COLLOQUIUM MATHEMATICUM

VOL. LXVIII

1995

FASC. 2

BOHR CLUSTER POINTS OF SIDON SETS

ВY

L. THOMAS RAMSEY (HONOLULU, HAWAII)

It is a long standing open problem whether Sidon subsets of \mathbb{Z} can be dense in the Bohr compactification of \mathbb{Z} ([LR]). Yitzhak Katznelson came closest to resolving the issue with a random process in which almost all sets were Sidon and and almost all sets failed to be dense in the Bohr compactification [K]. This note, which does not resolve this open problem, supplies additional evidence that the problem is delicate: it is proved here that if one has a Sidon set which clusters at even one member of \mathbb{Z} , one can construct from it another Sidon set which is dense in the Bohr compactification of \mathbb{Z} . A weaker result holds for quasi-independent and dissociate subsets of \mathbb{Z} .

Cluster points. By the definition of the Bohr topology, a subset $E \subset \mathbb{Z}$ clusters at q if and only if, for all $\varepsilon \in \mathbb{R}^+$, for all $n \in \mathbb{Z}^+$, and for all $(t_1, \ldots, t_n) \in \mathbb{T}^n$, there is some $m \in E$ such that

(1)
$$\sup_{1 \le i \le n} |\langle m, t_i \rangle - \langle q, t_i \rangle| < \varepsilon.$$

Here \mathbb{T} is the dual group of \mathbb{Z} and $\langle m, t \rangle$ denotes the result of the character m acting on t. Thus, if \mathbb{T} is represented as $[-\pi, \pi)$ with addition mod 2π ,

$$\langle m, t \rangle = e^{imt}.$$

If, for all $(t_1, \ldots, t_n) \in \mathbb{T}^n$, there is at least one $m \in E$ such that inequality (1) holds, then E is said to approximate q within ε on \mathbb{T}^n .

Overview. Let E be a Sidon subset of the integers \mathbb{Z} which clusters at the integer $q \in \mathbb{Z}$ in the topology of the Bohr compactification. The dense Sidon set will have the form

$$S = \bigcup_{j=1}^{\infty} S_j, \quad \text{with } S_j = x_j + k_j (E_j - q),$$

[285]

¹⁹⁹¹ Mathematics Subject Classification: Primary 43A56.

Key words and phrases: Sidon, Bohr compactification, quasi-independent, dissociate.

L. T. RAMSEY

where $E_j \subset E$ approximates q within $1/m_j$ on \mathbb{T}^{n_j} under an exhaustive enumeration (x_j, n_j, m_j) of $\mathbb{Z} \times \mathbb{Z}^+ \times \mathbb{Z}^+$. Lemma 1 below asserts that finite $E_j \subset E$ can always be found. Lemma 3 below says that S is dense, regardless of the dilation factors k_j . The final step of the argument is to choose k_j 's so that S is Sidon. Lemma 4 does this in part for N-independent sets (N-independent generalizes quasi-independent and dissociate; it is defined below). It is then a short step to Sidon sets, using a criterion of Gilles Pisier's.

LEMMA 1 (Compactness). Let $E \subset \mathbb{Z}$ cluster at $q \in \mathbb{Z}$ in the topology of the Bohr compactification of \mathbb{Z} . For every $\varepsilon \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$, there is a finite subset $E' \subset E$ which approximates q within ε on \mathbb{T}^n .

Proof. Let $\varepsilon \in \mathbb{R}^+$ and $n \in \mathbb{Z}^+$ be given. For each $(t_1, \ldots, t_n) \in \mathbb{T}^n$ there is some $m \in E$ such that (1) holds with $\varepsilon/2$ in the role of ε . By the continuity of the characters m and q on \mathbb{T} (both are in \mathbb{Z}), there is an open neighborhood U of $(t_1, \ldots, t_n) \in \mathbb{T}^n$ for which (1) is valid when $(s_1, \ldots, s_n) \in U$ are substituted for (t_1, \ldots, t_n) . By the compactness of \mathbb{T}^n , a finite number of such U's cover \mathbb{T}^n . The set of m's corresponding to the U's can be taken for the set E'.

For integers k, y, and z, and for $S \subset \mathbb{Z}$, let z + k(S - y) denote $\{z + k(x - y) | x \in S\}$.

LEMMA 2 (Dilation). Let k, y, and z be integers. If S approximates y within ε on \mathbb{T}^n , then z + k(S - y) approximates z within ε on \mathbb{T}^n .

Proof. Let $(t_1, \ldots, t_n) \in \mathbb{T}^n$. There is some $m \in S$ such that $\sup_{1 \leq i \leq n} |\langle m, kt_i \rangle - \langle y, kt_i \rangle| < \varepsilon.$

Because m and k are integers, $\langle m, kt \rangle = \langle mk, t \rangle$. Therefore,

$$\begin{split} |\langle z+k(m-y),t_i\rangle - \langle z,t_i\rangle| &= |\langle z-ky,t_i\rangle(\langle km,t_i\rangle - \langle ky,t_i\rangle)| \\ &= |\langle m,kt_i\rangle - \langle y,kt_i\rangle| < \varepsilon, \end{split}$$

for $1 \leq i \leq n$.

LEMMA 3 (Denseness). Let (x_j, n_j, m_j) , $j \in \mathbb{Z}^+$, exhaustively enumerate $\{(x, n, m) \mid x \in \mathbb{Z}, n \in \mathbb{Z}^+, m \in \mathbb{Z}^+\}$. Suppose there is a sequence $\{E_j\}_{j=1}^{\infty}$ of subsets of \mathbb{Z} such that E_j approximates p_j within $1/m_j$ on \mathbb{T}^{n_j} . Then for any sequence of integers k_j , $S = \bigcup_{j=1}^{\infty} (x_j + k_j(E_j - p_j))$ is dense in the Bohr compactification of \mathbb{Z} .

Proof. Since \mathbb{Z} is dense in its Bohr compactification, it suffices to show that the closure of S includes every $x \in \mathbb{Z}$. Let $x \in \mathbb{Z}$. By the definition of the Bohr topology, we must show that S approximates x within ε on \mathbb{T}^n for any $\varepsilon \in \mathbb{R}^+$ and any $n \in \mathbb{Z}^+$. Choose some $m \in \mathbb{Z}^+$ such that $1/m < \varepsilon$.

SIDON SETS

The triple (x, n, m) is (x_j, n_j, m_j) for some j. Since E_j approximates p_j within $1/m_j$ on \mathbb{T}^{n_j} , the Dilation Lemma implies that $x_j + k_j(E_j - p_j)$ approximates x_j within $1/m_j$ on \mathbb{T}^{n_j} and hence x within ε on \mathbb{T}^n .

DEFINITION. Let N be a positive integer and G be an additive group. An *N*-relation is a linear combination

$$\sum_{x\in G}\alpha_x x=0,$$

where α_x an integer in [-N, N] for all x and with $\alpha_x \neq 0$ for at most finitely many x. A subset A of G is said to be *N*-independent if and only if the only *N*-relation among its elements is the trivial relation which has all coefficients equal to 0. The *N*-relation hull of A, written $[A]_N$, is

$$\Big\{\sum_{x\in A}\alpha_x x\,\Big|\,\alpha_x\in\{-N,-N+1,\ldots,N\}\Big\}.$$

The hull of the empty set is understood to be $\{0\}$ (¹).

Quasi-independent sets are the 1-independent sets, while dissociate sets are the 2-independent sets ([P], [LR]).

LEMMA 4. Let $\{W_j\}_{j=1}^{\infty}$ be a sequence of finite N-independent subsets of \mathbb{Z} . Let x_j be arbitrary integers, $1 \leq j < \infty$. Set D_j equal to the maximum absolute value of the elements of $[\bigcup_{i < j} (x_i + k_i W_i)]_N$, and let M_j denote the size of W_j . If $k_j > D_j + NM_j |x_j|$ for all $j \geq 1$, then $\bigcup_{j=1}^{\infty} (x_j + k_j W_j)$ is N-independent. Moreover, the sets $x_j + k_j W_j$ are disjoint for distinct values of j.

Proof. Let $W'_i = x_i + k_i W_i$, and set

$$V_j = \bigcup_{i < j} W'_i.$$

Since $V_1 = \emptyset$, it is certainly N-independent. Assume that V_j is N-independent for some $j \ge 1$, and that W'_{i_1} and W'_{i_2} are disjoint for $i_1 \ne i_2$ with $i_1 < j$ and $i_2 < j$. Consider V_{j+1} . It will be proved first that W'_j is disjoint from V_j . Let $x \in W'_j$ and $y \in V_j$. Then $x = x_j + k_j x'$ for some $x' \in W_j$. Since W_j is N-independent, $0 \ne W_j$ and thus $x' \ne 0$. Therefore, since $V_j \subset [V_j]_N$,

$$|x| = |x_j + k_j x'| \ge k_j - |x_j| > D_j + NM_j |x_j| - |x_j| \ge D_j \ge |y|.$$

Next, consider an N-relation on V_{j+1} with coefficients α_x for $x \in V_{j+1}$. Since W'_j is disjoint from V_j , one may write

$$\sum_{x \in W'_j} \alpha_x x = -\sum_{x \in V_j} \alpha_x x = \tau,$$

 $^(^{1})$ This definition is distinct from that of J. Bourgain, who defined N-independence to be a weaker version of quasi-independence.

for some $\tau \in [V_j]_N$. Each $x \in W'_j$ has the form $x_j + k_j x'$ for some x' in W_j (x' is unique since $k_j > 0$). Thus,

(2)
$$k_j \sum_{x \in W'_j} \alpha_x x' = \tau - x_j \sum_{x \in W'_j} \alpha_x$$

Suppose that $\sum_{x \in W'_i} \alpha_x x' \neq 0$. Then, by equation (2),

1

$$\begin{aligned} x_j &\leq \left| k_j \sum_{x \in W'_j} \alpha_x x' \right| = \left| \tau - x_j \sum_{x \in W'_j} \alpha_x \right| \\ &\leq |\tau| + |x_j| \cdot \left| \sum_{x \in W'_j} \alpha_x \right| \leq D_j + |x_j| N M_j, \end{aligned}$$

which is contrary to $k_j > D_j + NM_j |x_j|$. Thus $\sum_{x \in W'_j} \alpha_x x' = 0$. This is an *N*-relation among the elements of W_j (since x' is unique for each x, and vice versa). Since W_j is *N*-independent, $\alpha_x = 0$ for $x \in W'_j$. It follows that equation (2) reduces to $\tau = 0$, which is an *N*-relation supported on V_j . Since V_j is *N*-independent, $\alpha_x = 0$ for all $x \in V_j$ and hence for all $x \in V_{j+1} = V_j \cup W'_j$. Thus only the trivial relation occurs among the *N*-relations on V_{j+1} .

Finally, since $V_j \subset V_{j+1}$ for all $j \in \mathbb{Z}^+$ and

$$S = \bigcup_{i=1}^{\infty} W'_i = \bigcup_{j=1}^{\infty} V_j,$$

the *N*-independence of the V_j 's makes *S* be *N*-independent. [Any *N*-relation on *S* has at most finitely many non-zero coefficients (by definition); thus it must be supported on V_j for some *j* (since *S* is an increasing union of the V_j 's) and hence is trivial because V_j is *N*-independent.]

PROPOSITION 5. If there is a Sidon set E which clusters at some $n \in \mathbb{Z}$ in the topology of the Bohr compactification of \mathbb{Z} , then there is a Sidon set which is dense in the Bohr compactification of \mathbb{Z} .

Proof. By Lemma 2, E' = E - n clusters at 0 in the Bohr topology; it is well known that E' is Sidon, in fact with the same Sidon constant as E ([LR]). By the definition of cluster point, we may assume $0 \notin E'$. As provided by Lemma 1, for any positive integers n and m there are finite subsets $E(n,m) \subset E'$ such that E(n,m) approximates 0 within 1/m on \mathbb{T}^n . As in Lemma 3, with $p_j = 0$, $E_j = E(n_j, m_j)$, and k_j yet to be determined, let

$$S = \bigcup_{j=1}^{\infty} (x_j + k_j E_j).$$

Then S is dense in the Bohr compactification of \mathbb{Z} .

SIDON SETS 289

It remains to be seen that S is Sidon, provided the k_j 's are chosen well. Let the k_j 's satisfy this criterion: $k_j > D_j + M_j |x_j|$ (as in Lemma 4), where M_j is the size of E_j (which is the same size as $x_j + k_j E_j$) and D_j is the maximum absolute value of the elements of $[\bigcup_{i < j} (x_i + k_i E_i)]_N$. This by itself guarantees that the sets $x_j + k_j E_j$ are disjoint for distinct values of j. To see this, consider $w \in x_j + k_j E_j$ and $\tau \in x_i + k_i E_i$ for i < j. Then $|\tau| \leq D_j$ while, because $0 \notin E'$ and hence $0 \notin E_j \subset E'$, there is some $x \neq 0$ such that

$$|w| = |x_j + k_j x| \ge k_j - |x_j| > D_j \ge |\tau|.$$

Gilles Pisier discovered the following arithmetic condition for Sidonicity ([P]). Let |H| denote the cardinality of H. A set Q is Sidon if and only if there is some $\lambda \in (0, 1)$ such that, for every finite subset H of Q, there is a subset F of H such that F is quasi-independent and $|F| \geq \lambda |H|$. Let λ satisfy this criterion for the set E'.

It will be shown that λ also works for S. Let H be any finite subset of S. Then $H_j = H \cap (x_j + k_j E_j)$ is finite for each j; by the second paragraph of this proof, the H_j 's are disjoint and thus

$$|H| = \sum_{j=1}^{\infty} |H_j|$$

Since $k_j > 0$, $H_j = x_j + k_j H'_j$ and $|H'_j| = |H_j|$ for some $H'_j \subset E_j$. Recall that $E_j = E(n_j, m_j) \subset E'$. There is some $F'_j \subset H'_j$ such that F'_j is quasi-independent and $|F'_j| \ge \lambda |H'_j|$. Let

$$F = \bigcup_{j=1}^{\infty} (x_j + k_j F'_j).$$

Note that $M_j = |E_j| \ge |F'_j|$ and that D_j dominates the largest absolute value of

$$\left[\bigcup_{i < j} (x_i + k_i F'_i)\right]_N \subset \left[\bigcup_{i < j} (x_i + k_i E_i)\right]_N$$

Thus the k_j 's grow fast enough to allow Lemma 4 to apply to F with N = 1: F is quasi-independent and the sets $x_j + k_j F'_j$ are disjoint. Thus, $F \subset H$ and

$$|F| = \sum_{j=1}^{\infty} |x_j + k_j F'_j| = \sum_{j=1}^{\infty} |F'_j|$$
$$\geq \lambda \sum_{j=1}^{\infty} |H'_j| = \lambda \sum_{j=1}^{\infty} |H_j| = \lambda |H|.$$

It follows that S is at least as Sidon as E' according to Gilles Pisier's criterion. \blacksquare

The proof given above is easily modified for the N-independent sets. One of the early steps in the proof for Sidon sets does not work: when E is N-independent, E - n need not be N-independent. For that reason, the theorem is weaker.

PROPOSITION 6. Let $E \subset \mathbb{Z}$ be an N-independent set which clusters at 0 in the Bohr compactification of \mathbb{Z} . Then there is an N-independent subset $E' \subset \mathbb{Z}$ which is dense in the Bohr compactification of \mathbb{Z} .

Proof. The *N*-independence of *E* excludes 0 from *E*. From this point, the proof for Sidon sets is easily adapted. One chooses $k_j > D_j + M_j N |x_j|$. Then *S* is dense in the Bohr group as before and the rest of the proof becomes easier. There is no need to consider a finite subset $H \subset S$. The choice of $k_j > D_j + M_j N |x_j|$ and Lemma 4 directly imply that *S* is *N*-independent.

I thank Ken Ross and Kathryn Hare for their helpful corrections of an early version of this manuscript.

REFERENCES

- [K] Y. Katznelson, Sequences of integers dense in the Bohr group, in: Proc. Roy. Inst. Techn., June 1973, 73–86.
- [LR] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, New York, 1975, pp. 19–52.
- [P] G. Pisier, Arithmetic characterization of Sidon sets, Bull. Amer. Math. Soc. 8 (1983), 87–89.

MATHEMATICS KELLER HALL 2565 THE MALL HONOLULU, HAWAII 96822 U.S.A. E-mail: RAMSEY@MATH.HAWAII.EDU RAMSEY@UHUNIX.UHCC.HAWAII.EDU

> Reçu par la Rédaction le 26.8.1993; en version modifiée le 22.7.1994