COLLOQUIUM MATHEMATICUM

BOHR CLUSTER POINTS OF SIDON SETS

BY
L. THOMAS RAMSEY (HONOLULU, HAWAII)

It is a long standing open problem whether Sidon subsets of \mathbb{Z} can be dense in the Bohr compactification of $\mathbb{Z}([L R])$. Yitzhak Katznelson came closest to resolving the issue with a random process in which almost all sets were Sidon and and almost all sets failed to be dense in the Bohr compactification $[\mathrm{K}]$. This note, which does not resolve this open problem, supplies additional evidence that the problem is delicate: it is proved here that if one has a Sidon set which clusters at even one member of \mathbb{Z}, one can construct from it another Sidon set which is dense in the Bohr compactification of \mathbb{Z}. A weaker result holds for quasi-independent and dissociate subsets of \mathbb{Z}.

Cluster points. By the definition of the Bohr topology, a subset $E \subset \mathbb{Z}$ clusters at q if and only if, for all $\varepsilon \in \mathbb{R}^{+}$, for all $n \in \mathbb{Z}^{+}$, and for all $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}$, there is some $m \in E$ such that

$$
\begin{equation*}
\sup _{1 \leq i \leq n}\left|\left\langle m, t_{i}\right\rangle-\left\langle q, t_{i}\right\rangle\right|<\varepsilon . \tag{1}
\end{equation*}
$$

Here \mathbb{T} is the dual group of \mathbb{Z} and $\langle m, t\rangle$ denotes the result of the character m acting on t. Thus, if \mathbb{T} is represented as $[-\pi, \pi)$ with addition $\bmod 2 \pi$,

$$
\langle m, t\rangle=e^{i m t}
$$

If, for all $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}$, there is at least one $m \in E$ such that inequality (1) holds, then E is said to approximate q within ε on \mathbb{T}^{n}.

Overview. Let E be a Sidon subset of the integers \mathbb{Z} which clusters at the integer $q \in \mathbb{Z}$ in the topology of the Bohr compactification. The dense Sidon set will have the form

$$
S=\bigcup_{j=1}^{\infty} S_{j}, \quad \text { with } S_{j}=x_{j}+k_{j}\left(E_{j}-q\right)
$$

1991 Mathematics Subject Classification: Primary 43A56.
Key words and phrases: Sidon, Bohr compactification, quasi-independent, dissociate.
where $E_{j} \subset E$ approximates q within $1 / m_{j}$ on $\mathbb{T}^{n_{j}}$ under an exhaustive enumeration $\left(x_{j}, n_{j}, m_{j}\right)$ of $\mathbb{Z} \times \mathbb{Z}^{+} \times \mathbb{Z}^{+}$. Lemma 1 below asserts that finite $E_{j} \subset E$ can always be found. Lemma 3 below says that S is dense, regardless of the dilation factors k_{j}. The final step of the argument is to choose k_{j} 's so that S is Sidon. Lemma 4 does this in part for N-independent sets (N-independent generalizes quasi-independent and dissociate; it is defined below). It is then a short step to Sidon sets, using a criterion of Gilles Pisier's.

Lemma 1 (Compactness). Let $E \subset \mathbb{Z}$ cluster at $q \in \mathbb{Z}$ in the topology of the Bohr compactification of \mathbb{Z}. For every $\varepsilon \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$, there is a finite subset $E^{\prime} \subset E$ which approximates q within ε on \mathbb{T}^{n}.

Proof. Let $\varepsilon \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$be given. For each $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}$ there is some $m \in E$ such that (1) holds with $\varepsilon / 2$ in the role of ε. By the continuity of the characters m and q on \mathbb{T} (both are in \mathbb{Z}), there is an open neighborhood U of $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}$ for which (1) is valid when $\left(s_{1}, \ldots, s_{n}\right) \in U$ are substituted for $\left(t_{1}, \ldots, t_{n}\right)$. By the compactness of \mathbb{T}^{n}, a finite number of such U 's cover \mathbb{T}^{n}. The set of m 's corresponding to the U 's can be taken for the set E^{\prime}.

For integers k, y, and z, and for $S \subset \mathbb{Z}$, let $z+k(S-y)$ denote $\{z+$ $k(x-y) \mid x \in S\}$.

Lemma 2 (Dilation). Let k, y, and z be integers. If S approximates y within ε on \mathbb{T}^{n}, then $z+k(S-y)$ approximates z within ε on \mathbb{T}^{n}.

Proof. Let $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}$. There is some $m \in S$ such that

$$
\sup _{1 \leq i \leq n}\left|\left\langle m, k t_{i}\right\rangle-\left\langle y, k t_{i}\right\rangle\right|<\varepsilon
$$

Because m and k are integers, $\langle m, k t\rangle=\langle m k, t\rangle$. Therefore,

$$
\begin{aligned}
\left|\left\langle z+k(m-y), t_{i}\right\rangle-\left\langle z, t_{i}\right\rangle\right| & =\left|\left\langle z-k y, t_{i}\right\rangle\left(\left\langle k m, t_{i}\right\rangle-\left\langle k y, t_{i}\right\rangle\right)\right| \\
& =\left|\left\langle m, k t_{i}\right\rangle-\left\langle y, k t_{i}\right\rangle\right|<\varepsilon,
\end{aligned}
$$

for $1 \leq i \leq n$.
Lemma 3 (Denseness). Let $\left(x_{j}, n_{j}, m_{j}\right), j \in \mathbb{Z}^{+}$, exhaustively enumerate $\left\{(x, n, m) \mid x \in \mathbb{Z}, n \in \mathbb{Z}^{+}, m \in \mathbb{Z}^{+}\right\}$. Suppose there is a sequence $\left\{E_{j}\right\}_{j=1}^{\infty}$ of subsets of \mathbb{Z} such that E_{j} approximates p_{j} within $1 / m_{j}$ on $\mathbb{T}^{n_{j}}$. Then for any sequence of integers $k_{j}, S=\bigcup_{j=1}^{\infty}\left(x_{j}+k_{j}\left(E_{j}-p_{j}\right)\right)$ is dense in the Bohr compactification of \mathbb{Z}.

Proof. Since \mathbb{Z} is dense in its Bohr compactification, it suffices to show that the closure of S includes every $x \in \mathbb{Z}$. Let $x \in \mathbb{Z}$. By the definition of the Bohr topology, we must show that S approximates x within ε on \mathbb{T}^{n} for any $\varepsilon \in \mathbb{R}^{+}$and any $n \in \mathbb{Z}^{+}$. Choose some $m \in \mathbb{Z}^{+}$such that $1 / m<\varepsilon$.

The triple (x, n, m) is $\left(x_{j}, n_{j}, m_{j}\right)$ for some j. Since E_{j} approximates p_{j} within $1 / m_{j}$ on $\mathbb{T}^{n_{j}}$, the Dilation Lemma implies that $x_{j}+k_{j}\left(E_{j}-p_{j}\right)$ approximates x_{j} within $1 / m_{j}$ on $\mathbb{T}^{n_{j}}$ and hence x within ε on \mathbb{T}^{n}.

Definition. Let N be a positive integer and G be an additive group. An N-relation is a linear combination

$$
\sum_{x \in G} \alpha_{x} x=0
$$

where α_{x} an integer in $[-N, N]$ for all x and with $\alpha_{x} \neq 0$ for at most finitely many x. A subset A of G is said to be N-independent if and only if the only N-relation among its elements is the trivial relation which has all coefficients equal to 0 . The N-relation hull of A, written $[A]_{N}$, is

$$
\left\{\sum_{x \in A} \alpha_{x} x \mid \alpha_{x} \in\{-N,-N+1, \ldots, N\}\right\} .
$$

The hull of the empty set is understood to be $\{0\}\left({ }^{1}\right)$.
Quasi-independent sets are the 1-independent sets, while dissociate sets are the 2 -independent sets $([\mathrm{P}],[\mathrm{LR}])$.

Lemma 4. Let $\left\{W_{j}\right\}_{j=1}^{\infty}$ be a sequence of finite N-independent subsets of \mathbb{Z}. Let x_{j} be arbitrary integers, $1 \leq j<\infty$. Set D_{j} equal to the maximum absolute value of the elements of $\left[\bigcup_{i<j}\left(x_{i}+k_{i} W_{i}\right)\right]_{N}$, and let M_{j} denote the size of W_{j}. If $k_{j}>D_{j}+N M_{j}\left|x_{j}\right|$ for all $j \geq 1$, then $\bigcup_{j=1}^{\infty}\left(x_{j}+k_{j} W_{j}\right)$ is N-independent. Moreover, the sets $x_{j}+k_{j} W_{j}$ are disjoint for distinct values of j.

Proof. Let $W_{i}^{\prime}=x_{i}+k_{i} W_{i}$, and set

$$
V_{j}=\bigcup_{i<j} W_{i}^{\prime}
$$

Since $V_{1}=\emptyset$, it is certainly N-independent. Assume that V_{j} is N-independent for some $j \geq 1$, and that $W_{i_{1}}^{\prime}$ and $W_{i_{2}}^{\prime}$ are disjoint for $i_{1} \neq i_{2}$ with $i_{1}<j$ and $i_{2}<j$. Consider V_{j+1}. It will be proved first that W_{j}^{\prime} is disjoint from V_{j}. Let $x \in W_{j}^{\prime}$ and $y \in V_{j}$. Then $x=x_{j}+k_{j} x^{\prime}$ for some $x^{\prime} \in W_{j}$. Since W_{j} is N-independent, $0 \notin W_{j}$ and thus $x^{\prime} \neq 0$. Therefore, since $V_{j} \subset\left[V_{j}\right]_{N}$,

$$
|x|=\left|x_{j}+k_{j} x^{\prime}\right| \geq k_{j}-\left|x_{j}\right|>D_{j}+N M_{j}\left|x_{j}\right|-\left|x_{j}\right| \geq D_{j} \geq|y| .
$$

Next, consider an N-relation on V_{j+1} with coefficients α_{x} for $x \in V_{j+1}$. Since W_{j}^{\prime} is disjoint from V_{j}, one may write

$$
\sum_{x \in W_{j}^{\prime}} \alpha_{x} x=-\sum_{x \in V_{j}} \alpha_{x} x=\tau
$$

[^0]for some $\tau \in\left[V_{j}\right]_{N}$. Each $x \in W_{j}^{\prime}$ has the form $x_{j}+k_{j} x^{\prime}$ for some x^{\prime} in W_{j} (x^{\prime} is unique since $k_{j}>0$). Thus,
\[

$$
\begin{equation*}
k_{j} \sum_{x \in W_{j}^{\prime}} \alpha_{x} x^{\prime}=\tau-x_{j} \sum_{x \in W_{j}^{\prime}} \alpha_{x} \tag{2}
\end{equation*}
$$

\]

Suppose that $\sum_{x \in W_{j}^{\prime}} \alpha_{x} x^{\prime} \neq 0$. Then, by equation (2),

$$
\begin{aligned}
k_{j} & \leq\left|k_{j} \sum_{x \in W_{j}^{\prime}} \alpha_{x} x^{\prime}\right|=\left|\tau-x_{j} \sum_{x \in W_{j}^{\prime}} \alpha_{x}\right| \\
& \leq|\tau|+\left|x_{j}\right| \cdot\left|\sum_{x \in W_{j}^{\prime}} \alpha_{x}\right| \leq D_{j}+\left|x_{j}\right| N M_{j}
\end{aligned}
$$

which is contrary to $k_{j}>D_{j}+N M_{j}\left|x_{j}\right|$. Thus $\sum_{x \in W_{j}^{\prime}} \alpha_{x} x^{\prime}=0$. This is an N-relation among the elements of W_{j} (since x^{\prime} is unique for each x, and vice versa). Since W_{j} is N-independent, $\alpha_{x}=0$ for $x \in W_{j}^{\prime}$. It follows that equation (2) reduces to $\tau=0$, which is an N-relation supported on V_{j}. Since V_{j} is N-independent, $\alpha_{x}=0$ for all $x \in V_{j}$ and hence for all $x \in V_{j+1}=V_{j} \cup W_{j}^{\prime}$. Thus only the trivial relation occurs among the N-relations on V_{j+1}.

Finally, since $V_{j} \subset V_{j+1}$ for all $j \in \mathbb{Z}^{+}$and

$$
S=\bigcup_{i=1}^{\infty} W_{i}^{\prime}=\bigcup_{j=1}^{\infty} V_{j}
$$

the N-independence of the V_{j} 's makes S be N-independent. [Any N-relation on S has at most finitely many non-zero coefficients (by definition); thus it must be supported on V_{j} for some j (since S is an increasing union of the V_{j} 's) and hence is trivial because V_{j} is N-independent.]

Proposition 5. If there is a Sidon set E which clusters at some $n \in \mathbb{Z}$ in the topology of the Bohr compactification of \mathbb{Z}, then there is a Sidon set which is dense in the Bohr compactification of \mathbb{Z}.

Proof. By Lemma 2, $E^{\prime}=E-n$ clusters at 0 in the Bohr topology; it is well known that E^{\prime} is Sidon, in fact with the same Sidon constant as E ([LR]). By the definition of cluster point, we may assume $0 \notin E^{\prime}$. As provided by Lemma 1 , for any positive integers n and m there are finite subsets $E(n, m) \subset E^{\prime}$ such that $E(n, m)$ approximates 0 within $1 / m$ on \mathbb{T}^{n}. As in Lemma 3, with $p_{j}=0, E_{j}=E\left(n_{j}, m_{j}\right)$, and k_{j} yet to be determined, let

$$
S=\bigcup_{j=1}^{\infty}\left(x_{j}+k_{j} E_{j}\right)
$$

Then S is dense in the Bohr compactification of \mathbb{Z}.

It remains to be seen that S is Sidon, provided the k_{j} 's are chosen well. Let the k_{j} 's satisfy this criterion: $k_{j}>D_{j}+M_{j}\left|x_{j}\right|$ (as in Lemma 4), where M_{j} is the size of E_{j} (which is the same size as $x_{j}+k_{j} E_{j}$) and D_{j} is the maximum absolute value of the elements of $\left[\bigcup_{i<j}\left(x_{i}+k_{i} E_{i}\right)\right]_{N}$. This by itself guarantees that the sets $x_{j}+k_{j} E_{j}$ are disjoint for distinct values of j. To see this, consider $w \in x_{j}+k_{j} E_{j}$ and $\tau \in x_{i}+k_{i} E_{i}$ for $i<j$. Then $|\tau| \leq D_{j}$ while, because $0 \notin E^{\prime}$ and hence $0 \notin E_{j} \subset E^{\prime}$, there is some $x \neq 0$ such that

$$
|w|=\left|x_{j}+k_{j} x\right| \geq k_{j}-\left|x_{j}\right|>D_{j} \geq|\tau| .
$$

Gilles Pisier discovered the following arithmetic condition for Sidonicity $([\mathrm{P}])$. Let $|H|$ denote the cardinality of H. A set Q is Sidon if and only if there is some $\lambda \in(0,1)$ such that, for every finite subset H of Q, there is a subset F of H such that F is quasi-independent and $|F| \geq \lambda|H|$. Let λ satisfy this criterion for the set E^{\prime}.

It will be shown that λ also works for S. Let H be any finite subset of S. Then $H_{j}=H \cap\left(x_{j}+k_{j} E_{j}\right)$ is finite for each j; by the second paragraph of this proof, the H_{j} 's are disjoint and thus

$$
|H|=\sum_{j=1}^{\infty}\left|H_{j}\right|
$$

Since $k_{j}>0, H_{j}=x_{j}+k_{j} H_{j}^{\prime}$ and $\left|H_{j}^{\prime}\right|=\left|H_{j}\right|$ for some $H_{j}^{\prime} \subset E_{j}$. Recall that $E_{j}=E\left(n_{j}, m_{j}\right) \subset E^{\prime}$. There is some $F_{j}^{\prime} \subset H_{j}^{\prime}$ such that F_{j}^{\prime} is quasiindependent and $\left|F_{j}^{\prime}\right| \geq \lambda\left|H_{j}^{\prime}\right|$. Let

$$
F=\bigcup_{j=1}^{\infty}\left(x_{j}+k_{j} F_{j}^{\prime}\right)
$$

Note that $M_{j}=\left|E_{j}\right| \geq\left|F_{j}^{\prime}\right|$ and that D_{j} dominates the largest absolute value of

$$
\left[\bigcup_{i<j}\left(x_{i}+k_{i} F_{i}^{\prime}\right)\right]_{N} \subset\left[\bigcup_{i<j}\left(x_{i}+k_{i} E_{i}\right)\right]_{N}
$$

Thus the k_{j} 's grow fast enough to allow Lemma 4 to apply to F with $N=1$: F is quasi-independent and the sets $x_{j}+k_{j} F_{j}^{\prime}$ are disjoint. Thus, $F \subset H$ and

$$
\begin{aligned}
|F| & =\sum_{j=1}^{\infty}\left|x_{j}+k_{j} F_{j}^{\prime}\right|=\sum_{j=1}^{\infty}\left|F_{j}^{\prime}\right| \\
& \geq \lambda \sum_{j=1}^{\infty}\left|H_{j}^{\prime}\right|=\lambda \sum_{j=1}^{\infty}\left|H_{j}\right|=\lambda|H|
\end{aligned}
$$

It follows that S is at least as Sidon as E^{\prime} according to Gilles Pisier's criterion.

The proof given above is easily modified for the N-independent sets. One of the early steps in the proof for Sidon sets does not work: when E is N-independent, $E-n$ need not be N-independent. For that reason, the theorem is weaker.

Proposition 6. Let $E \subset \mathbb{Z}$ be an N-independent set which clusters at 0 in the Bohr compactification of \mathbb{Z}. Then there is an N-independent subset $E^{\prime} \subset \mathbb{Z}$ which is dense in the Bohr compactification of \mathbb{Z}.

Proof. The N-independence of E excludes 0 from E. From this point, the proof for Sidon sets is easily adapted. One chooses $k_{j}>D_{j}+M_{j} N\left|x_{j}\right|$. Then S is dense in the Bohr group as before and the rest of the proof becomes easier. There is no need to consider a finite subset $H \subset S$. The choice of $k_{j}>D_{j}+M_{j} N\left|x_{j}\right|$ and Lemma 4 directly imply that S is N-independent.

I thank Ken Ross and Kathryn Hare for their helpful corrections of an early version of this manuscript.

REFERENCES

[K] Y. Katznelson, Sequences of integers dense in the Bohr group, in: Proc. Roy. Inst. Techn., June 1973, 73-86.
[LR] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, New York, 1975, pp. 19-52.
[P] G. Pisier, Arithmetic characterization of Sidon sets, Bull. Amer. Math. Soc. 8 (1983), 87-89.

MATHEMATICS
KELLER HALL
2565 THE MALL
HONOLULU, HAWAII 96822
U.S.A.

E-mail: RAMSEY@MATH.HAWAII.EDU
RAMSEY@UHUNIX.UHCC.HAWAII.EDU

[^0]: $\left.{ }^{(}{ }^{1}\right)$ This definition is distinct from that of J. Bourgain, who defined N-independence to be a weaker version of quasi-independence.

