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On open maps of Borel sets
by

A. V. Ostrovsky (St. Petersburg)

Abstract. We answer in the affirmative [Th. 3 or Corollary 1] the question of
L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational num-
bers P not Gy - Fsx and of the second category in itself be mapped onto an arbitrary
analytic set Y C P of the second category in itself by an open map? Note that under a
space of the second category in itself Keldysh understood a Baire space. The answer to
the question as stated is negative if X is Baire but Y is not Baire.

Introduction. In 1934 Hausdorff proved [3; 2, 4.5.14] that if f : X — Y
is an open map from a completely metrizable space X onto a metrizable Y,
then Y is also completely metrizable. Thus, open maps preserve the class
G5 of Borel sets. L. V. Keldysh proved [5, Th. 1] that this result is not
true for Borel sets of higher class, namely, that there is a Borel set X C P
of the first category for which there is an open map f : X — Y onto an
arbitrary analytic set Y C P (see Theorem 1). In connection with this result
a question was raised whether an analogous theorem holds for Baire spaces.

It is clear that if f : X — Y is an open map and O C Y is an open
(nonempty) set of the first category, so is f~*(O). Hence, open maps preserve
the property of being a Baire space. Let Xy C P be an analytic set such that
P\ X¢ does not contain a copy of the Cantor set C. It is not hard to see
that Xy is a Baire space. Keldysh remarked that if Y satisfies the following
condition:

(i) Y C P is an analytic set such that M \ Y contains a copy of the
Cantor set C for every Gs-set M DY,

then Xy cannot be mapped onto Y by an open map [5]. Note that every
Borel (non-Gs) set Y C P (and analytic set Y = Xy x P in which every
Gs-subspace is Baire [12, Theorem 4]) satisfies the condition (i).
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All spaces in this paper are assumed to be metrizable, and all maps
are continuous and onto. We denote by P and @Q the spaces of irrational
and rational numbers, respectively, and by B(7) the Baire space of weight
7 (= the Cartesian product of countably many discrete spaces of cardinal-
ity 7 > Ng). It is known that every metrizable space X with Ind X = 0
and w(X) = 7 > Ny can be embedded in B(7) (for 7 = Vg, B(r) = P)
[2, Theorem 7.3.15].

A set Y C PP is called an analytic set (respectively, a Borel set) if there
exists a map f : P — Y (respectively, a one-to-one map f : M — Y, where
M is a Gs-set in P).

The notation X < Y means that X contains a relatively closed subset
which is homeomorphic to Y, the symbol ~ denotes a homeomorphism, and
[A] denotes the closure of A.

The space X is called of the first category (respectively, of the second
category) if X can (respectively, cannot) be represented as a countable union
of nowhere dense (n.d.) sets in X.

We say that X has a property L everywhere if every open subspace
U C X has property L. The space X is Baire iff X is everywhere of the
second category. A subset of X is clopen if it is both closed and open in X.

We say that a pair of spaces X, Y is exceptional if either

(a) X is Baire and Y is not, or
(b) Y is of the first category and X is not.

It is clear that if there is an open map f: X — Y then X, Y is not an
exceptional pair.

The following theorem gives a necessary and sufficient condition on Borel
sets X,Y C P for the existence of an open map g : X — Y; it shows that
the answer to the Keldysh question [5] is affirmative.

THEOREM 0. Let X C C be a Borel set, Y C C be an analytic set, and
X be everywhere not F, UGgs. Then there exists an open map f: X — Y if
and only if X, Y 1is not an exceptional pair.

It is not hard to see that Theorem 0 is the sum of Theorems 14, and
Saint Raymond’s theorem [14, Theorem 5]: Let X be a Borel set in C; then
X is a union of F, and Gs (in C) iff X < P x Q. It can be seen that
Theorem 4 is based on Theorems 1 and 2, and Theorem 3 uses Theorem 2,
which uses Theorem 1. Lemma 2 and the first step of its proof strengthen
the theorem of [10].

Remark. If X, Y C C, X contains an open F, UGs (relative to C) and
f: X — Y is an open map then Y also contains an open F, U Gy (relative
to C).
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Indeed, suppose X contains an open U = X; U X5, where X; is F,, and
X5 is Gs. It is clear that f(X;)is F, in C, T = U \ f~1(f(X1)) is Gs and
fIT is an open map. Hence by Hausdorff’s theorem f(7') is G5 in C and
fU) = f(T)U f(X1) is Fo UGS,

Note that C is embeddable in P and if X € C C P is not F, NG in P,
then X is not F,, NG in C.

We close this section with an example of a Baire space X C C which is
F,UGs and everywhere not F, NGg. Thus, if Y is any Baire space which is
everywhere not F, U G5 then X,Y is not an exceptional pair, but no open
f X — Y exists, showing that the condition on X in Theorem 0 cannot
be weakened.

Indeed, let Q" ~ Q be a dense subset of C and P’ = C\ Q. Let now
X1 =Q' xQ, Xo =P xP and X = X; UX5. Obviously X is a Baire space
and F, UGy in C, and X is everywhere not F, U G5 since every F, N G
in C which is everywhere not F, and everywhere not G is homeomorphic
to P x Q (see [8], [13]) and we have a contradiction to the Baire Category
Theorem. (Notice that X is homeomorphic to the space T, which has been
characterized by van Douwen [1, Theorem 2.3].)

1. Main theorems. The proofs of Theorems 1-4 use Lemmas 2-5 of
Section 3, which use Proposition 0 of Section 2.

THEOREM 1. Let X,Y C PP be analytic sets, and X be a space of the
first category and everywhere not a o-compact space. Then there exists an
open map g: X — Y.

Remark. If X C Pis an analytic set and X is not a o-compact space,
then X <« P and for every analytic set Y C P there existsamap f: X — Y
[4; 6, §39; 10, Corollary 2.

Proof of Theorem 1. According to the above remark, if U C X is
an open set then U < P. Since P x P ~ P we may suppose that P is n.d.
in X. Let X = |JF/, where F/ is closed n.d. in X (i € w). Obviously, for
every F/ there exists a sequence of closed n.d. (in X) subsets P; ; ~ P such
that

(A) F =[P i ewt] \UPyiew),
and every set
(B) Fi=F U| P :jew}

is closed n.d. in X. The reader can easily verify that every F; is an analytic
set and no open U C Fj is o-compact. By the above remark, it remains to
apply Lemma 2. =
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THEOREM 2. Let X,Y C P be analytic, Baire spaces and everywhere
X — P x Q. Then there exists an open map g: X — Y.

Proof. Every analytic set X can be represented as X; U X5, where X5
is a Gs-set in P and X; is of the first category in X [6, §11]. Since X is
everywhere of the second category, [X3] = X and if U = X \ [X] # 0 then
U C X5 is a Gg-set in P and U <« P x Q. This implies that U < Q, which
contradicts the Baire Category Theorem. Hence [X;] = X.

Analogously Y = Y7 U Y5, where Y3 is a Gg-set in P, Y7 is of the first
category, and [Y2] = Y. We may suppose that [Y;] = Y. Indeed, it is clear
that there is an open map (projection) m : P x Y — Y, hence we may
consider P x Y instead of Y. Taking a dense countable subset Q' ~ Q in
P x Y5 we set

Y/ =PxY)UQ and Y]=(PxYy)\Q.

It is clear that P x Y = Y/ UY], where Y/ is a dense subset of the first
category in P x Y, and Y; is a Gs-set (in P x P~ PP) dense in P x Y.
Represent X, as

Xy = ﬂ{OZ (1€ wh, with each O; open in P,

and let F/ = X \ O;. Similarly to the proof of Theorem 1 (see (A) and (B))
one defines closed n.d. sets

(B') Fi=F u| (P :jew},

where the P; ; = P x Q are closed n.d. sets. Clearly, F; is a subspace of the
first category, and for a relatively open set U C F; we have U «— P x Q.
Hence U is not o-compact and of the first category. By Theorem 1 there
exists an open map of U onto every nonempty analytic set in Y. It is clear
that X is everywhere not compact and the conditions (i)-(iv) of Lemma 3
hold, hence by Lemma 3 one obtains the assertion. m

LEMMA 1. Let X C P be a space which is not a Baire space and not of
the first category. Then X = T U Xy, where X1 = X \ T is an open space of
the first category, T = F' U X5 is a closed Baire subspace, F' is a closed n.d.
setin T and in FU Xy, Xo =T\ F is an open (in X) Baire space.

Proof. Define X; as the union of all open subsets of X of the first
category. Since X is Lindelof, X; is a maximal open subspace of the first
category. Put T'= X\ X7 and F' = [X;]\ X;. It is clear that F is n.d. in [X],
hence in X. Obviously, Xo = X \ [X1] =T \ F # 0, otherwise X would be
of the first category. The subspace 1" is everywhere of the second category,
because there exists no open V' C X such that V NT # ( is of the first
category in T (otherwise, as V' N X7 is of the first category, X; would not be
maximal). Obviously, Xs is dense in T' = F' U Xy, since [X;] = X; U F is of
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the first category in X and if there is an open V C X with ) #V NT C F,
then V' C [X;] is of the first category in X, V ¢ X; and again X; would
not be maximal. m

THEOREM 3. Let X, Y be analytic sets in P, Y be a Baire space and
everywhere X <« P x Q. Then there exists an open map g: X — Y.

Proof. Let X be a space of the first category. Since everywhere X «
P x Q, X is everywhere not o-compact by the Baire Category Theorem.
Now we apply Theorem 1.

If X is Baire we apply Theorem 2.

In the third case, by Lemma 1, every open U C X \ T satisfies the
conditions of Theorem 1 and therefore can be mapped onto every open set
V CY,and T is a closed subspace satisfying the conditions of Theorem 2,
hence there exists an open map f : T — Y. By Lemma 4, there is an open
extension g: X — Y of f. m

COROLLARY 1. Let X C C be a Borel set everywhere not F, UGs. Then
for every analytic Baire space Y C C there exists an open map g: X — Y.

This follows from Theorem 3, since by the Saint Raymond’s Theorem [14,
Theorem 5; 7, Corollary 17] for every Borel not F, UGs-set U C X we have
U—PxQ.

THEOREM 4. Suppose that X, Y are analytic sets in P of the second
category and everywhere X «— P x Q. Suppose that X and Y contain open
(nonempty) subsets of the first category. Then there exists an open map
g: X —Y.

Proof By Lemma 1, X = X;UFXUX5,, where X; is an open subspace of
X of the first category, F¥X isn.d. in X;UFX and X5 is an open (in X) Baire
subspace such that F¥ is a n.d. set in FX U X, (X1 N Xy =0). Analogously
we have Y = Y; U FY UY; with the same properties. Similarly to the proofs
of Theorems 1 and 2 (see (B’) and (B)) we take a closed n.d. set Fg* D FX
such that there exists an open map f : Fj* — FY. By Lemma 5 and
Theorems 1 and 2, there exist open extensions g; : FUX UX; — FYUY; and
go: FOXUXQ — FY UY5 of f. Then it is easy to see that g=qUgy: X =Y
is an open extension of f. m

2. Terminology and basic facts

1.0. We denote by A<“ the set of all finite sequences u = (u(0), ..., u(k))
of elements of A; () denotes the empty sequence. The number |u| = k + 1 is
called the length of u; define || = 0.

If u,v € A<%, then u"v is the concatenation of the two sequences, i.e.

(u(0),...,u(k))”(v(0),...,v(m)) = (u(0),...,u(k),v(0),...,v(m)).
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Of course, v~ () = u. The notation s C ¢t means that ¢ extends s, i.e. that s
is an initial segment of ¢t and s # t.

A tree T on A is a subset of A<“ such that se TandtC s —teT.If
t Csand [t|+1=s|, we write s = ¢T.

1.1. Let T C B(71). A ~(T)-system is a family of open (in T' = Tp)
subsets T, indexed by some tree S satisfying the conditions:

(@) U{Ts+ : sT € S} =Ty

(b) diamTs — 0 as |s| — oo.

1.2. A v*(T)-system is a ~y(T)-system with the additional condition:

(c) for every fixed n = 1,2,... the sets T, |s| = n, are pairwise disjoint
clopen sets.

Obviously, for every set T' C B(7) there exists a «*(T)-system.

2.1. Let now T' C X C B(7). A 6(T)-extension of a v(T')-system {T}
to X is a family of open sets X in X (X = X) such that

(d) X, NT = Ty;
(e) diam Xg — 0 as |s| — oc;
(f) the sets

Z :XS\U{XS+ :sT €S}

are open in X;
(f1) X \T=U{Z: : t D s,t € S};
(g) if T is a nowhere dense subset of X then the sets Z; are nonempty.

2.2. A 0*(T)-extension is a 0(T')-extension with the following additional
condition:

(h) the sets X are pairwise disjoint for every fixed |s| = n and the sets
Z are pairwise disjoint and clopen in X.

PROPOSITION 0. Let T be a closed subset of X C B(1). Then every
~v(T')-system (respectively, v*(T')-system) has a 6(T')-extension (respectively,
0*(T)-extension).

Proof. Let S be the tree indexing the given ~(7')-system.

Fix s € S, and suppose X; has already been constructed (we take
Xp = X). If T is a n.d. set, also take some zg € X\ T. For each st €
S take an open set O,+ C X (with 2o € Oy+ if T is n.d.) such that
Og+ NT = Tg+. For every x € X\ T take a neighbourhood O(z) C X such
that O(x) N'T = ). The cover

{04+,0(z) 0 € X, \T, sT €8}
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of X, has a refinement A = {U, : a € A}, where the U, are clopen in X
and pairwise disjoint. Put
7, :U{Ua eN:U,NT, = 0}.

It is easy to see that

(*) Zs =X\ Vs,
where
(%) Vo= J{Ua € X:UaNT, # 0} C | J{Os+ : 5T € S}
Define
Xe+ = Og+ NV,

Then by (%) and (kx),
Zy= X\ J{Os+ NVi 15T €8} = X, \ | J{Xy+ 15T €S}

Obviously, we have (d) (for sT). We can get condition (e) to be also satisfied,
choosing the sets O, in a proper way and taking into account (b).

Conditions (f), (f;) hold by the construction, and (g) follows from the
fact that zg € Z;.

So, we have proved the existence of the required 6(T")-extension. In the
case of a v*(T')-system we consider for every x € T+ a neighbourhood O(x)
such that O(z) N T C T,+ instead of the set O+, and choose O(x) for
x € X5\ T and a refinement A\ as above. Then put

X = J{Ua€X:UaNT C Tyt }.

It is clear that we have (h). m

3. Principal lemmas. A map f: X — Y is called open at x € X if
there is a base B for X at x such that {f(U) : U € B} is a base for YV
at f(z).

LEMMA 2. Suppose X,Y C B(r) and X = ¢, Fi, where the F;
are closed nowhere dense sets such that for every nonempty clopen (rela-

tive to F;) set V C F; (i € w) and every nonempty clopen set U C'Y there
exists a map f:V — U. Then there exists an open map g: X — Y.

Proof. The proof is by induction. We will define a tree H, and for each
h € H closed sets F}, C some F;, clopen subsets O, C X, Y, C Y, maps
gn : Fr, — Yy, and trees Hj, such that h™(v) € H if and only if v € Hy,.
Always, h, will denote an element of H of length n.

At the first step put Fy = Fy, Oy = X, Yy = Y and consider a map
gp : Fp — Y. Suppose that we have already constructed Fj, ,Op, .Y}, , and
9n,, and Hy, for all h C h,. Take a y*(Y},, )-system. It is clear that there
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exist a tree Hy, and a v*(F},, )-system {7}, ~ : v € Hy} such that for each
v € Hj, there is some Y}, -~y € v*(Yy,) with T} -, C g,:nl(YhnAm). By
Proposition 0, let {X), ~.y :v € Hp} be a §*(F},, )-extension of v*(F},,) in
Ohn = thr\w). Fix v € Hy, and put Oh,{“(v) = Zhn’“<v>? where Zhn’“(v>
is as in 2.1(f). Let Fj, ~, be the first nonempty intersection of Oy, -,
with the sets F; (i € w). Then by our condition there is a map g, -, :
Fy ~wy = Yn,~ @) We may put hy,” (v) = hpy1 € H and define the map
g: X — Y as follows: g[F} = gp, for all h € H.

Facr. g(th+1) = g(Fh = Yh

Indeed, by construction

th+1 = Thn+1 U U{Fpn+k+1 : Fpn+k+1 - th+17 Pntk1 € H, k€ w}

and for every F, ... C Xj
such that g(F,, . ,) D g(F

Pn+k+1

g(Xh7L+1> = g(Thn+1) U U{g(Fp7L+l) : Fpn+1 C Xh1b+1}'

n+1) n+1°

(k‘ > 0) there is Fpn+k (hn C pntk C pn+k+1)
), hence

n+1

It remains to remark that g(7},,,,) C g(Fh,,,) and for every F,, . C Xp,.,
we have g(Fpn+1) C Yhn+l = g(th+1)'
Now, if # € X, then x € F},, for some F}, . Let B={X}, ,, 2z € X}, }.

By our construction, B is a base at z and by the fact above g is an open
map at . =

LEMMA 3. Let X, Y C B(7), and let the following conditions for X and
analogous conditions for' Y hold:

(i) there exist open sets UX (i € w) in B(T) such that the set G§¥ =
N{U~ i € w} is dense in X (and G C X);

(ii) the set FX = X \ G§ is dense in X;

(iii) for all sets U C FX and V C ij clopen relative to FX = X \ UX
and ij =Y\ U]Y, respectively, there exists an open map f : U — V
(i,] € w);

(iv) for all clopen sets O C X, W C Y and each refinement \(W) of
W consisting of clopen (in'Y') pairwise disjoint sets, there is a refinement
AO) of O consisting of clopen (in X) pairwise disjoint sets such that the
cardinality of \(O) is greater than or equal to the cardinality of N(W).

Then there exists an open map g: X — Y.

Proof. The proof is by an inductive process similar to that used to
establish Lemma 2.

At step 0 consider an open map fo : FyX — Fy (where Fy¥ = X\US,
FY =Y\UY) and put OF = X, Of =Y. Obviously, we may suppose that
diam Off < 1 and diam O} < 1.
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Suppose we obtained at step n clopen sets Ot)i and corresponding sets
O}?tn) with the following properties:

a) diam OX < 1/2" and diam OY, | < 1/2";
t’VL

t(tn)
(b) [07,] € Uity and [0y, )] c Uy (U =UY, = B(r)).

We also obtained closed n.d. sets
F{, C O, Fiu.,) C Oy
and maps
fe, ¢ Ft)f — FtY )

Consider some v*(F;X)-system {TX : s € S} (T = F;*) and its extension
§*(F¥) = {X, : s € S} (Xp = OF). Using the open sets f;, (T;%) we
construct the ’y(Ft’(/tn))-system {TY = f,,(I7") : s € S} and an extension
0(Fj,)) ={Ys:s€ S}t toY,

It is well known (see the proof of Theorem 7.3.15 in [2]) that for a

given £ > 0 every open cover of the open subset ZX C X has a refinement

consisting of clopen (in X) pairwise disjoint sets of diameter less than e.
Then, by (iv) we may suppose that ZX = [JAX and ZY = [J\Y, where

s

AX and \Y are families of clopen pairwise disjoint sets of diameter less than

1/2"! and there is a surjection ¢ : A2 — AY. Denote by 7,5, = {Ofiﬂ}

and 7, = {Of, } the families of elements of all the obtained families

AX and AY . Choosing the sets O(z) in the proof of Proposition 0 such

that [O(x)] C U;¥ we may suppose that O = C UX. Let Ft)f+1 be the first
X

i, With Fj. By analogy we construct the sets
in Y and obtain open maps

nonempty intersection of O
FY

t(tnt1)
X Y
ftn+1 : Ftn+1 - Ft(tn_'_l)‘

Now we define g, : FX — FY and g5 : G§f — GY. By definition,
9o I FX = fi,, (to = 0) . It is clear that g, : F;X — F is a surjective map.
Note that by the construction we have

X X Y Y
(1) 95(07, NFZ) = Oy N F, .

In order to define g5 : G — GY first note that by (a) and (b) for every
sequence
(2) of >...00
there is some
re(oX =)o) c G5
tn tn

Conversely, for every z € G§ there is a sequence (2). For x € G¥
defined by (2) put gs(z) = y = ﬂt(tn)Ozztn) C GY. By (a) and (b) we
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obtain a surjection gs : GX — GY, since, by our construction, for every
y € GY there is a sequence Ogtl) D...D Otl?tn) (containing y), and, hence,
for the = defined by (2), we have gs(z) = y and

(3) 95(0f, NG3) =0}, NG
It remains to define g : X — Y as follows:
_[9:(z) ifzeF},
9(x) = {g(;(m) if z € G¥.
Fact. The surjection g : X — Y s an open continuous map from X
onto Y.
Indeed, by (1) and (3) we have
Q(Oi)i) = 03@”)-

Let z € G¥. Take for = the sequence (2) of sets Ofi 3 z. Obviously, they
constitute a base at z, and the Ot}Etn) are a base at g(z), hence g: X — Y
is an open continuous map.

Let x € FX; hence, for some F;\, x € F/X. Let B={X,:2 € X,} be a
base at x, where X, is constructed as above. Since

X, =FXulJ{Zz} : Z} c X., pe S}
and every Zg( is the union of some ngl — for which
X Y Y
g(Otn+1) = Ot(tn+1) - Zp
we see that g(Xs) = Y;, hence g is an open map at z. m

LEMMA 4. Let X, Y be metric spaces, T be closed in X, dim X = 0 and
for all nonempty open sets U C X \ T, V C Y, there exists an open map
p: U — V. Then every open map f : T — Y can be extended to an open
map g: X —Y.

Proof. According to Section 2, consider a v*(7")-system and its ¢*(7')-
extension in X. If Z; # () then there exists an open map ¢, : Zs — f(T5s).
Let g1 Zs = s and g[T = f.

Obviously, we thus obtain a map g : X — Y which is open at every
x € X\ T. The sets X, containing x € T constitute a base at z. By (e) and
(f1) of Section 2 the sets g(X) constitute a base at g(x), and g is continuous
and open. =m

LEMMA 5. Let TX € X C B(7) and TY CY C B(7) be closed n.d. sets
in X and Y, and f : TX — TY be an open map. Suppose that for every
(nonempty) open V.C X \TX and U C Y \TY there exists an open map
p:V = U. Then f has an open extension g: X — Y over X.
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Proof. The proof is, to some extent, similar to the proof of Lemma 3

or Lemma 4. (Define g : X — Y as follows: g|TX = f, ¢(ZX) = ZY,
where g]ZX are open maps of sets chosen as at the beginning of the proof
of Lemma 3.)

ENEONS)
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