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On open maps of Borel sets

by

A. V. O s t r o v s k y (St. Petersburg)

Abstract. We answer in the affirmative [Th. 3 or Corollary 1] the question of
L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational num-
bers P not Gδ · Fσ and of the second category in itself be mapped onto an arbitrary
analytic set Y ⊂ P of the second category in itself by an open map? Note that under a
space of the second category in itself Keldysh understood a Baire space. The answer to
the question as stated is negative if X is Baire but Y is not Baire.

Introduction. In 1934 Hausdorff proved [3; 2, 4.5.14] that if f : X → Y
is an open map from a completely metrizable space X onto a metrizable Y ,
then Y is also completely metrizable. Thus, open maps preserve the class
Gδ of Borel sets. L. V. Keldysh proved [5, Th. 1] that this result is not
true for Borel sets of higher class, namely, that there is a Borel set X ⊂ P
of the first category for which there is an open map f : X → Y onto an
arbitrary analytic set Y ⊂ P (see Theorem 1). In connection with this result
a question was raised whether an analogous theorem holds for Baire spaces.

It is clear that if f : X → Y is an open map and O ⊂ Y is an open
(nonempty) set of the first category, so is f−1(O). Hence, open maps preserve
the property of being a Baire space. Let X0 ⊂ P be an analytic set such that
P \ X0 does not contain a copy of the Cantor set C. It is not hard to see
that X0 is a Baire space. Keldysh remarked that if Y satisfies the following
condition:

(i) Y ⊂ P is an analytic set such that M \ Y contains a copy of the
Cantor set C for every Gδ-set M ⊃ Y ,

then X0 cannot be mapped onto Y by an open map [5]. Note that every
Borel (non-Gδ) set Y ⊂ P (and analytic set Y = X0 × P in which every
Gδ-subspace is Baire [12, Theorem 4]) satisfies the condition (i).
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All spaces in this paper are assumed to be metrizable, and all maps
are continuous and onto. We denote by P and Q the spaces of irrational
and rational numbers, respectively, and by B(τ) the Baire space of weight
τ (= the Cartesian product of countably many discrete spaces of cardinal-
ity τ > ℵ0). It is known that every metrizable space X with IndX = 0
and w(X) = τ > ℵ0 can be embedded in B(τ) (for τ = ℵ0, B(τ) = P)
[2, Theorem 7.3.15].

A set Y ⊂ P is called an analytic set (respectively, a Borel set) if there
exists a map f : P→ Y (respectively, a one-to-one map f : M → Y , where
M is a Gδ-set in P).

The notation X ←↩ Y means that X contains a relatively closed subset
which is homeomorphic to Y , the symbol ≈ denotes a homeomorphism, and
[A] denotes the closure of A.

The space X is called of the first category (respectively, of the second
category) if X can (respectively, cannot) be represented as a countable union
of nowhere dense (n.d.) sets in X.

We say that X has a property L everywhere if every open subspace
U ⊂ X has property L. The space X is Baire iff X is everywhere of the
second category. A subset of X is clopen if it is both closed and open in X.

We say that a pair of spaces X, Y is exceptional if either

(a) X is Baire and Y is not, or
(b) Y is of the first category and X is not.

It is clear that if there is an open map f : X → Y then X, Y is not an
exceptional pair.

The following theorem gives a necessary and sufficient condition on Borel
sets X,Y ⊂ P for the existence of an open map g : X → Y ; it shows that
the answer to the Keldysh question [5] is affirmative.

Theorem 0. Let X ⊂ C be a Borel set , Y ⊂ C be an analytic set , and
X be everywhere not Fσ ∪Gδ. Then there exists an open map f : X → Y if
and only if X, Y is not an exceptional pair.

It is not hard to see that Theorem 0 is the sum of Theorems 1–4, and
Saint Raymond’s theorem [14, Theorem 5]: Let X be a Borel set in C; then
X is a union of Fσ and Gδ (in C) iff X 6←↩ P × Q. It can be seen that
Theorem 4 is based on Theorems 1 and 2, and Theorem 3 uses Theorem 2,
which uses Theorem 1. Lemma 2 and the first step of its proof strengthen
the theorem of [10].

R e m a r k. If X, Y ⊂ C, X contains an open Fσ ∪Gδ (relative to C) and
f : X → Y is an open map then Y also contains an open Fσ ∪Gδ (relative
to C).
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Indeed, suppose X contains an open U = X1 ∪X2, where X1 is Fσ and
X2 is Gδ. It is clear that f(X1) is Fσ in C, T = U \ f−1(f(X1)) is Gδ and
f¹T is an open map. Hence by Hausdorff’s theorem f(T ) is Gδ in C and
f(U) = f(T ) ∪ f(X1) is Fσ ∪Gδ.

Note that C is embeddable in P and if X ⊂ C ⊂ P is not Fσ ∩Gδ in P,
then X is not Fσ ∩Gδ in C.

We close this section with an example of a Baire space X ⊂ C which is
Fσ ∪Gδ and everywhere not Fσ ∩Gδ. Thus, if Y is any Baire space which is
everywhere not Fσ ∪Gδ then X,Y is not an exceptional pair, but no open
f : X → Y exists, showing that the condition on X in Theorem 0 cannot
be weakened.

Indeed, let Q′ ≈ Q be a dense subset of C and P′ = C \ Q′. Let now
X1 = Q′×Q′, X2 = P′×P′ and X = X1∪X2. Obviously X is a Baire space
and Fσ ∪ Gδ in C, and X is everywhere not Fσ ∪ Gδ since every Fσ ∩ Gδ
in C which is everywhere not Fσ and everywhere not Gδ is homeomorphic
to P × Q (see [8], [13]) and we have a contradiction to the Baire Category
Theorem. (Notice that X is homeomorphic to the space T , which has been
characterized by van Douwen [1, Theorem 2.3].)

1. Main theorems. The proofs of Theorems 1–4 use Lemmas 2–5 of
Section 3, which use Proposition 0 of Section 2.

Theorem 1. Let X,Y ⊂ P be analytic sets, and X be a space of the
first category and everywhere not a σ-compact space. Then there exists an
open map g : X → Y .

R e m a r k. If X ⊂ P is an analytic set and X is not a σ-compact space,
then X ←↩ P and for every analytic set Y ⊂ P there exists a map f : X → Y
[4; 6, §39; 10, Corollary 2].

P r o o f o f T h e o r e m 1. According to the above remark, if U ⊂ X is
an open set then U ←↩ P. Since P × P ≈ P we may suppose that P is n.d.
in X. Let X =

⋃
F ′i , where F ′i is closed n.d. in X (i ∈ ω). Obviously, for

every F ′i there exists a sequence of closed n.d. (in X) subsets Pi,j ≈ P such
that

(A) F ′i =
[⋃
{Pi,j : j ∈ ω}

]
X
\
⋃
{Pi,j : j ∈ ω},

and every set

(B) Fi = F ′i ∪
⋃
{Pi,j : j ∈ ω}

is closed n.d. in X. The reader can easily verify that every Fi is an analytic
set and no open U ⊂ Fi is σ-compact. By the above remark, it remains to
apply Lemma 2.
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Theorem 2. Let X,Y ⊂ P be analytic, Baire spaces and everywhere
X ←↩ P×Q. Then there exists an open map g : X → Y .

P r o o f. Every analytic set X can be represented as X1 ∪X2, where X2

is a Gδ-set in P and X1 is of the first category in X [6, §11]. Since X is
everywhere of the second category, [X2] = X and if U = X \ [X1] 6= ∅ then
U ⊂ X2 is a Gδ-set in P and U ←↩ P×Q. This implies that U ←↩ Q, which
contradicts the Baire Category Theorem. Hence [X1] = X.

Analogously Y = Y1 ∪ Y2, where Y2 is a Gδ-set in P, Y1 is of the first
category, and [Y2] = Y . We may suppose that [Y1] = Y . Indeed, it is clear
that there is an open map (projection) π : P × Y → Y , hence we may
consider P × Y instead of Y . Taking a dense countable subset Q′ ≈ Q in
P× Y2 we set

Y ′1 = (P× Y1) ∪Q′ and Y ′2 = (P× Y2) \Q′.
It is clear that P× Y = Y ′1 ∪ Y ′2 , where Y ′1 is a dense subset of the first

category in P× Y , and Y ′2 is a Gδ-set (in P× P ≈ P) dense in P× Y .
Represent X2 as

X2 =
⋂
{Oi : i ∈ ω}, with each Oi open in P,

and let F ′i = X \Oi. Similarly to the proof of Theorem 1 (see (A) and (B))
one defines closed n.d. sets

(B′) Fi = F ′i ∪
⋃
{Pi,j : j ∈ ω},

where the Pi,j ≈ P×Q are closed n.d. sets. Clearly, Fi is a subspace of the
first category, and for a relatively open set U ⊂ Fi we have U ←↩ P × Q.
Hence U is not σ-compact and of the first category. By Theorem 1 there
exists an open map of U onto every nonempty analytic set in Y . It is clear
that X is everywhere not compact and the conditions (i)–(iv) of Lemma 3
hold, hence by Lemma 3 one obtains the assertion.

Lemma 1. Let X ⊂ P be a space which is not a Baire space and not of
the first category. Then X = T ∪X1, where X1 = X \ T is an open space of
the first category , T = F ∪X2 is a closed Baire subspace, F is a closed n.d.
set in T and in F ∪X1, X2 = T \ F is an open (in X) Baire space.

P r o o f. Define X1 as the union of all open subsets of X of the first
category. Since X is Lindelöf, X1 is a maximal open subspace of the first
category. Put T = X\X1 and F = [X1]\X1. It is clear that F is n.d. in [X1],
hence in X. Obviously, X2 = X \ [X1] = T \ F 6= ∅, otherwise X would be
of the first category. The subspace T is everywhere of the second category,
because there exists no open V ⊂ X such that V ∩ T 6= ∅ is of the first
category in T (otherwise, as V ∩X1 is of the first category, X1 would not be
maximal). Obviously, X2 is dense in T = F ∪X2, since [X1] = X1 ∪ F is of
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the first category in X and if there is an open V ⊂ X with ∅ 6= V ∩ T ⊂ F ,
then V ⊂ [X1] is of the first category in X, V 6⊂ X1 and again X1 would
not be maximal.

Theorem 3. Let X, Y be analytic sets in P, Y be a Baire space and
everywhere X ←↩ P×Q. Then there exists an open map g : X → Y .

P r o o f. Let X be a space of the first category. Since everywhere X ←↩
P × Q, X is everywhere not σ-compact by the Baire Category Theorem.
Now we apply Theorem 1.

If X is Baire we apply Theorem 2.
In the third case, by Lemma 1, every open U ⊂ X \ T satisfies the

conditions of Theorem 1 and therefore can be mapped onto every open set
V ⊂ Y , and T is a closed subspace satisfying the conditions of Theorem 2,
hence there exists an open map f : T → Y . By Lemma 4, there is an open
extension g : X → Y of f .

Corollary 1. Let X ⊂ C be a Borel set everywhere not Fσ ∪Gδ. Then
for every analytic Baire space Y ⊂ C there exists an open map g : X → Y .

This follows from Theorem 3, since by the Saint Raymond’s Theorem [14,
Theorem 5; 7, Corollary 17] for every Borel not Fσ ∪Gδ-set U ⊂ X we have
U ←↩ P×Q.

Theorem 4. Suppose that X, Y are analytic sets in P of the second
category and everywhere X ←↩ P × Q. Suppose that X and Y contain open
(nonempty) subsets of the first category. Then there exists an open map
g : X → Y .

P r o o f. By Lemma 1,X = X1∪FX∪X2, whereX1 is an open subspace of
X of the first category, FX is n.d. in X1∪FX and X2 is an open (in X) Baire
subspace such that FX is a n.d. set in FX ∪X2 (X1∩X2 = ∅). Analogously
we have Y = Y1 ∪FY ∪Y2 with the same properties. Similarly to the proofs
of Theorems 1 and 2 (see (B′) and (B)) we take a closed n.d. set FX0 ⊃ FX
such that there exists an open map f : FX0 → FY . By Lemma 5 and
Theorems 1 and 2, there exist open extensions g1 : FX0 ∪X1 → FY ∪Y1 and
g2 : FX0 ∪X2 → FY ∪Y2 of f . Then it is easy to see that g = g1∪g2 : X → Y
is an open extension of f .

2. Terminology and basic facts

1.0. We denote by A<ω the set of all finite sequences u = 〈u(0), . . . , u(k)〉
of elements of A; ∅ denotes the empty sequence. The number |u| = k + 1 is
called the length of u; define |∅| = 0.

If u, v ∈ A<ω, then uav is the concatenation of the two sequences, i.e.

〈u(0), . . . , u(k)〉a〈v(0), . . . , v(m)〉 = 〈u(0), . . . , u(k), v(0), . . . , v(m)〉.
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Of course, ua∅ = u. The notation s ⊂ t means that t extends s, i.e. that s
is an initial segment of t and s 6= t.

A tree T on A is a subset of A<ω such that s ∈ T and t ⊂ s→ t ∈ T . If
t ⊂ s and |t|+ 1 = |s|, we write s = t+.

1.1. Let T ⊂ B(τ). A γ(T )-system is a family of open (in T = T∅)
subsets Ts, indexed by some tree S satisfying the conditions:

(a)
⋃{Ts+ : s+ ∈ S} = Ts;

(b) diamTs → 0 as |s| → ∞.

1.2. A γ∗(T )-system is a γ(T )-system with the additional condition:

(c) for every fixed n = 1, 2, . . . the sets Ts, |s| = n, are pairwise disjoint
clopen sets.

Obviously, for every set T ⊂ B(τ) there exists a γ∗(T )-system.

2.1. Let now T ⊂ X ⊂ B(τ). A δ(T )-extension of a γ(T )-system {Ts}
to X is a family of open sets Xs in X (X∅ = X) such that

(d) Xs ∩ T = Ts;
(e) diamXs → 0 as |s| → ∞;
(f) the sets

Zs = Xs \
⋃
{Xs+ : s+ ∈ S}

are open in X;
(f1) Xs \ T =

⋃{Zt : t ⊇ s, t ∈ S};
(g) if T is a nowhere dense subset of X then the sets Zs are nonempty.

2.2. A δ∗(T )-extension is a δ(T )-extension with the following additional
condition:

(h) the sets Xs are pairwise disjoint for every fixed |s| = n and the sets
Zs are pairwise disjoint and clopen in X.

Proposition 0. Let T be a closed subset of X ⊂ B(τ). Then every
γ(T )-system (respectively , γ∗(T )-system) has a δ(T )-extension (respectively ,
δ∗(T )-extension).

P r o o f. Let S be the tree indexing the given γ(T )-system.
Fix s ∈ S, and suppose Xs has already been constructed (we take

X∅ = X). If T is a n.d. set, also take some x0 ∈ Xs \ T . For each s+ ∈
S take an open set Os+ ⊂ Xs (with x0 6∈ Os+ if T is n.d.) such that
Os+ ∩T = Ts+ . For every x ∈ Xs \T take a neighbourhood O(x) ⊂ Xs such
that O(x) ∩ T = ∅. The cover

{Os+ , O(x) : x ∈ Xs \ T, s+ ∈ S}
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of Xs has a refinement λ = {Uα : α ∈ A}, where the Uα are clopen in X
and pairwise disjoint. Put

Zs =
⋃
{Uα ∈ λ : Uα ∩ Ts = ∅}.

It is easy to see that

(∗) Zs = Xs \ Vs,
where

(∗∗) Vs =
⋃
{Uα ∈ λ : Uα ∩ Ts 6= ∅} ⊂

⋃
{Os+ : s+ ∈ S}.

Define
Xs+ = Os+ ∩ Vs.

Then by (∗) and (∗∗),
Zs = Xs \

⋃
{Os+ ∩ Vs : s+ ∈ S} = Xs \

⋃
{Xs+ : s+ ∈ S}.

Obviously, we have (d) (for s+). We can get condition (e) to be also satisfied,
choosing the sets Os in a proper way and taking into account (b).

Conditions (f), (f1) hold by the construction, and (g) follows from the
fact that x0 ∈ Zs.

So, we have proved the existence of the required δ(T )-extension. In the
case of a γ∗(T )-system we consider for every x ∈ Ts+ a neighbourhood O(x)
such that O(x) ∩ T ⊂ Ts+ instead of the set Os+ , and choose O(x) for
x ∈ Xs \ T and a refinement λ as above. Then put

Xs+ =
⋃
{Uα ∈ λ : Uα ∩ T ⊂ Ts+}.

It is clear that we have (h).

3. Principal lemmas. A map f : X → Y is called open at x ∈ X if
there is a base B for X at x such that {f(U) : U ∈ B} is a base for Y
at f(x).

Lemma 2. Suppose X,Y ⊂ B(τ) and X =
⋃
i∈ω Fi, where the Fi

are closed nowhere dense sets such that for every nonempty clopen (rela-
tive to Fi) set V ⊂ Fi (i ∈ ω) and every nonempty clopen set U ⊂ Y there
exists a map f : V → U . Then there exists an open map g : X → Y .

P r o o f. The proof is by induction. We will define a tree H, and for each
h ∈ H closed sets Fh ⊂ some Fi, clopen subsets Oh ⊂ X, Yh ⊂ Y , maps
gh : Fh → Yh, and trees Hh such that ha〈v〉 ∈ H if and only if v ∈ Hh.
Always, hn will denote an element of H of length n.

At the first step put F∅ = F0, O∅ = X, Y∅ = Y and consider a map
g∅ : F∅ → Y∅. Suppose that we have already constructed Fhn , Ohn , Yhn , and
ghn , and Hh for all h ⊂ hn. Take a γ∗(Yhn)-system. It is clear that there
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exist a tree Hh and a γ∗(Fhn)-system {Thna〈v〉 : v ∈ Hh} such that for each
v ∈ Hh there is some Yhna〈v〉 ∈ γ∗(Yhn) with Thna〈v〉 ⊂ g−1

hn
(Yhna〈v〉). By

Proposition 0, let {Xhna〈v〉 : v ∈ Hh} be a δ∗(Fhn)-extension of γ∗(Fhn) in
Ohn = Xhna〈∅〉. Fix v ∈ Hh, and put Ohna〈v〉 = Zhna〈v〉, where Zhna〈v〉
is as in 2.1(f). Let Fhna〈v〉 be the first nonempty intersection of Ohna〈v〉
with the sets Fi (i ∈ ω). Then by our condition there is a map ghna〈v〉 :
Fhna〈v〉 → Yhna〈v〉. We may put hn

a〈v〉 = hn+1 ∈ H and define the map
g : X → Y as follows: g¹Fh = gh for all h ∈ H.

Fact. g(Xhn+1) = g(Fhn+1) = Yhn+1 .
Indeed, by construction

Xhn+1 = Thn+1 ∪
⋃
{Fpn+k+1 : Fpn+k+1 ⊂ Xhn+1 , pn+k+1 ∈ H, k ∈ ω}

and for every Fpn+k+1 ⊂ Xhn+1 (k > 0) there is Fpn+k (hn ⊂ pn+k ⊂ pn+k+1)
such that g(Fpn+k) ⊃ g(Fpn+k+1), hence

g(Xhn+1) = g(Thn+1) ∪
⋃
{g(Fpn+1) : Fpn+1 ⊂ Xhn+1}.

It remains to remark that g(Thn+1) ⊂ g(Fhn+1) and for every Fpn+1 ⊂ Xhn+1

we have g(Fpn+1) ⊂ Yhn+1 = g(Fhn+1).

Now, if x ∈ X, then x ∈ Fhn for some Fhn . Let B ={Xhn+1 : x ∈ Xhn+1}.
By our construction, B is a base at x and by the fact above g is an open
map at x.

Lemma 3. Let X,Y ⊂ B(τ), and let the following conditions for X and
analogous conditions for Y hold :

(i) there exist open sets UXi (i ∈ ω) in B(τ) such that the set GXδ =⋂{UXi : i ∈ ω} is dense in X (and GXδ ⊂ X);
(ii) the set FXσ = X \GXδ is dense in X;

(iii) for all sets U ⊂ FXi and V ⊂ FYj clopen relative to FXi = X \ UXi
and FYj = Y \ UYj , respectively , there exists an open map f : U → V
(i, j ∈ ω);

(iv) for all clopen sets O ⊂ X, W ⊂ Y and each refinement λ(W ) of
W consisting of clopen (in Y ) pairwise disjoint sets, there is a refinement
λ(O) of O consisting of clopen (in X) pairwise disjoint sets such that the
cardinality of λ(O) is greater than or equal to the cardinality of λ(W ).

Then there exists an open map g : X → Y .

P r o o f. The proof is by an inductive process similar to that used to
establish Lemma 2.

At step 0 consider an open map f0 : FX0 → FY0 (where FX0 = X\UX0 ,
FY0 = Y \UY0 ) and put OX0 = X, OY0 = Y . Obviously, we may suppose that
diamOX0 < 1 and diamOY0 < 1.
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Suppose we obtained at step n clopen sets OXtn and corresponding sets
OYt(tn) with the following properties:

(a) diamOXtn < 1/2n and diamOYt(tn) < 1/2n;
(b) [OXtn ] ⊂ UXn−1 and [OYt(tn)] ⊂ UYn−1 (UX−1 = UY−1 = B(τ)).

We also obtained closed n.d. sets

FXtn ⊂ OXtn , FYt(tn) ⊂ OYt(tn)

and maps
ftn : FXtn → FYt(tn).

Consider some γ∗(FXtn )-system {TXs : s ∈ S} (T∅ = FXtn ) and its extension
δ∗(FXtn ) = {Xs : s ∈ S} (X∅ = OXtn). Using the open sets ftn(TXtn ) we
construct the γ(FYt(tn))-system {TYs = ftn(TXtn ) : s ∈ S} and an extension
δ(FYt(tn)) = {Ys : s ∈ S} to Y .

It is well known (see the proof of Theorem 7.3.15 in [2]) that for a
given ε > 0 every open cover of the open subset ZXs ⊂ X has a refinement
consisting of clopen (in X) pairwise disjoint sets of diameter less than ε.
Then, by (iv) we may suppose that ZXs =

⋃
λXs and ZYs =

⋃
λYs , where

λXs and λYs are families of clopen pairwise disjoint sets of diameter less than
1/2n+1 and there is a surjection t : λXs → λYs . Denote by τXn+1 = {OXtn+1

}
and τYn+1 = {OYtn+1

} the families of elements of all the obtained families
λXs and λYs . Choosing the sets O(x) in the proof of Proposition 0 such
that [O(x)] ⊂ UXn we may suppose that OXtn+1

⊂ UXn . Let FXtn+1
be the first

nonempty intersection of OXtn+1
with Fi. By analogy we construct the sets

FYt(tn+1) in Y and obtain open maps

ftn+1 : FXtn+1
→ FYt(tn+1).

Now we define gσ : FXσ → FYσ and gδ : GXδ → GYδ . By definition,
gσ¹FXtn = ftn (t0 = 0) . It is clear that gσ : FXσ → FYσ is a surjective map.
Note that by the construction we have

(1) gσ(OXtn ∩ FXσ ) = OYt(tn) ∩ FYσ .
In order to define gδ : GXδ → GYδ first note that by (a) and (b) for every

sequence

(2) OXt1 ⊃ . . . ⊃ OXtn
there is some

x ∈
⋂
tn

OXtn =
⋂
tn

[OXtn ] ⊂ GXδ .

Conversely, for every x ∈ GXδ there is a sequence (2). For x ∈ GXδ
defined by (2) put gδ(x) = y =

⋂
t(tn)O

Y
t(tn) ⊂ GYδ . By (a) and (b) we



212 A. V. Ostrovsky

obtain a surjection gδ : GXδ → GYδ , since, by our construction, for every
y ∈ GYδ there is a sequence OYt(t1) ⊃ . . . ⊃ OYt(tn) (containing y), and, hence,
for the x defined by (2), we have gδ(x) = y and

(3) gδ(OXtn ∩GXδ ) = OYt(tn) ∩GYδ .
It remains to define g : X → Y as follows:

g(x) =
{
gσ(x) if x ∈ FXσ ,
gδ(x) if x ∈ GXδ .

Fact. The surjection g : X → Y is an open continuous map from X
onto Y .

Indeed, by (1) and (3) we have

g(OXtn) = OYt(tn).

Let x ∈ GXδ . Take for x the sequence (2) of sets OXtn 3 x. Obviously, they
constitute a base at x, and the OYt(tn) are a base at g(x), hence g : X → Y
is an open continuous map.

Let x ∈ FXσ ; hence, for some FXtn , x ∈ FXtn . Let B = {Xs : x ∈ Xs} be a
base at x, where Xs is constructed as above. Since

Xs = FXtn ∪
⋃
{ZXp : ZXp ⊂ Xs, p ∈ S}

and every ZXp is the union of some OXtn+1
for which

g(OXtn+1
) = OYt(tn+1) ⊂ ZYp

we see that g(Xs) = Ys, hence g is an open map at x.

Lemma 4. Let X, Y be metric spaces, T be closed in X, dimX = 0 and
for all nonempty open sets U ⊂ X \ T , V ⊂ Y , there exists an open map
ϕ : U → V . Then every open map f : T → Y can be extended to an open
map g : X → Y .

P r o o f. According to Section 2, consider a γ∗(T )-system and its δ∗(T )-
extension in X. If Zs 6= ∅ then there exists an open map ϕs : Zs → f(Ts).
Let g¹Zs = ϕs and g¹T = f .

Obviously, we thus obtain a map g : X → Y which is open at every
x ∈ X \ T . The sets Xs containing x ∈ T constitute a base at x. By (e) and
(f1) of Section 2 the sets g(Xs) constitute a base at g(x), and g is continuous
and open.

Lemma 5. Let TX ⊂ X ⊂ B(τ) and TY ⊂ Y ⊂ B(τ) be closed n.d. sets
in X and Y , and f : TX → TY be an open map. Suppose that for every
(nonempty) open V ⊂ X \ TX and U ⊂ Y \ TY there exists an open map
ϕ : V → U . Then f has an open extension g : X → Y over X.
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P r o o f. The proof is, to some extent, similar to the proof of Lemma 3
or Lemma 4. (Define g : X → Y as follows: g¹TX = f , g(ZXs ) = ZYs ,
where g¹ZXs are open maps of sets chosen as at the beginning of the proof
of Lemma 3.)
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[3] F. Hausdor f f, Über innere Abbildungen, Fund. Math. 23 (1934), 279–291.
[4] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), ibid. 12

(1928), 78–109.
[5] L. V. Keldysh, On open maps of analytic sets, Dokl. Akad. Nauk SSSR 49 (1945),

646–648 (in Russian).
[6] K. Kuratowsk i, Topology , Vol. I, Academic Press, 1976.
[7] S. V. Medvedev, Zero-dimensional homogeneous Borel sets, Dokl. Akad. Nauk

SSSR 283 (1985), 542–545 (in Russian).
[8] J. van Mi l l, Characterization of some zero-dimensional separable metric spaces,

Trans. Amer. Math. Soc. 264 (1981), 205–215.
[9] A. V. Ostrovsky, Concerning the Keldysh question about the structure of Borel

sets, Mat. Sb. 131 (1986), 323–346 (in Russian); English transl.: Math. USSR-Sb.
59 (1988), 317–337.

[10] —, On open mappings of zero-dimensional spaces, Dokl. Akad. Nauk SSSR 228
(1976), 34–37 (in Russian); English transl.: Soviet Math. Dokl. 17 (1976), 647–654.

[11] —, On nonseparable τ -analytic sets and their mappings, Dokl. Akad. Nauk SSSR
226 (1976), 269–272 (in Russian); English transl.: Soviet Math. Dokl. 17 (1976),
99–102.

[12] —, Cartesian product of FII-spaces and analytic sets, Vestnik Moskov. Univ. Ser.
Mat. 1975 (2), 29–34 (in Russian).

[13] —, Continuous images of the product C × Q of the Cantor perfect set C and the
rational numbers Q, in: Seminar on General Topology, Moskov. Gos. Univ., Moscow,
1981, 78–85 (in Russian).

[14] J. Sa int Raymond, La structure borélienne d’Effros est-elle standard?, Fund.
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