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Path differentiation: further unification
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Udayan B. D a r j i (Louisville, Ken.)
and Michael J. E v a n s (Lexington, Va.)

Abstract. A. M. Bruckner, R. J. O’Malley, and B. S. Thomson introduced path
differentiation as a vehicle for unifying the theory of numerous types of generalized dif-
ferentiation of real valued functions of a real variable. Part of their classification scheme
was based on intersection properties of the underlying path systems. Here, additional light
is shed on the relationships between these various types of path differentiation and it is
shown how composite differentiation and first return differentiation fit in to this scheme.

1. Introduction. In a 1984 paper, entitled “Path derivatives: a unified
view of certain generalized derivatives” [1], A. M. Bruckner, R. J. O’Malley,
and B. S. Thomson introduced path differentiation and showed it to be a
valid synthesizing framework to encompass most of the fruitful notions of
generalized differentiation of functions of a real variable which were under
study at that time. Included among these types of differentiation were ap-
proximate, Peano, and selective differentiation. In that paper the authors
introduced several intersection properties for the underlying path systems
as a means of studying the resulting path derivatives and path differentiable
functions. In a recent paper [3] by O’Malley and the present authors several
of these types of path differentiation were shown to be equivalent under the
hypothesis that the path derivative is a Baire 1 bilateral derivate function
of the primitive function.

Subsequent to [1], the concept of composite differentiation was intro-
duced by O’Malley and C. E. Weil in [5]. In [6] O’Malley showed that this
type of differentiation can also be described in terms of path differentiation
with the underlying path system satisfying a type of intersection condition
different from those investigated in [1]. Recently, O’Malley [7] introduced the
intriguing notion of first return differentiation. The purpose of the present
paper is to observe where composite and first return differentiation fit in
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to the path differentiation scheme of generalized differentiation based on
the intersection properties introduced in [1] and to shed additional light on
the relationships between these various types of path differentiation. Specif-
ically, a schematic outline of what we propose to show is illustrated in the
following diagram:

(1)

EIC-PATH −→ EIC[m]-PATH
↗ ↘

COMPOSITE SELECTIVE
↘ ↗

SPD −→ 1st-RETURN

The remainder of this introductory section consists of introducing or review-
ing the terminology necessary to interpret this diagram; the second section
of the paper deals with the proofs of the indicated implications, or, more
specifically, proofs for those which have not been proved elsewhere; and the
final section presents examples to verify that no arrow missing from this
chart, other than the obvious ones obtained by following two arrows, can be
added.

Each node of diagram (1) is to be interpreted as a statement about an
ordered pair (F, f) of real valued functions defined on [0, 1]. For example,
the COMPOSITE node is intended to represent the statement “F has f as
a bilateral derived function and is compositely differentiable to f on [0, 1].”
Reviewing the notion of composite differentiation as defined in [5], we recall
that a decomposition of [0, 1] is a collection of closed sets An, n = 1, 2, . . . ,
such that

⋃∞
n=1An = [0, 1], and that F is said to be compositely differentiable

to f on [0, 1] if there exists a decomposition {An} of [0, 1] such that for each
n and each y ∈ An,

lim
t→y
t∈An

F (t)− F (y)
t− y = f(y).

Next, we review the notion of path differentiation. Let x ∈ [0, 1]. A path
leading to x is a set Ex ⊆ [0, 1] containing x and having x as an accumulation
point. A path system is a collection E = {Ex : x ∈ [0, 1]} such that each Ex
is a path leading to x. If for each x ∈ (0, 1), Ex has x as a bilateral limit
point, E is called a bilateral path system. (We should point out the caveat
that throughout this paper “bilateral” will be interpreted as unilateral at
both 0 and 1 since we are only considering functions on [0, 1].) We say that
F is path differentiable to f if there is a path system E such that for each
x ∈ [0, 1],

lim
y→x
y∈Ex

F (y)− F (x)
y − x = f(x).

In [1] the following four types of intersection properties were investi-
gated. A system of paths E is said to satisfy the condition listed below if
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there is associated with E a positive function δ on [0, 1] such that whenever
0 < y−x < min{δ(x), δ(y)}, then Ex and Ey intersect in the stated fashion:

• intersection condition (IC): Ex ∩ Ey ∩ [x, y] 6= ∅;
• internal intersection condition (IIC): Ex ∩ Ey ∩ (x, y) 6= ∅;
• external intersection condition, parameter m ∈ N (EIC[m]):

Ex ∩ Ey ∩ (y, (m+ 1)y −mx) 6= ∅ and

Ex ∩ Ey ∩ ((m+ 1)x−my, x) 6= ∅;
• one-sided external intersection condition, parameter m ∈ N (one-sided

EIC[m]):

Ex ∩ Ey ∩ (y, (m+ 1)y −mx) 6= ∅ or

Ex ∩ Ey ∩ ((m+ 1)x−my, x) 6= ∅.
A statement such as “F is IC path differentiable to f” is to be understood
as indicating that F has f as a path derivative on [0, 1] with respect to a
path system satisfying IC. As in [1], we let EIC denote the condition EIC[1],
and we take the EIC-PATH node in diagram (1) to represent the statement
“F is EIC path differentiable to f”. The EIC[m]-PATH node is interpreted
analogously.

A special type of path differentiation is first return differentiation as
introduced in [7]. The path system in this instance is generated by a tra-
jectory, where by a trajectory we mean any sequence {xn}∞n=0 of distinct
points in (0, 1) which is dense in [0, 1]. Let {xn} be a fixed trajectory. For a
given interval (a, b) ⊂ [0, 1], r(a, b) will be the first element of the trajectory
in (a, b). For 0 ≤ y < 1, the right first return path to y, R+

y , is defined
recursively via

y+
1 = 1 and y+

k+1 = r(y, y+
k ).

For 0 < y ≤ 1, the left first return path to y, R−y , is defined similarly. For
0 < y < 1, we set Ry = R+

y ∪R−y ∪{y}, and R0 = {0}∪R+
0 , R1 = R−1 ∪{1}.

The collection R ≡ {Ry : y ∈ [0, 1]} forms a path system. If there exists a
trajectory {xn} such that F is path differentiable to f on [0, 1] with respect
to the resulting first return path system, then we say that F is first return
differentiable to f on [0, 1]. Node 1st-RETURN in our diagram represents
the statement “F is first return differentiable to f on [0, 1]”.

Next, we review the notion of selective differentiation as introduced in
[4]. We utilize the notation [a, b], or (a, b), to denote the closed, or open,
interval having endpoints a and b regardless of whether a > b or b > a.
A selection function is obtained by assigning to each closed interval [a, b]
in [0, 1] a point from (a, b) and labeling it p[a,b]. The collection of p’s thus
obtained is called a selection S. We say that F is selectively differentiable
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to f on [0, 1] if there is a selection S such that for each x ∈ [0, 1],

lim
y→x

F (p[x,y])− F (x)
p[x,y] − x

= f(x).

The SELECTIVE node in diagram (1) represents the conjunction of the
statement “f is a bilateral Baire 1 derivate function of F” and any of the
following equivalent statements:

“F is selectively differentiable to f on [0, 1].”
“F is IIC path differentiable to f on [0, 1].”
“F is one-sided EIC[m] path differentiable to f on [0, 1].”
“Every perfect set M ⊆ [0, 1] contains a dense Gδ set K such that F

restricted to M is differentiable to f at each point of K.”

The equivalence of these four statements under the assumption that f is
a Baire 1 bilateral derivate function of F was established in [3], where the
final condition was called Condition B.

Lastly, we need to explain node SPD. Recently, we have been motivated
by the problem of finding a satisfactory characterization of first return dif-
ferentiation. The following notion of strong path differentiation does not
accomplish this; however, it does yield a form of path differentiation which
we shall show fits strictly between composite and first return differentiation.
Although, contrived in appearance, we shall show (Corollary 1) that it yields
a convenient tool for constructing first return differentiable functions. We
say that the ordered pair of functions (F, f) satisfies condition SPD, or F
is strongly path differentiable to f on [0, 1], if there exist

(a) a path system {Et}t∈[0,1] such that F is path differentiable to f with
respect to {Et}t∈[0,1],

(b) a first category Fσ set N such that F ′(x) = f(x) for all x ∈ [0, 1]\N ,
and

(c) a Baire 1 function δ : N → (0,∞) such that for each closed subset
M of N with diam(M) < inf δ(M),

⋂
t∈M Et is bilaterally dense at each

point of M (i.e., for every x ∈M , arbitrarily close to x, there are points of⋂
t∈M Et to the right and left of x).

If this situation holds, we say that {Et}t∈[0,1], N , δ : N → (0,∞) witness
SPD for (F, f). The node SPD in diagram (1) represents the statement
“(F, f) satisfies condition SPD”. (We should clarify what we mean by the
function δ : N → (0,∞) belonging to Baire 1, since N is only assumed to
be an Fσ of first category. We mean that the inverse image of each open set
is an Fσ.)

2. Implications in the diagram. Here we shall verify the implications
noted in diagram (1). The statement EIC-PATH → EIC[m]-PATH is, of
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course, immediate. The implication EIC[m]→ SELECTIVE results from the
combination of the following three results: Corollary 6.3 and Theorem 3.4
of [1] and Corollary 2 of [3]. Theorem 2 of [7] established the implication
1st-RETURN → SELECTIVE. The following theorem establishes the two
implications COMPOSITE → EIC-PATH and COMPOSITE → SPD:

Theorem 1. If F : [0, 1] → R is compositely differentiable to one of its
bilateral derivate functions f on [0, 1], then F is both EIC path differentiable
to f and strongly path differentiable to f .

P r o o f. Since F is compositely differentiable to f , utilizing Theorem 1
of [2] we may obtain an increasing sequence of perfect sets {Mn} such that

(i) every point of Mn is a bilateral limit point of Mn+1,
(ii)

⋃∞
n=1Mn = [0, 1], and

(iii) F |Mn is differentiable to f |Mn.

For each x ∈ [0, 1], let nx be the smallest integer such that x ∈ Mnx .
For each x for which nx > 1, let δ(x) = dist(x,Mnx−1). If x ∈ M1, let
δ(x) = 1. Let our path system {Ex}x∈[0,1] be defined by Ex = Mnx+1.
Clearly, properties (i)–(iii) guarantee that this is, indeed, a path system and
that F is path differentiable to f with respect to this system. Furthermore,
note that for all x and y, dist(x, y) < min{δ(x), δ(y)} implies nx = ny.
This condition, coupled with property (i) above, immediately yields that
this path system satisfies EIC.

Next we shall show that (F, f) satisfies SPD. We first observe that δ
is a Baire 1 function by noting that δ|P has a point of relative continuity
for every perfect set P . To see this, let P be perfect and apply the Baire
Category Theorem to find a smallest n ∈ N such that P ∩Mn contains an
open (relative to P ) set U . If n = 1, then δ|P is continuous at each point of
U . Otherwise, by the minimality of n, there exists an x ∈ (Mn \Mn−1)∩U .
From the definition of δ it follows that δ(y) = dist(y,Mn−1) for all y ∈
(x− δ(x), x+ δ(x)) ∩ U , and, hence, δ|P is continuous at x.

It remains to show that condition (c) of the definition of SPD is satisfied.
Since F is compositely differentiable to f , there is an open set O dense in
[0, 1] such that F is differentiable to f on O. Let N = [0, 1] \O. Let K ⊆ N
be such that diam(K) < inf δ(K). Then there exists a positive integer t such
that nx = t for every x ∈ K. Hence Ex = Mt+1 for every x ∈ K. Since every
point of K ⊂Mt is a bilateral limit point of Mt+1, condition (c) holds and
the proof is complete.

The only remaining implication to be verified in our diagram is SPD
→ 1st-RETURN.

Theorem 2. If F is strongly path differentiable to f , then F is first return
differentiable to f.
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P r o o f. Let {Ex}x∈[0,1], N , δ : N → (0,∞) witness SPD for (F, f). We
may assume without loss of generality that N is dense in [0, 1]. (If N is not
dense in [0, 1], we may find an Fσ first category set N1 ⊂ [0, 1]\N , where N
represents the closure of N , such that the set N∗ = N ∪N1 is dense in [0, 1].
Define δ∗(x) = dist(x,N) for x ∈ N1; otherwise let δ∗(x) = δ(x). Define
E∗x = [0, 1] for all x ∈ N1; otherwise let E∗x = Ex. One can readily verify
that {E∗x}x∈[0,1], N∗, and δ∗ witness SPD for (F, f).)

We now claim that N may be decomposed as {Cn}∞n=1 such that

(1) Cn is closed and diam(Cn) < inf δ(Cn),
(2)

⋃∞
n=1 Cn = N , and

(3) Cn ∩ Cm = ∅ for all n 6= m.

For each k, let Dk = {x ∈ N : δ(x) > 1/k}. Since δ is Baire 1, Dk is
Fσ and hence may be decomposed into countably many closed sets each of
diameter less than 1/k. We may do this for all k and obtain a collection of
closed sets {Fn}∞n=1 such that N =

⋃∞
n=1 Fn and diamFn < inf δ(Fn). For

each n > 1, the set Fn \
⋃
k<n Fk is Fσ and nowhere dense, so that it can be

decomposed into a sequence of pairwise disjoint closed sets. These decom-
positions together give a decomposition of N with the desired properties.

Now we define our trajectory. We shall do this inductively by stages. At
stage k we will select a partition Pk = {pik}bki=0 of [0, 1] such that

(A) mesh(Pk) < 2−k,
(B) Pk properly refines Pk−1, and
(C) {p0

k, p
1
k, . . . , p

bk
k } ∩ (

⋃∞
n=1 Cn) = ∅. (We are assuming that 0, 1 6∈ N

to avoid dealing with cases. If 0 or 1 is in N , a small obvious modification
of our proof will yield our theorem.)

Then we will select and order points from some of these partition inter-
vals. At the end of the kth stage with k ≥ 1, we want {xl}nkl=0, the trajectory
defined up to this point, to satisfy the following properties:

(i) If x ∈ Cj for some j ≤ k and B is a partition interval from Pk, then
there are two points in B ∩ {xl}nkl=0, one to the right of x, and the other to
the left of x,

(ii) If x ∈ Cj for some j < k, xl is in the first return path to x, and
nk−1 < l ≤ nk, then xl ∈ Ex.

To get us started, let P0 = {0, 1}. At the first stage (k = 1), we let
P1 be any partition of [0, 1] of mesh less than 1/2 such that condition (C)
holds. Let A be a partitioning interval from P1. If C1 ∩ A 6= ∅, we select
points rA ∈ A and lA ∈ A, to the right of sup(C1 ∩ A) and to the left of
inf(C1 ∩ A), such that rA, lA ∈

⋂
t∈C1

Et. Do this for all partition intervals
from P1 which intersect C1. Put all of these points in one set and label them
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from left to right as x0, x1, . . . , xn1 . Note that both conditions (i) and (ii)
are satisfied at this stage.

Assume that stage k has been completed, that the points x0, x1, . . . , xnk
have been specified and conditions (i) and (ii) are satisfied at this stage.
Choose a partition Pk+1 so that it satisfies conditions (A)–(C) and

(a) each interval of Pk+1 contains at most one of {x0, x1, . . . , xnk},
(b) each interval of Pk+1 intersects at most one of {C1, C2, . . . , Ck+1}.
We describe how to select the points to be added to the trajectory at this

stage and then we shall explain how to order these newly selected points.
Fix a partition interval A from Pk+1. There exists at most one 1 ≤ i ≤ k+1
such that Ci ∩ A 6= ∅. If there is such i, select points rA ∈ A and lA ∈ A,
to the right of sup(Ci ∩A) and to the left of inf(Ci ∩A) such that rA, lA ∈⋂
t∈Ci Et. Now repeat this for each partition interval of Pk+1. If a partition

interval misses
⋃k+1
i=1 Ci, we do not select any points from that interval at this

stage.
We have now selected all the points which we wish to add to the trajec-

tory at this stage, and have yet to describe how to order these points, or
rather those which have not already appeared in the trajectory construc-
tion. We first define an ordering on the partitioning intervals of Pk+1. Fix
1 ≤ j ≤ k+ 1. Label all those partition intervals of Pk+1 which intersect Cj
as {Aji}mji=1. Do this for all 1 ≤ j ≤ k + 1. Note that each partition interval
gets labeled in this scheme at most once because (b) is satisfied.

Now add the newly selected points at this stage k+1 to the trajectory in
the following order: First look at the newly selected points of

⋃m1
i=1A

1
i and

order them from left to right and label them as xn’s beginning with xnk+1.
(Keep in mind that a point only gets listed in the trajectory once.) Then
look at the newly selected points of

⋃m2
i=1A

2
i and order them from left to

right, etc., continuing this until we have labeled the newly selected points
from

⋃mk+1
i=1 Ak+1

i .
That condition (i) holds at stage k+1 follows from the construction. Let

us now show that condition (ii) holds. Let x ∈ Cj for some 1 ≤ j < k + 1
and xl be in the first return sequence of x for some nk < l ≤ nk+1. Let A
and B be the partition intervals from stages k + 1 and k, respectively, such
that x ∈ A and x ∈ B. Note that A ⊂ B. Let A′ be a partition interval
from stage k + 1 which contains xl. By condition (i), B ∩ {x0, x1, . . . , xnk}
contains points to the right and left of x. Hence xl ∈ B and A′ ⊂ B. Note
that A′ ∩Ci = ∅ for i = 1, 2, . . . , j− 1, j+ 1, . . . , k because B intersects only
one of C1, C2, . . . , Ck. Furthermore, A′ ∩ Ck+1 = ∅ because j < k + 1 and
there are points selected to the right and left of x from A at stage k+ 1 and
these points are labeled before the points from Ck+1. Therefore A′∩Cj 6= ∅.
This implies that xl ∈ Ex, completing the verification of condition (ii).
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This completes the construction of the trajectory {xn}. (That {xn} is
dense in [0, 1] follows from the fact that N is dense in [0, 1].)

Now we must show that F is first return differentiable to f . If x 6∈ N ,
then F ′(x) = f(x). If x ∈ N , then x ∈ Cj for some j. From condition (ii)
we deduce that all points picked in the first return path to x after the jth
stage are in Ex, completing the proof of the theorem.

The following simple corollary is a convenient mechanism for construct-
ing functions which are strongly path differentiable. We shall utilize this
tool in the next section.

Corollary 1. Let f : [0, 1]→ R be a bilateral derivate of F : [0, 1]→ R.
If F ′(x) = f(x) for all but countably many x, then (F, f) satisfies SPD and
hence F is first return differentiable to f .

P r o o f. Let N = {r1, r2, . . .} be the set where F is not differentiable. If
x 6∈ N , let Ex = [0, 1]. If x ∈ N , let Ex be a two-sided path through which
F ′(x) = f(x). Define δ : N → R as δ(rn) = dist(rn, {r1, . . . , rn−1}). It is
easy to check that {Ex}x∈[0,1], N and δ witness SPD for (F, f).

4. Examples. We next wish to present examples to show that none of
the arrows in diagram (1) can be reversed and that no additional arrows
can be inserted between nodes, other than the obvious ones obtained by
following two arrows.

Example 1. There exists a function F : [0, 1] → R which is EIC path
differentiable to f , but F is not first return differentiable to f .

P r o o f. Let C ⊂ [0, 1] be a Cantor set of positive measure which contains
a countable dense subset {rn}∞n=1 such that C has density 1 at each rn. Label
intervals contiguous to C as {Sn}∞n=1. Let F : [0, 1]→ [−1, 1] be a function
which has the following properties:

(1) F = 0 on C,
(2) F oscillates between −1 and 1 in every neighborhood of each endpoint

of each Sn, and
(3) F is differentiable on each Sn.

Let f be such that f = F ′ on each Sn, f = 0 on C \ {r1, r2, . . .} and
f(rn) = 2−n. It is clear that f is a Baire 1 bilateral derivate of F .

Let us first show that F is not first return differentiable to f . To obtain
a contradiction assume that F is first return differentiable to f with respect
to a trajectory {xn}∞n=0. For each n, let

An =
{
p ∈ C : if xl ∈ Rp and l > n, then

∣∣∣∣
F (p)− F (xl)

p− xl − f(p)
∣∣∣∣ < 1

}
.
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For some m, Am is second category in C. Let U be an open interval such
that U ∩C 6= ∅ and Am is categorically dense in U ∩C. Let rj ∈ U such that
j > m. Using the fact that C has density 1 at rj and that f(rj) = 1/2j , we
may obtain xk ∈ U such that k > m, |rj − xk| < 1/m, xk ∈ Rrj ,∣∣∣∣

F (rj)− F (xk)
rj − xk

∣∣∣∣ >
1

2 · 2j and
µ(I ∩ C)
µ(I)

> 1− 1
4 · 2j ,

where I is the interval with endpoints rj and xk. Utilizing these properties
of xk and the fact that Am is categorically dense in U∩C, we may obtain p ∈
Am\{r1, r2, . . .} such that p is between rj and xk and |(rj − xk)/(xk − p)| >
2 · 2j . However,

∣∣∣∣
F (p)− F (xk)

p− xk

∣∣∣∣ =
∣∣∣∣
F (rj)− F (xk)

rj − xk

∣∣∣∣
∣∣∣∣
rj − xk
p− xk

∣∣∣∣ >
1

2 · 2j · 2 · 2
j = 1,

contradicting that p ∈ Am and completing the proof of the fact that F is
not first return differentiable to f .

Next, we show that F is EIC path differentiable to f . If x ∈ [0, 1]\C, let
Ex = [0, 1]. We will utilize a certain type of selection to construct a path to
x ∈ C. First, for each n, let 0 < εn < dist(rn, {r1, . . . , rn−1}) be such that
if 0 < h < 2εn, then

µ{(rn − h, rn + h) ∩ C}
2h

>
7
8
.

Suppose x ∈ C \ {r1, r2, . . .} and |rn − x| < εn. For such x and rn, we will
pick s+[rn, x] and s−[rn, x] in the following manner: Without loss generality,
assume that rn < x. (If x < rn pick s+[rn, x] and s−[rn, x] in a symmetric
fashion.) Let s−[rn, x] be such that 2rn − x < s−[rn, x] < rn and

F (s−[rn, x])− F (rn)
s−[rn, x]− rn =

1
2n
.

Since 0 < x − rn < εn, the interval (5x/4 − rn/4, 7x/4 − 3rn/4) intersects
C in a set of positive measure and hence contains a portion (relatively open
subset) of C. So we may pick s+[rn, x] ∈ (5x/4− rn/4, 7x/4− 3rn/4) such
that

F (s+[rn, x])− F (rn)
s+[rn, x]− rn =

1
2n
.

Now observe that∣∣∣∣
F (s−[rn, x])− F (x)

s−[rn, x]− x

∣∣∣∣ <
1
2n

and
∣∣∣∣
F (s+[rn, x])− F (x)

s+[rn, x]− x

∣∣∣∣ =
∣∣∣∣
F (s+[rn, x])− F (rn)

s+[rn, x]− rn

∣∣∣∣ ·
∣∣∣∣
s+[rn, x]− rn
s+[rn, x]− x

∣∣∣∣ <
1
2n
· 7.
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Now for each x ∈ C \ {r1, r2, . . .}, let

Ex = F−1({0}) ∪ {s+[rn, x], s−[rn, x] : dist(x, rn) < εn for some n}
and if x = rm, let

Ex = {x} ∪ {s+[rn, y], s−[rn, y] : dist(y, rm) < εm for some y ∈ C}.
Define δ : [0, 1] → R+ as δ(x) = dist(x,C) if x 6∈ C, δ(x) = 1 if x ∈

C \ {r1, r2, . . .}, and δ(rn) = εn.
Let us first observe that F is path differentiable to f with respect {Ex}.

It is easy to check that {Ex}x∈[0,1] is a bilateral path system. We must show
that for each x ∈ [0, 1],

(2) lim
y→x
y∈Ex

F (y)− F (x)
y − x = f(x).

If x 6∈ C, then F ′(x) = f(x) and (2) is immediate. If x ∈ C \ {r1, r2, . . .}
and ε > 0 then let d = dist(x, {s+[r1, x], s−[r1, x], . . . , s+[rN , x], s−[rN , x]})
where N is such that 7 · 2−N < ε. From the estimates obtained above, it
follows that for all y ∈ Ex with 0 < |y−x| < d, |(F (x)− F (y))/(x− y)| < ε,
and, thus, (2) holds. If x = rm, then (2) follows directly from the method
by which s+ and s− were picked.

Next we show that {Ex}x∈[0,1] satisfies EIC. Let x, y ∈ [0, 1] be such that
|x− y| < min{δ(x), δ(y)}. Then either x and y are both in [0, 1] \C or they
are both in C. If x, y ∈ [0, 1] \ C, then Ex = Ey = [0, 1] and we are done. If
x, y ∈ C\{r1, r2, . . .} then we are done because F−1(0) ⊂ Ex∩Ey. Next note
that x and y cannot both be in {r1, r2, . . .}. So the last case is that x = rm
for some m and y ∈ C \ {r1, r2, . . .}. Then |rm − y| = |x− y| < δ(rm) = em,
which implies that s+[rm, y], s−[rm, y] ∈ Ex ∩ Ey, completing the proof for
this example.

We wish to acknowledge that the seed for the following example was
planted during a conversation, concerning first return differentiation, be-
tween Richard O’Malley and the second author.

Example 2. There is a continuous function F : [0, 1]→ R and a Baire 1
function f : [0, 1]→ R such that

(a) F is path differentiable to f on [0, 1].
(b) F is differentiable except at countably many points.
(c) F is not EIC[m] path differentiable to any function g on [0, 1].

Furthermore, the ordered pair of functions (F, f) satisfies SPD.

P r o o f. First we define a certain symmetric Cantor set C ⊂ [0, 1]. Let
Σ denote the set of all finite sequences of 0’s and 1’s. If σ ∈ Σ we denote
the length of σ by |σ|. We set αn = (n+ 1)/(n+ 2) for all n = 0, 1, . . . We
shall utilize the sequence {αn} to construct our Cantor set C by deleting
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open intervals of relative size αn at the nth stage. More specifically, we
identify the complementary intervals and the noncomplementary intervals
to this Cantor set using subscripts from Σ in the standard way, i.e. I∅ =
(1/2−α0/2, 1/2+α0/2), J0 and J1 are the left and right hand components of
the complement of I∅ respectively; I0 and I1 are the open intervals of length
α1(1− α0)/2 centered in J0 and J1 respectively, and so on. Our Cantor set
is then

C =
∞⋂
n=1

⋃

|σ|=n
Jσ.

Note that

|Jσ| =
|σ|−1∏
n=0

(
1− αn

2

)
and |Iσ| = α|σ||Jσ|,

where |I| is used to denote the length of an interval I. For each σ ∈ Σ we
let lσ and rσ denote the left and right endpoints of Iσ, respectively. We set

Hσ = (lσ + |σ||Jσ0|, lσ + (|σ|+ 1)|Jσ0|),
Kσ = (rσ − |Jσ0|, rσ),

and let hσ denote the midpoint of Hσ.
Next, for each σ ∈ Σ with the property that at least one term in σ is 1,

we define τσ ∈ Σ to be such that Iτσ is the nearest interval of the collection
{Iτ : |τ | < |σ|} lying to the left of Iσ. If every term of σ is 0, then we set
τσ = −1, and define |−1| = −1, I−1 = (−∞, 0), and r−1 = 0.

Now we are ready to define the function F : [0, 1]→ R. First let F (x) = 0
for all x ∈ G ≡ [0, 1] \ ⋃σ∈Σ(Hσ ∪ Kσ). For each σ ∈ Σ we define F on
Hσ ∪Kσ to be a function which satisfies the following:

(i) F is differentiable on Hσ ∪Kσ,
(ii) F has right derivative 0 at the left endpoint of Hσ and at the left

endpoint of Kσ,
(iii) F has left derivative 0 at the right endpoint of Hσ,
(iv) F has left derivative 1/2|σ| at the right endpoint of Kσ,
(v) F (hσ) = (1/2|τσ|)(hσ − rτσ ),
(vi) ∀x ∈ Hσ, 0 < F (x) ≤ (F (hσ)/(hσ − lσ))(x− lσ),

(vii) ∀x ∈ Kσ, (1/2|σ|)(x− rσ) ≤ F (x) < 0.

It is then a straightforward exercise to verify that for all σ ∈ Σ, all
y ∈ Iσ, and all x ∈ Jσ0 ∪ Jσ1 we have

(3)
∣∣∣∣
F (y)
x− y

∣∣∣∣ ≤
1

2|τσ|−1
.

Let N denote the set of all right endpoints of contiguous intervals of C.
We first wish to observe that at each x in C \ N , F is differentiable with
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derivative 0. To see this, let x ∈ C. Then for each n = 0, 1, . . . , there is
a unique σn(x) of length n and a number en(x) ∈ {0, 1} such that x ∈
Jσn(x)en(x); that is,

{x} =
∞⋂
n=0

Jσn(x)en(x).

Note that if en(x) = 0, then τσn(x) = τσn−1(x), and if en(x) = 1, then
|τσn(x)| ≥ |τσn−1(x)|+ 1. If x ∈ C \N , then en(x) = 1 for infinitely many n
and hence |τσn(x)| → ∞ as n → ∞. This fact, inequality (3), and the fact
that F is zero on C yield that F ′(x) = 0 for each such x. (If x is a left
endpoint of a contiguous interval, then the fact that F has right derivative
zero at x, condition (iii), is also needed.) Thus, property (b) of the statement
of this example holds.

Next, let

f(x) =

{
1/2|σ| if x = rσ,
F ′(x) if x ∈ Hσ ∪Kσ,
0 otherwise.

We define a path system E = {Ex : x ∈ [0, 1]} as follows:

Ex =
{

[0, 1] if x 6∈ N,
{hσ : τσ = τ} ∪ [0, rτ ] if x = rτ .

Clearly, F is path differentiable to f on [0, 1] with respect to this path
system E; that is, statement (a) holds.

Turning to statement (c), suppose that E∗ = {E∗x : x ∈ [0, 1]} is any
path system with respect to which F is path differentiable to some function
g on [0, 1], and suppose that there exists an m such that E∗ satisfies EIC[m].
First, note that since F has f(x) as an ordinary left derivative everywhere,
we must have g = f . Let δ be the function noted in the definition of EIC[m]
associated with E∗. For each k ∈ N set

Ak = {x ∈ C : δ(x) > 1/k}.
Using the Baire Category Theorem, we may find a k and an interval (a, b)
such that P ≡ (a, b) ∩ C 6= ∅ and Ak is dense in P . Choose τ ∈ Σ such
that rτ ∈ P . Choose n ∈ N greater than both |τ | and m. Let Iσ∗ denote the
closest interval to the right of rτ belonging to the collection {Iσ : |σ| = n},
and let δ1 = lσ∗ − rτ . Next, choose 0 < δ2 < min{δ1, δ(rτ )} so that

∀x ∈ (rτ , rτ + δ2) ∩ E∗rτ ,
∣∣∣∣
F (x)− F (rτ )

x− rτ − 1
2|τ |

∣∣∣∣ <
1

2|τ |+1
.

Based on the construction of F , it follows that

(4) (rτ , rτ + δ2) ∩ E∗rτ ⊆ (rτ , rτ + δ2) ∩
⋃
{Hσ : τσ = τ}.
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Let p ∈ Ak with 0 < p− rτ < min{1/k, δ2/(m+ 1)}. Since 0 < p− rτ <
1/k it follows from EIC[m] that

E∗rτ ∩ (p, (m+ 1)p−mrτ ) 6= ∅.
The remainder of the proof of statement (c) consists in showing that this is
impossible.

To this end, let q ∈ E∗rτ ∩ (p, (m + 1)p − mrτ ). Since 0 < p − rτ <
δ2/(m+ 1), it follows that 0 < q − rτ < δ2, and hence, from (4), that

(5) q ∈ (rτ , rτ + δ2) ∩
⋃
{Hσ : τσ = τ}.

Let σp be the longest sequence in Σ such that Iσp lies to the right of p
and for which Hσp ⊂

⋃{Hσ : τσ = τ}. Since 0 < p− rτ < δ1, we must have
|σp| > n. Next, we note that

(6) (p, rσp) ∩
⋃
{Hσ : τσ = τ} = Hσp .

Consequently,

(7) dist(p,Hσp) < q − p < m(p− rτ ) ≤ m(lσp − rτ ).

However, from the construction of the set C we have

dist(p,Hσp) > dist(lσp , Hσp) = |σp| |Jσp0|(8)

= |σp|(lσp − rτ ) > n(lσp − rτ ) > m(lσp − rτ ).

The contradiction resulting from (7) and (8) completes the proof of state-
ment (c).

That (F, f) satisfies SPD follows immediately from Corollary 1.

Our primary goal with the next example is to show that an EIC[m] path
differentiable function need not be EIC path differentiable. We show slightly
more by constructing a function F with is both EIC[5] path differentiable
and strongly path differentiable to a function f , but which is not EIC path
differentiable.

Example 3. There is a continuous function F : [0, 1]→ R and a Baire 1
function f : [0, 1]→ R such that

(a) F is EIC[5] path differentiable to f on [0, 1].
(b) F is differentiable except at countably many points.
(c) F is not EIC path differentiable to any function g on [0, 1].

Furthermore, the ordered pair of functions (F, f) satisfies SPD.

P r o o f. Our construction is a modification, actually a simplification, of
the construction given in the previous example. We utilize the same notation
with the following two exceptions:

• αn = 3/5 for each n = 0, 1, 2, . . . ,
• Hσ = (lσ + |Jσ0|, lσ + 2|Jσ0|).
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With these changes we define F , f , and the path system E exactly as before.
For the same reasons as given in the previous example, it follows that F is
differentiable to f at each point of C \N (that is, statement (b) holds) and
F is path differentiable to f on [0, 1] with respect to the path system E.

Next, to complete the proof of statement (a), we need to observe that
this path system E satisfies EIC[5]. To this end, define δ : [0, 1]→ (0,∞) by
δ(x) = 1 if x ∈ [0, 1] \N , and δ(rτ ) = dist(rτ ,

⋃{Iσ : |σ| < |τ |})/2. Next, let
x and y be any two points with 0 < y− x < min{δ(x), δ(y)}. Clearly, x and
y cannot both be in N , and if both are in [0, 1] \N , then Ex = Ey = [0, 1].
Thus, the only situation to consider is where one of the points x, y is in
N and the other is not. First, suppose that x ∈ N and y ∈ [0, 1] \ N . Let
x = rτ and let σy denote that unique element of {σ : τσ = τ} for which
y ∈ [hσy0, hσ). Then

y < hσy = 5hσy0 − 4rτ < 6hσy0 − 5rτ ≤ 6y − 5rτ ,

and hence

(9) Ex ∩ Ey ∩ (y, 6y − 5x) 6= ∅.
Furthermore, since Ey = [0, 1] and Ex = [0, x], we clearly have

(10) Ex ∩ Ey ∩ (6x− 5y, x) 6= ∅.
The final situation is where y ∈ N and x ∈ [0, 1] \ N . However, since
Ex = [0, 1], [0, y] ⊂ Ey, and y is a limit point from the right of Ey, we im-
mediately obtain (9) and (10), completing the proof that E satisfies EIC[5]
and, consequently, the proof of statement (a).

Turning to statement (c), we may proceed precisely as in the argument
given in the previous example, replacing each occurrence of “m” by “1”. All
steps proceed as before with (7) now reading

(11) dist(p,Hσp) < q − p < p− rτ ≤ lσp − rτ .
In place of inequality (8), we now simply observe that based on the con-
struction of C in this example we have

(12) dist(p,Hσp) > dist(lσp ,Hσp) = |Jσp0| = lσp − rτ .
The contradiction resulting from (11) and (12) completes the proof of state-
ment (c).

That (F, f) satisfies SPD again follows immediately from Corollary 1.

Example 4. There exists (F, f) such that F is first return differentiable
to f but (F, f) does not satisfy SPD.

P r o o f. We utilize Example 2 from [2]. Let C ⊂ [0, 1] be the standard
middle third Cantor set constructed in the standard fashion. Let {(ai, bi)}∞i=1
be an enumeration of the intervals contiguous to C, listed in such a way that
both of the sequences {a2j}∞j=1 and {b2j−1}∞j=1 are dense in C.
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Let F : [0, 1]→ R be such that

(1) F (C) = {0},
(2) F is differentiable on [0, 1] \ C, and
(3) for each even i ∈ N, F is zero on (ai, (3ai + bi)/4]∪ [(ai + 3bi)/4, bi),

F ((ai + bi)/2) = 1, F is increasing on [(3ai + bi)/4, (ai + bi)/2], and F is de-
creasing on [(ai + bi)/2, (ai + 3bi)/4]; likewise, for each odd i ∈ N, F is zero
on (ai, (3ai + bi)/4]∪ [(ai + 3bi)/4, bi), F ((ai + bi)/2) = −1, F is decreasing
on [(3ai + bi)/4, (ai + bi)/2] and F is increasing on [(ai + bi)/2, (ai + 3bi)/4].

Let {ci}∞i=1 be a dense subset of C, containing no endpoint of a contigu-
ous interval, and neither 0 nor 1. Let f : [0, 1]→ R be such that f(ci) = 2−i,
f is the derivative of F on [0, 1] \ C, and f is zero on C \ {c1, c2, . . .}.

In [2], it was shown that F is first return differentiable to f . Here we will
show that (F, f) does not satisfy SPD. In order to obtain a contradiction,
assume that {Ex}x∈[0,1], N , and δ : N → (0,∞) witness SPD for (F, f).
Since F is not differentiable on C, C ⊆ N . As δ is Baire 1, we may obtain an
interval U ⊂ C such that U is clopen relative to C and diam(U) < inf δ(U).
For each positive integer n, let

An =
{
x ∈ U : if y ∈ Ex and 0 < |x− y| < 1

n
,

then
∣∣∣∣
F (x)− F (y)

x− y − f(x)
∣∣∣∣ < 1

}
.

Let m be such that Am is second category in U . Let V ⊂ U be an open
interval of C such that Am is categorically dense in V . Then V contains cj
for some j. Let 0 < h < 1/m be such that if t ∈ Ecj and 0 < |cj − t| < h,
then |(F (cj)− F (t))/(cj − t)| > 1/(2 · 2j). Let x ∈ (V ∩ Am) \ {c1, c2, . . .}
such that |x − cj | < h. Since x, cj ∈ U , there exists y ∈ ⋂t∈U Et such that
y is between x and cj and |(y − cj)/(x− y)| > 2 · 2j . However, this yields a
contradiction because x ∈ Am, y ∈ Ex, |x− y| < 1/m, and∣∣∣∣

F (x)− F (y)
x− y

∣∣∣∣ =
∣∣∣∣
F (cj)− F (y)

cj − y

∣∣∣∣
∣∣∣∣
cj − y
x− y

∣∣∣∣ >
1

2 · 2j · 2 · 2
j = 1.

These four examples accomplish the goal of this section; that is, they
show that no nontrivial arrows can be added between the nodes of dia-
gram (1).
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