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Intersection topologies with respect to separable
GO-spaces and the countable ordinals

by

M. R. J o n e s (Oxford)

Abstract. Given two topologies, T1 and T2, on the same set X, the intersection
topology with respect to T1 and T2 is the topology with basis {U1∩U2 : U1 ∈ T1, U2 ∈ T2}.
Equivalently, T is the join of T1 and T2 in the lattice of topologies on the set X.

Following the work of Reed concerning intersection topologies with respect to the
real line and the countable ordinals, Kunen made an extensive investigation of normal-
ity, perfectness and ω1-compactness in this class of topologies. We demonstrate that the
majority of his results generalise to the intersection topology with respect to an arbitrary
separable GO-space and ω1, employing a well-behaved second countable subtopology of
the separable GO-space.

1. Introduction. This paper considers the results of Kunen [3] regard-
ing intersection topologies with respect to the real line and the countable
ordinals, and demonstrates how they may be generalised to the intersection
topology with respect to an arbitrary separable GO-space and ω1. In so do-
ing, it also generalises the results of the author regarding the intersection
topology with respect to the Sorgenfrey line and ω1 [1].

The study of intersection topologies was initiated by G. M. Reed in [5].
He makes an extensive study of the class C of intersection topologies with
respect to the real-line topology and an ω1-type order topology on subsets
of R of cardinality ℵ1. Kunen studied the class further, establishing that the
properties of normality, “perfectness” and ω1-compactness in C are closely
inter-related and dependent on the model of set theory used.

In [1], we succeeded in showing that many of the properties of C also hold
in the class S of intersection topologies with respect to the Sorgenfrey line
topology and an ω1-type order topology. Although Reed’s results depended
primarily on the hereditary separability of the ordinary Euclidean topology,
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and thus carried over to the Sorgenfrey case relatively easily, Kunen’s results
were more difficult to generalise, and relied heavily on particular properties
of the Sorgenfrey line. First, we use the submetrizability of the Sorgenfrey
line, and, moreover, particularly “close” submetrizability, in the sense that
basic open sets in the Sorgenfrey line and those in the real line differ by only
one point (the “end-point” of the half-open Sorgenfrey interval). Second is
the orderability of the Sorgenfrey line. And lastly, we use its separability.

Generalising these results to the intersection topology of an arbitrary
separable GO-space and ω1 seemed reasonable, but the problem that im-
mediately becomes apparent is that in the general case there is no obvi-
ous metrizable topology to employ. Indeed, separable GO-spaces are not
in general submetrizable: the Alexandrov double arrow space (the space
[0, 1] × {0, 1} equipped with the lexicographic order topology) is a com-
pact and separable LOTS but does not have a countable base, so is not
submetrizable.

However, there are some well-behaved topologies on the set [0, 1]×{0, 1}.
First is the ordinary Euclidean topology (inherited by [0, 1] × {0, 1} as a
subspace of R2), but the problem here is that the topology is too coarse
an approximation—Euclidean-open sets like [0, 1]×{0} have empty interior
w.r.t. the double arrow topology—and it even fails to be a subtopology of
the double arrow space. To remedy this, we consider instead the rather odd
(not even T0!) subtopology

T = {U × {0, 1} : U ∈ TR}
where TR is the Euclidean topology on [0, 1]. Evidently this topology is
“close” to the double arrow topology in the same way that the Sorgenfrey
line is “close” to the real line. And although it fails to be metrizable, it is
second countable, and this turns out to be enough.

It is surprising to discover that a similar process can be applied to an
arbitrary separable GO-space. In this paper, we show that any separable
GO-space, (X, T ), has a second countable subtopologyM with the property
that if Tω1 is an ω1-type order topology on X, and if U is a T ∨ Tω1-open
set, then there is anM-open V such that U \ V is nonstationary and V \U
is countable. This result allows us to carry Kunen’s results over into this
more general setting.

Preliminaries. An ω1-type order topology on a set X will always be
denoted by Tω1 . If we refer to (X, Tω1) then implicitly it will be assumed
that X has been equipped with some ω1-type order as

X = {xα : α < ω1}.
So we will call a subset of X stationary or club if it has the corresponding
property with respect to the ω1-type order, and sometimes we use the short-
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hand (α, β] to denote the set {xθ : α < θ ≤ β}, and so on. For x, y ∈ X we
say x < y in ω1 if β < α, where x = xβ and y = xα. We shall occasionally
use the convention that, for x ∈ X, αx ∈ ω1 is such that x = xαx .

Recall the definition of the intersection topology:

Definition 1.1. If T1 and T2 are topologies defined on the set X, then
the intersection topology , denoted by T1 ∨ T2, with respect to T1 and T2 is
the topology on X with basis

{U1 ∩ U2 : U1 ∈ T1, U2 ∈ T2}.
2. The subtopology M. The following fact can be derived from a

result of Ostaszewski [4]. We give a direct proof, and then use this property
to construct the subtopology M.

Lemma 2.1. Let (X, T ) be a separable GO-space with underlying order
≤. Then there exists a nondecreasing continuous function φ : X → [0, 1]
such that φ(x) = φ(y) implies (x, y) = ∅.

P r o o f. Let a < b. A standard proof of Urysohn’s Lemma (e.g. [2,
Chap. 4, Lemma 4]) gives a nondecreasing order-continuous function λ :
X → [0, 1] such that λ(a) = 0 and λ(b) = 1. (Indeed, if there are u < v with
a ≤ u < v ≤ b and (u, v) = ∅, let λ be 0 on (←, u] and 1 on [v,→). If this
is not the case, choose inductively, for dyadic rationals r = p2−q ∈ (0, 1),
elements ur ∈ (a, b) with ur < us whenever r < s, and set λ(x) = inf{r :
x < ur} if such ur exist, or λ(x) = 1 otherwise.)

Now, let D be a countable set dense in X. For each pair a < b from D,
fix a function λ as above, and for each a ∈ D isolated in (X, T ), let λ be
the characteristic function of [a,→). Then arrange the functions λ into a
sequence λ1, λ2, . . . and set

φ =
∑

i

2−iλi.

We can now define our topology M:

Lemma 2.2. Let M be the topology on X defined by M = {φ−1(G) :
G is open in [0, 1]}. Then (X,M) is a second countable subtopology of T .

The reason for constructing this subtopology will become clear in the
next section, where we derive results about the intersection topology with ω1.

3. Applications to the intersection topology. Having constructed
the subtopologyM, we can now use it to derive results about the intersection
topology with ω1.

Lemma 3.1 If U is T ∨ Tω1-open, then there is an M-open V such that
U \ V is nonstationary and V \ U is countable.
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If H is T ∨ Tω1-closed , then there is an M-closed K such that K \H
is nonstationary and H \K is countable.

P r o o f. Obviously, the second statement follows from the first.
Let φ : X → [0, 1] be as in Lemma 2.1, and set

(1) M =
⋃
{(r, s) : φ−1(r, s) \ U is countable with r < s rational}.

Note that M is open in [0, 1] and that φ−1(M) \ U is countable. Next we
show that U \ φ−1(M) is nonstationary.

Let W = U \φ−1(M), and suppose, for a contradicton, that W is station-
ary. For each non-isolated xξ ∈ W choose f(ξ) < ξ and an interval [aξ, bξ]
such that xξ ∈ {aξ, bξ}, (aξ, bξ) 6= ∅ and [aξ, bξ] ∩ (f(ξ), ξ] ⊆ U . Without
loss of generality, using the Pressing Down Lemma, one can assume that for
an uncountable set A ⊆ W and γ < ω1 we have f(ξ) = γ and xξ = bξ for
xξ ∈ A, i.e.

(2) [aξ, xξ] ∩ (γ, ξ] ⊆ U and φ(aξ) < φ(xξ) for xξ ∈ A.
There exist xα ∈ A, uncountable C ⊆ A, and rationals r, s such that

(3) φ(aξ) < r < φ(xα) < s < φ(xξ) for xξ ∈ C.
To show this, first choose ε > 0 and an uncountable B ⊆ A with φ(xξ) −
φ(aξ) > ε for xξ ∈ B. Next, use the hereditary Lindelöf property of the Sor-
genfrey line topology on [0, 1] to find xα ∈ B and a rational s ∈ (φ(xα), φ(xα)
+ ε/2) such that the set

C = {xξ ∈ B : s < φ(xξ) < φ(xα) + ε/2}
is uncountable. Finally, take any rational r ∈ (φ(xα)− ε/2, φ(xα)).

We claim that

(4) φ−1(r, s) \ U ⊆ (0, γ].

Indeed, if φ(xβ) ∈ (r, s) and β > γ, choose xξ ∈ C with ξ > β and use
(2) and (3) to get xβ ∈ [aξ, xξ] ∩ (γ, ξ] ⊆ U . From (4) and (1), (r, s) ⊆ M
and therefore, by (3), xα ∈ φ−1(M)∩W . But this contradicts the definition
of W .

Finally, put V = φ−1(M). Then V ∈ M and has the properties re-
quired.

This key lemma allows us to generalise all of the results of Kunen’s
paper [3] to an arbitrary separable GO-space with various modifications of
his proofs. Here we give a couple of examples of how the proofs generalise,
and quote the remaining results.

Lemma 3.2. If (X, T ∨ Tω1) is ω1-compact , then all nonstationary M-
closed sets are countable.
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P r o o f. Suppose there exists an uncountable nonstationary M-closed
set H. Then there exists a club set C disjoint from H. But then we can let
K be an uncountable subset of H such that any two distinct elements of
K have an element of C between them. But then K is closed discrete with
respect to M, and thus also with respect to T ∨ Tω1 , as M ⊆ T ⊆ Tω1 ,
contradicting ω1-compactness.

The next theorem explores the link between ω1-compactness and nor-
mality.

Theorem 3.3. If (X, T ∨ Tω1) is ω1-compact , then (X, T ∨ Tω1) is nor-
mal.

P r o o f. Let H1 and H2 be closed and disjoint. By Lemma 3.1, let K1

and K2 beM-closed with K1 \H1 and K2 \H2 nonstationary, H1 \K1 and
H2 \K2 countable. Then K1 ∩K2 is nonstationary and hence countable by
Lemma 3.2.

Let α < ω1 be such that all elements of H1\K1, H2\K2 and K1∩K2 are
below α. Then X is partitioned into Tω1-clopen sets [0, α] and [α + 1, ω1).
Provided we can separate H1 and H2 on each of these, we are done.
• On [0, α], H1 and H2 can be separated because countable regular spaces

are normal.
• On [α+1, ω1), H1 and H2 can be separated because they are contained

in disjoint M-closed sets K1 and K2, which can be separated in T because
M⊆ T and T , being a GO-space topology, is hereditarily normal.

We quote the remaining theorems we have managed to establish. The
converse to Theorem 3.3 is not true, but what can be said is

Theorem 3.4. If (X, T ∨ Tω1) is normal , then there is a club C which
is ω1-compact in its relative topology.

Theorem 3.5. (CH) There exists a closed unbounded subset D of (X,
T ∨ Tω1) such that D is normal.

Theorem 3.6. (X, T ∨ Tω1) is not perfectly normal.

Theorem 3.7. The following are equivalent for (X, T ∨ Tω1):

1. (X, T ∨ Tω1) is perfect.
2. Every club set is a Gδ-set with respect to T ∨ Tω1 .
3. Every club set contains a club set which is a Gδ-set with respect toM.

Theorem 3.8. (CH) (X, T ∨ Tω1) is not perfect.

Reed [5] has a theorem asserting that, under MA + ¬CH, every real-
ω1 intersection topology is perfect and thus (by Theorem 3.6) not normal.
There are examples in the general case we consider here, though, where this
is evidently not true. Consider the double arrow space, with underlying set
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[0, 1]× {0, 1}. The analysis of this space in Section 2 may be carried out in
such a way as to ensure that the topologyM consists of all sets of the form
U × {0, 1}, where U is open in the Euclidean topology on [0, 1]. But then
Gδ-sets with respect toM are all of the form Y ×{0, 1} for some Y ⊆ [0, 1].
Glancing now at Theorem 3.7, consider the possibility that the “top arrow”
contains a club set. Then, certainly, this will be a club set which fails to
contain a club Gδ-set with respect toM, and by Theorem 3.7 therefore fails
to be perfect. This, then, is the only situation in which the results of [3]
have failed to generalise.

If these results can be generalised to some larger class of spaces, then it
is unclear to the author how to do so. Kunen’s proofs hold in the general
separable metric case, the proofs above hold for all separable GO-spaces,
and we have shown that a result analogous to Lemma 3.1 exists for the
bow-tie space. But the proofs of this result and of Lemma 3.1 both rely
on some kind of order structure in the space, either directly, as in the case
of all separable GO-spaces, or indirectly, as with the bow-tie space, where
the real line is embedded. Finding some kind of comparable order structure
in, say, an arbitrary separable stratifiable or even an arbitrary separable
monotonically normal space would appear to be a difficult problem.
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