1990), 421–430.
- [6] R. K. Miller, Nonlinear Volterra Equations, Benjamin, New York, 1971.
- [7] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88.
- [8] —, An initial value problem for a third order differential equation, Ann. Polon. Math. 59 (1994), 215–223.
- W. Okrasiński, Nonlinear Volterra equations and physical applications, Extracta Math. 4 (1989), 51-80.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCłAW PL. GRUNWALDZKI 2/4 50-384 WROCłAW, POLAND E-mail: MYDLAR@MATH.UNI.WROC.PL

Reçu par la Rédaction le 11.7.1994