
FUNDAMENTA
MATHEMATICAE

146 (1995)

The disjoint arcs property for homogeneous curves

by

Paweł K r u p s k i (Wrocław)

Abstract. The local structure of homogeneous continua (curves) is studied. Compo-
nents of open subsets of each homogeneous curve which is not a solenoid have the disjoint
arcs property. If the curve is aposyndetic, then the components are nonplanar. A new
characterization of solenoids is formulated: a continuum is a solenoid if and only if it is
homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not
∞-ods.

0. Introduction. All spaces in the paper are metric separable and all
maps are continuous. A space X is homogeneous if for each two points x, y ∈
X there exists a homeomorphism h : X → X such that h(x) = y. A curve
is a one-dimensional continuum. A space X has the disjoint arcs property
(DAP) if any two paths in X can be approximated, arbitrarily closely, by
disjoint paths. More precisely, X has the DAP if for each ε > 0 and for any
two maps f, g : I = [0, 1] → X there exist maps f ′, g′ : I → X such that
f ′(I)∩g′(I) = ∅ and %̂(f, f ′) < ε, %̂(g, g′) < ε, where %̂ denotes the sup-norm
metric induced by % in X. If, in the definition, I is replaced by the n-
dimensional disk, one gets the disjoint n-disks property (DDnP). The latter
property turned out to be crucial in recognizing n-dimensional Menger space
manifolds among LCn−1-spaces [2]. The DDnP is a kind of a general position
property, so it requires enough room—for manifolds this is guaranteed by the
sufficiently high dimension, whereas Menger space manifolds have a special
structure which is responsible for the DDnP.

In [8] it was observed that all homogeneous locally compact locally con-
nected spaces of dimension at least three have the DAP. Dimension two
is not friendly to the DAP because no two-dimensional manifold has the
property.
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In this paper we prove that components of open subsets of a homoge-
neous curve have the DAP unless the curve is a solenoid. In particular, all
homogeneous curves which are not simple closed curves have the DAP. To
get this we first investigate the local structure of homogeneous continua.
Roughly speaking, if a homogeneous curve X is neither the Menger univer-
sal curve nor a solenoid, then either its small open subsets have nowhere
dense components which are Menger curve manifolds or each component C
of an arbitrary open subset of X is covered by open subsets of C that split
into components nowhere dense in C.

We also show that if a homogeneous curve X is not a simple closed
curve but is aposyndetic, then components of open subsets of X are nonpla-
nar. A new characterization of solenoids is formulated (Theorem 3.1) which
improves others of that sort.

By a solenoid we mean a space homeomorphic to the inverse limit of a
sequence of circles with covering bonding maps. We say that small subcon-
tinua of a continuum X have property P if there is a positive number α such
that each subcontinuum of X of diameter less than α satisfies P. A space
X is locally connected at a point x if any open neighborhood of x contains
a connected neighborhood of x.

If X is a space with metric %, then a homeomorphism h : X → X is
called an ε-homeomorphism if %(z, h(z)) < ε for each z ∈ X. We will use
the following theorem of Effros [5].

Proposition 0.1. Suppose X is a homogeneous compact space with met-
ric %. Then for every ε > 0 there exists δ > 0 such that if %(x, y) < δ, then
there is an ε-homeomorphism h : X → X such that h(x) = y (the number
δ is called an Effros δ for ε).

The author is very indebted to K. Omiljanowski and J. Prajs for their
criticism and valuable suggestions.

1. Menger curve manifolds. Recall that the Menger universal curve
is characterized as a locally connected curve with no local separating points
and containing no planar open nonempty subset [1] (x ∈ X is a local sep-
arating point of X if U − {x} is not connected for some connected open
subset U of X). A space is said to be a Menger curve manifold if it can
be covered by open subsets homeomorphic to open subsets of the Menger
universal curve.

The Sierpiński universal planar curve is homeomorphic to any locally
connected planar curve with no local separating points [22].

A space X is locally homogeneous if for any two points x, y ∈ X there
exist open neighborhoods U of x and V of y and a homeomorphism h : U →
V such that h(x) = y. It is known that the Sierpiński universal planar curve
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and any of its open nonempty subsets are not locally homogeneous (each
homeomorphism maps points of the boundary of a complementary domain
onto points of the boundary of another complementary domain of the curve
[7]).

The following lemma is implicit in [1] but, for the reader’s convenience,
we include a proof.

Lemma 1.1. Suppose X is a one-dimensional locally compact locally con-
nected space with no local separating points. Then either X is a Menger
curve manifold or X contains an open nonempty subset homeomorphic to
an open subset of the Sierpiński universal planar curve.

P r o o f. By [21, (15.43), p. 22] each point x ∈ X is contained in an arbi-
trarily small connected open subset R of X having property S. Since clR is
a locally connected continuum [21, (15.3), p. 20], it admits a decreasing se-
quence of order two brick partitions [12, Theorem 2.9]. The brick partitions
provide us with a connected and uniformly locally connected open neigh-
borhood G of x, contained in R. Indeed, if there is an element U of a brick
partition U such that x ∈ intU ⊂ R, then G = U ; otherwise x is contained in
the interior G of the union of two elements of U . In either case G is uniformly
locally connected. We infer from [12, Proposition 2.5] that clG is a locally
connected curve such that each point of bdG is non-locally-separating in
clG. That no point of G locally separates clG follows from the hypothesis
and from [12, Proposition 2.4]. Thus clG is a locally connected curve with-
out local separating points. Now, if no nonempty open set in X is planar,
then clG is homeomorphic to the Menger universal curve and X is a Menger
curve manifold. Otherwise we can assume that clG is planar but then clG
is homeomorphic to the Sierpiński universal planar curve.

Lemma 1.2. Let X be a nondegenerate homogeneous continuum with
metric % and let C be a component of an open proper subset U of X. Sup-
pose c ∈ C and 0 < ε < 1

7%(c,X − U). If W is a connected open (in C)
neighborhood of c of diameter less than ε, then for any ε-homeomorphism
h : X → X such that h(W ) ∩ W 6= ∅ the set h(W ) is an open subset
of C.

P r o o f. Obviously h(W ) ⊂ C. Suppose h(W ) is not open in C, i.e., there
exist a point d ∈ h(W ) and a sequence of points dn ∈ C − h(W ) converging
to d. Let α = min{%(c, C −W ), ε} and define V =

⋃{g(W ∪h(W )) : g is an
α-homeomorphism of X onto X}. It follows from Proposition 0.1 that V is
open in X, so the set V ′ = V ∩ C is open in C and contains d. Moreover,
V ′ is connected, because of the choice of ε and α, and its diameter is less
than 5ε. The set h−1(V ′) is connected of diameter less than 7ε and contains
c, hence it is contained in C. We can assume that dn ∈ V ′ for each n, so
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h−1(dn) ∈ C. On the other hand, h−1(dn) converges to h−1(d) ∈ W , thus
h−1(dn) ∈W and dn ∈ h(W ) for large n, a contradiction.

Lemma 1.3. Let X be a nondegenerate homogeneous continuum with
metric % and let C be a component of a nonempty open subset U of X.
Then the set of points of C at which C is locally connected is open in C.
If , moreover , X is not a solenoid , then the set is contained in the set of
points of C which do not locally separate C.

R e m a r k. Being a local separating point of a space and of its open
subset is the same if the space is locally connected at that point.

P r o o f o f L e m m a 1.3. The conclusion is obvious if U = X. Assume
C is locally connected at c ∈ C and U 6= X. For 0 < ε < 1

7%(c,X − U) take
an Effros δ less than ε. Let W be a connected, open (in C) neighborhood of c
of diameter less than δ. Consider an arbitrary point x ∈W . By Proposition
0.1 there exists an ε-homeomorphism h : X → X such that h(c) = x. It
follows from Lemma 1.2 that h(W ) is a connected, open neighborhood of x
in C. Therefore C is locally connected at x and this gives the first part of
the conclusion.

Suppose now that c locally separates C. Without loss of generality, we
can assume that W − {c} is not connected. Then h(W ) − {x} is not con-
nected, which means that each point of W locally separates W (see the
remark preceding the proof). Observe that W , being an open subset of the
component C of U , is locally compact. By [21, (9.2), p. 61], W contains
a dense subset of points of order 2. Proposition 0.1 and Lemma 1.2 imply
that each point of W has order 2. Now, it easily follows from the arcwise
connectedness of W that W is an arc without end-points. The homogeneity
of X yields that small subcontinua of X are arcs, but then X is a solenoid
[15], a contradiction.

We do not know whether the set of points of local connectedness of C is
closed in C.

One can meet, a priori, two kinds of points of non-local connectedness in a
component C of an open subset U of a homogeneous continuum. Sufficiently
small neighborhoods in C of points of the first kind have uncountably many
components nowhere dense in C. Other points of non-local connectedness
are of the second kind.

The next lemma says that any shrinking of U converts points of the
second kind into points of local connectedness.

Lemma 1.4. Let X be a homogeneous continuum and let C be a com-
ponent of an open subset U of X. Suppose c ∈ C and there is a sequence
of subcontinua Kn of C, with nonempty interiors relative to C, such that
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Kn → {c} as n→∞. If C ′ is the component of c in an open subset U ′ of
X such that U ′ ⊂ clU ′ ⊂ U , then C ′ is locally connected at c.

P r o o f. For each n choose a point cn ∈ intC Kn. By Proposition 0.1
there exists a sequence of homeomorphisms hn : X → X, uniformly con-
verging to the identity map, such that hn(cn) = c. We can assume that
hn(Kn) ⊂ C ′ and h−1

n (C ′) ⊂ C for each n. Suppose C ′ is not locally con-
nected at c. This means that there exists m such that c 6∈ intC′ hn(Kn) for
n > m. Fix n > m. There is a sequence of points dk ∈ C ′ such that dk → c
as k → ∞, and dk 6∈ hn(Kn) for each k. Then h−1

n (dk) → cn as k → ∞, so
h−1
n (dk) 6∈ C for large k. But, on the other hand, h−1

n (dk) ∈ h−1
n (C ′) ⊂ C,

a contradiction.

Shrinking open subsets of a space does not change local connectedness
of their components. More precisely, we have the following obvious lemma.

Lemma 1.5. If a component C of an open subset U of a space X is
locally connected at c ∈ C and C ′ is the component of c in an open subset
U ′ ⊂ U , then C ′ is locally connected at c.

Lemma 1.6. Let X be a non-locally-connected homogeneous continuum.
Suppose some component of a certain open subset of X is locally connected
at some point. Then there exists a number α > 0 such that each nonempty
open subset of X of diameter less than α consists of uncountably many
nowhere dense and locally connected components.

P r o o f. Let C be a component of an open subset U ⊂ X and suppose
C is locally connected at c ∈ C. First, we find an open neighborhood Vc
of c with all components locally connected and nowhere dense. It follows
from Lemma 1.3 that there exists an arbitrarily small connected and locally
connected subset W of C which is open in C and contains c. The set is
of the form W = C ∩ V , where V is some open subset of U . Obviously,
W is a locally connected component of V but one cannot say that about
other components of V . To get the desired neighborhood Vc we, therefore,
appropriately shrink V . Namely, by Lemma 1.5 and Proposition 0.1, there
exist two sets Wc and Vc satisfying the following conditions:

(1) c ∈Wc,
(2) Wc is connected, locally connected and relatively open in C,
(3) Wc = Vc ∩ C,
(4) Vc is an open subset of V ,
(5) for any x ∈ Vc there is a homeomorphism h : X → X such that

h(c) = x and h(V ) ⊃ Vc.
Since h(W ) is a locally connected component of h(V ), Lemma 1.5 and

condition (5) imply that each component of Vc is locally connected. Notice
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that Vc can be considered arbitrarily small. That components of Vc are
nowhere dense now follows from the hypothesis and the homogeneity. The
Baire Category Theorem applied to Vc assures that Vc has uncountably
many components.

By the homogeneity, every point x ∈ X has such a neighborhood Vx. Let
α be the Lebesgue number for the cover {Vx} of X. Lemma 1.5 implies that
all components of each nonempty open subset A of X with diamA < α are
locally connected. Evidently, components of A are nowhere dense and their
number is uncountable by the Baire Category Theorem.

Theorem 1.7. If X is a homogeneous continuum, then one of the fol-
lowing three cases holds.

(1) X is locally connected or a solenoid.
(2) There exists an α > 0 such that each open subset of X of diameter

less than α consists of uncountably many nowhere dense components which
are locally connected and have no local separating points.

(3) Each component C of an arbitrary open subset of X has an open
cover by subsets of C consisting of uncountably many components nowhere
dense in C.

P r o o f. Suppose neither (1) nor (3) is satisfied. Then there exist an open
subset U ofX, its component C, a point c ∈ C and a sequence of subcontinua
Kn ⊂ C with nonempty interiors relative to C such that Kn → {c} as
n → ∞. By Lemma 1.4 the component C ′ of some open set U ′ ⊂ U such
that c ∈ C ′ is locally connected at c. To complete the proof apply Lemmas
1.6 and 1.3.

Theorem 1.8. If X is a homogeneous curve, then one of the following
three cases holds.

(1) X is the Menger universal curve or a solenoid.
(2) There exists an α > 0 such that each open subset of X of diameter

less than α consists of uncountably many nowhere dense components which
are Menger curve manifolds.

(3) Case (3) of Theorem 1.7.

P r o o f. Suppose neither (1) nor (3) holds. Then, by [1], X is not locally
connected and case (2) of Theorem 1.7 holds. Let C be a component of an
open subset U of X with diamU < α. Suppose C is not a Menger curve
manifold. By Lemma 1.1, C contains an open (in C) connected subset W
homeomorphic to an open subset of the Sierpiński universal planar curve. Let
ε be as in Lemma 1.2. Take an Effros δ for ε. We can assume that diamW <
δ. Now, it easily follows from Lemma 1.2 that W is locally homogeneous,
which is impossible for an open subset of the Sierpiński curve.
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2. The disjoint arcs property

Theorem 2.1. If X is a homogeneous curve which is not a solenoid ,
then each component of an arbitrary open subset of X has the DAP. In
particular , each homogeneous curve which is not a simple closed curve has
the DAP.

P r o o f. Since the Menger universal curve satisfies the assertion (see [2]),
it remains to consider cases (2) and (3) of Theorem 1.8.

Denote by % a metric in X. Let C be a component of an open subset U
of X and suppose two maps f and g of I = [0, 1] into C are given such that
f(I) ∩ g(I) 6= ∅. Set K = f(I) ∪ g(I) and η = %(K,X − U).

Assume case (2) holds. Let U be a finite open cover of X with meshU <
min{α, η}. Partition I into smaller intervals Ii = [ti−1, ti] such that 0 =
t0 < t1 < . . . < tn = 1 and, for every i = 1, . . . , n, f(Ii) ⊂ Ui and g(Ii) ⊂ Vi
for some Ui, Vi ∈ U . Denote by Ai and Bi the components of Ui and Vi
containing f(Ii) and g(Ii), respectively. Put M =

⋃n
i=1(Ai ∪ Bi). Observe

that if D is a component of a set of the form Ai∩Aj , Ai∩Bj or Bi∩Bj , then
D is a Menger curve manifold. This follows from the fact that D coincides
with a component of Ui ∩ Uj , Ui ∩ Vj or Vi ∩ Vj , respectively, and from
condition (2). Consequently, M is a Menger curve manifold (see Lemma 1.1).
Since K ⊂M and M has the DAP [2], the maps f and g are approximated
arbitrarily closely by maps f ′ and g′ of I into M ⊂ C with disjoint images.

Assume now case (3) holds. Let W be a cover of C by open subsets of C
consisting of uncountably many components nowhere dense in C. Partition
I into intervals Ii = [ti−1, ti], 0 = t0 < t1 < . . . < tn = 1, such that, for
every i = 1, . . . , n, f(Ii) ⊂Wi for some Wi ∈ W.

We will construct, for every ε > 0, an ε-approximation fε : I → C of f
such that fε(I)∩g(I) = ∅. To this end, we will define by induction, for every
ε > 0 and k = 1, . . . , n, a partial ε-approximation fεk : I1 ∪ . . . ∪ Ik → C
such that fεk(I1 ∪ . . . ∪ Ik) ∩ g(I) = ∅ and then put fε = fεn.

Proposition 0.1 will be repeatedly used in the construction without ex-
plicit mention but we hope such places can be readily recognized.

If f(I1) ∩ g(I) = ∅, then put fε1 = f |I1 for every ε > 0. Suppose

(∗) f(I1) ∩ g(I) 6= ∅.
Let 0 < ε < %(f(I1), C −W1) and take an Effros δ for ε. Denote by D the
component of W1 containing f(I1). Since W1 consists of uncountably many
components which are nowhere dense in C and g(I) is locally connected,
there is a component E of W1 different from D such that E ∩ g(I) = ∅
and %(f(I1), E) < δ. Take an ε-homeomorphism h : X → X such that
hf(I1) ⊂ E and put fε1 = hf |I1. Thus the first inductive step is done.
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Suppose further that an ε-aproximation fεk : I1 ∪ . . . ∪ Ik → C of f |I1 ∪
. . .∪Ik has been defined for every ε > 0 such that fεk(I1∪ . . .∪Ik)∩g(I) = ∅.
Again, there are two cases to be considered. Assume first f(Ik+1)∩g(I) = ∅.
Let 0 < ε < min{η, %(f(Ik+1), g(I))}. Take an Effros δ for ε and an ε-
homeomorphism h : X → X such that hf(tk) = fδk (tk). Define fεk+1 :
I1 ∪ . . . ∪ Ik+1 → C by fεk+1|I1 ∪ . . . ∪ Ik = fδk and fεk+1|Ik+1 = hf |Ik+1.

Assume now that f(Ik+1) ∩ g(I) 6= ∅. Let 0 < ε < min{%(f(Ik+1), C −
Wk+1), η} and let δ be an Effros δ for ε/2. Define a map F : I1∪ . . .∪Ik+1 →
C by F |I1 ∪ . . . ∪ Ik = fδk and F |Ik+1 = hf |Ik+1, where h : X → X is
an ε/2 -homeomorphism such that hf(tk) = fδk (tk). The map F is an ε/2-
approximation of f |I1∪. . .∪Ik+1. If F (Ik+1)∩g(I) = ∅, then let fεk+1 = F . In
the case F (Ik+1)∩g(I) 6= ∅ we proceed as in (∗), replacing f and I by F and
Ik+1. Namely, let δ′ be an Effros δ for ε′ = min{%(F (I1 ∪ . . .∪ Ik), g(I)), δ}.
We have F (Ik+1) ⊂ Wk+1 by construction. Denote by D the component of
Wk+1 containing F (Ik+1) and find a component E of Wk+1 different from D
such that E ∩ g(I) = ∅ and %(F (Ik+1), E) < δ′. Take an ε′-homeomorphism
h′ : X → X such that h′F (Ik+1) ⊂ E and define fεk+1 = h′F . Then fεk+1
maps I1 ∪ . . .∪ Ik+1 into C, fεk+1 is ε-close to f |I1 ∪ . . .∪ Ik+1 and fεk+1(I1 ∪
. . . ∪ Ik+1) ∩ g(I) = ∅.

The induction is complete.

Theorem 2.1 can be viewed as yet another characterization of solenoids:
a curve X is a solenoid if and only if X is homogeneous and some component
of an open subset of X does not have the DAP.

R e m a r k. If each arcwise connected homogeneous curve were locally
connected (this is an open problem), then we could get the DAP for homo-
geneous curves much easier. Namely, if a homogeneous curve X contains no
arc, then the DAP trivially holds. If X contains an arc, then its arc compo-
nents are dense [19]. So, if X has at least two arc components, then, using
Proposition 0.1, one immediately gets the DAP. If X is arcwise connected
and is not a simple closed curve, then, assuming the conjecture is true, X is
homeomorphic to the Menger universal curve (see [1]), which has the DAP.

3. A characterization of solenoids. A subcontinuum A of a contin-
uum X is called terminal if, for any subcontinuum B of X intersecting A,
either A ⊂ B or B ⊂ A. Solenoids have no nontrivial terminal subcontinua
because their proper nondegenerate subcontinua are arcs. The reader can
find more about terminal subcontinua in the next section.

A continuum X is a θ-continuum if the complement of every subcon-
tinuum of X has a finite number of components. A continuum X is called
a hereditary θ-continuum if each subcontinuum of X is a θ-continuum. By
an ∞-od we mean a continuum containing a subcontinuum whose com-
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plement has infinitely many components. So, a continuum is a hereditary
θ-continuum if it contains no ∞-od. In what follows we prefer to use the
“∞-od” terminology.

The proof of Theorem 3.1 essentially relies on results of [10, Section 2].
One can easily check that statements (2.1)–(2.3) of [10] remain true if the
hypothesis that X is a hereditary θ-continuum is replaced by the condition
that small subcontinua of X are not ∞-ods, provided that one plays only
with small subcontinua of X.

Theorem 3.1. A nondegenerate continuum X is a solenoid if and only if
X is homogeneous, small subcontinua of X are not ∞-ods and X contains
no proper nondegenerate terminal subcontinuum.

P r o o f. The necessity is obvious. Suppose X satisfies the conditions.
Then [10, (2.3)], in a version for small subcontinua, says that

(i) small subcontinua of X are decomposable;
(ii) small irreducible subcontinua of X are of type λ;

(iii) the layers of small irreducible subcontinua of X are degenerate.

Therefore small irreducible subcontinua of X are arcs. Then, arguing
as in the proof of [10, (2.5)], one infers that small subcontinua of X are
atriodic. Finally, use [4, Theorem 2]: if a nondegenerate homogeneous con-
tinuum X contains an arc and small subcontinua of X are atriodic, then X
is a solenoid.

Theorem 3.1 improves the characterizations of [10, (3.8)], [11, (4.8)], [15]
and [16], since nontrivial terminal subcontinua of homogeneous curves are
hereditarily indecomposable (see the next section).

4. Aposyndetic curves. A space X is said to be aposyndetic if for
any two distinct points x, y ∈ X there exists a continuum K such that
x ∈ intK ⊂ K ⊂ X − {y}. Locally connected continua are aposyndetic but
there are uncountably many, topologically different, aposyndetic homoge-
neous curves which are not locally connected (see [3], [17], [18], [13]). All
of them are locally Cantor bundles of the Menger universal curves. On the
other hand, relatively few general facts are known about such curves; for
example, it is not known if they must contain an arc. The reason for study-
ing aposyndetic homogeneous curves is that they naturally arise as quotient
spaces of terminal decompositions of decomposable homogeneous curves.
Namely, the Terminal Decomposition Theorem (see [20] or [9]) says that
each homogeneous curve continuously decomposes into maximal terminal
subcontinua which are homogeneous hereditarily indecomposable tree-like
subcontinua and the quotient space of the decomposition is again a homo-
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geneous curve. In the case where the curve is decomposable the quotient
space is also aposyndetic (this was first proved by Jones [6]).

The following proposition follows from the above remarks.

Proposition 4.1. If X is a homogeneous curve, then X is aposyndetic
if and only if X is decomposable and contains no nondegenerate proper
terminal subcontinuum.

Proposition 4.1 and Theorem 3.1 imply that each homogeneous aposyn-
detic curve which is not a simple closed curve contains arbitrarily small
∞-ods. Actually, Proposition 0.1 and the homogeneity give something more.

Proposition 4.2. If X is a homogeneous aposyndetic curve which is
not a simple closed curve, then each point of X belongs to arbitrarily small
∞-ods.

Theorem 4.3. If X is a homogeneous aposyndetic curve which is not
a simple closed curve, then none of the components of an arbitrary open
nonempty subset of X is planar.

P r o o f. Clearly X is not a solenoid. The conclusion is evident if X is the
Menger universal curve. Suppose C is a component of an open nonempty
subset U ofX andX is not the Menger universal curve. We now use Theorem
1.8. If its case (2) holds, then C contains a Menger curve manifold which is
not planar. Case (3) combined with Proposition 4.2 implies that C contains
uncountably many disjoint ∞-ods, hence C cannot be planar by the well-
known theorem of Moore [14].
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