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Abstract. Two properties of the lattice of quasivarieties of pseudocomplemented
semilattices are established, namely, in the quasivariety generated by the 3-element chain,
there is a sublattice freely generated by ω elements and there are 2ω quasivarieties.

1. Introduction. For background material on quasivarieties, the reader
is referred to Burris and Sankappanavar [5] or Mal’cev [10]. The following
definition of a quasivariety is but one of several equivalent formulations.

Given a class K of similar algebras, I(K) and H(K) respectively denote
the classes of all isomorphic and homomorphic images of algebras in K, S(K)
denotes the class of all subalgebras of algebras in K, and the classes P(K)
and Pu(K) consist respectively of all direct products and all ultraproducts
of members of K. (The direct product of an empty set of algebras, the trivial
algebra, is included in P(K).) If K ⊇ I(K) ∪ S(K) ∪ P(K) ∪ Pu(K) then
K is said to be a quasivariety , while if K ⊇ H(K) ∪ S(K) ∪ P(K) then K
is a variety . (Every variety is a quasivariety.) The quasivariety generated
by K (the least quasivariety containing K) is denoted by Q(K), and the
variety generated by K is denoted by V (K). In general, Q(K) = ISPPu(K)
(and V (K) = HSP(K)), but when K and its members are finite, Q(K) =
ISP(K). If K is finite, say K = {A1, . . . , An}, then Q(K) will be denoted
by Q(A1, . . . , An), and likewise for V (K).

The quasivarieties contained in a given quasivariety constitute a lattice
under the inclusion ordering: the meet of two such is their intersection, and
the join is the quasivariety generated by their union. The cardinality of the
lattice is at most 2ω if the algebras are of finite type.

Interest in the investigation of lattices of quasivarieties is directly or indi-
rectly devoted to a problem of Mal’cev [9], who asked for a description of all
lattices that can be represented isomorphically as lattices of quasivarieties.
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The present paper provides an example of a lattice of quasivarieties with an
intricate lattice structure demonstrating the complexity of Mal’cev’s prob-
lem. Amongst those papers referenced here, other examples of this kind are
given in [1], [3], [4], [6], [12], [16], and [17].

A pseudocomplemented semilattice is an algebra (S;∧, ∗, 0, 1) comprised
of a semilattice (S;∧) with a least element 0, a greatest element 1, and a
unary operation ∗ such that, for all s, t ∈ S, s ∧ t = 0 if and only if t ≤
s∗. Background material on pseudocomplemented semilattices and related
topics is to be found in Grätzer [7] and the papers cited below.

The pseudocomplemented semilattice B̂ obtained by adjoining a new
greatest element to a Boolean algebra B is of interest because Jones [8]
proved that those pseudocomplemented semilattices of the form B̂ are pre-
cisely the subdirectly irreducible ones. Letting Bm (m < ω) denote the
finite Boolean algebra with m atoms, we obtain a strictly increasing se-
quence (Q(B̂m) : m < ω) of quasivarieties investigated in [13]. The only
non-trivial variety of pseudocomplemented semilattices is Q(B̂0) (proved by
Jones [8]), which is precisely the class of all Boolean algebras. Thus, m = 0
is the only case in which Q(B̂m) = V (B̂m). The gap between Q(B̂1) and
V (B̂1) is particularly striking because V (B̂1) is the entire class of pseudo-
complemented semilattices (proved in Jones [8]; this and the aforementioned
results of Jones are also proved in Sankappanavar [11]).

Our goal is to prove the following result.

Theorem 1.1. The lattice of all subquasivarieties of the quasivariety
Q(B̂1) generated by the 3-element pseudocomplemented semilattice B̂1 has
a sublattice freely generated by ω elements (hence, satisfies no non-trivial
lattice identity) and is of cardinality 2ω.

To put this theorem in perspective, it should be noted that the lattice of
quasivarieties of pseudocomplemented distributive lattices has a sublattice
freely generated by ω elements (Tropin [16]; see also [6]) and has cardinality
2ω (independently proved in [1] and Wroński [17]). Moreover, the existence
of 2ω quasivarieties of pseudocomplemented semilattices was established in
[4]; by applying a criterion of [13] it can be shown that the quasivarieties
exhibited in [4] lie in Q(B̂3). Additional related results can be found in [13]
and [14]. We remark that, from an abstract algebra point of view, it is of
interest to observe that B̂1 is a 3-element algebra: Shafaat [15] showed that,
for any 2-element algebra A, Q(A) is a 2-element chain (for related results
see [3]).

The above theorem will be obtained as a consequence of a result of [2]
stating that if a quasivariety K of algebras of finite type contains an in-
finite family of finite algebras indexed by the set of all finite subsets of ω
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and satisfying certain postulates denoted (P1)–(P4), then the ideal lattice
of a free lattice with ω free generators is embeddable in the lattice of sub-
quasivarieties of Q(K). Not only is Theorem 1.1 a consequence, but it also
follows that Q(B̂1) is Q-universal. A quasivariety K of algebras of finite
type is Q-universal if, for every quasivariety L of algebras of finite type, the
lattice of subquasivarieties of L is a homomorphic image of a sublattice of
the lattice of subquasivarieties of K. This notion was introduced by Sapir
[12] where the first examples of Q-universal quasivarieties were given.

The postulates (P1)–(P4) will be stated in §2 and appropriate members
of Q(B̂1) will be constructed in §3. Basic properties of these algebras will
be established in §4, enabling the proof in §5 that they satisfy (P1)–(P4).

2. Preliminaries. Let Pfin(ω) denote the set of all finite subsets of ω.
We shall need the following.

Proposition 2.1 ([2]). Let K be a quasivariety of algebras of finite type
that contains an infinite family (SW : W ∈ Pfin(ω)) of finite algebras satis-
fying the following postulates:

(P1) S∅ is a trivial algebra;
(P2) for X ∈ Pfin(ω), if X = Y ∪ Z, then SX ∈ Q(SY , SZ);
(P3) for X,Y ∈ Pfin(ω), if X 6= ∅ and SX ∈ Q(SY ), then X = Y ;
(P4) for X ∈ Pfin(ω), if SX is a subalgebra of B × C for finite B,C ∈

Q({SW : W ∈ Pfin(ω)}), then there are Y,Z ∈ Pfin(ω) with SY ∈
Q(B), SZ ∈ Q(C), and X = Y ∪ Z.

Then the ideal lattice of a free lattice with ω generators is embeddable
in the lattice of all subquasivarieties of K. In particular , the lattice of all
subquasivarieties of K has a sublattice freely generated by ω elements and
is of cardinality 2ω.

Before constructing a subfamily of Q(B̂1) satisfying (P1)–(P4), we note
the following terminology.

Let S be a pseudocomplemented semilattice. The skeleton of S is the
set S∗ = {s∗ : s ∈ S}. Because s∗∗∗ = s∗ for all s ∈ S, the skeleton is the
image of the Glivenko endomorphism γ : S → S given by γ(s) = s∗∗ for all
s ∈ S. The kernel of γ is called the Glivenko congruence Γ of S, and hence
for s ∈ S the set [s]Γ = {t ∈ S : γ(t) = γ(s)} is known as the Glivenko
class of s. When [s]Γ is finite it has a least element, which we denote as µs.
Because S∗ is a Boolean algebra (with complementation given by ∗ and join
given by p∨q = (p∗∧q∗)∗ for all p, q ∈ S∗), if ϕ : S → T is a homomorphism
(where T is a pseudocomplemented semilattice), then ϕ ¹ S∗ : S∗ → T ∗ is a
Boolean homomorphism.

Finally, we mention some notations concerning a partially ordered set
(S;≤). For s ∈ S, the set {t ∈ S : t ≤ s} is denoted by (s], and analogously
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{t ∈ S : t ≥ s} is denoted by [s). For s, t ∈ S, the notation s >− t will
signify that s covers t in the sense that s > t and there is no u ∈ S satisfying
s > u > t.

3. The construction. In this section we will construct an infinite family
(SW : W ∈ Pfin(ω)) of finite pseudocomplemented semilattices. We begin by
defining a finite pseudocomplemented semilattice (Sm;≤) for each m < ω.

For m < ω, distinguish three atoms of Bm+4, denoted by a, b, and c, and
let d = a ∨ b and e = a ∨ c. (We will refer to the element a immediately
and to the element b later in this section. However, we shall not refer to the
elements c, d, and e until §4.) Let

Sm = (Bm+4 × 3)

\ ({(0, 1), (0, 2), (a, 2), (1, 0), (1, 1)} ∪ {(p, 1) : p 6= a and p >6 − a})
where 3 denotes the 3-element chain {0 < 1 < 2}. It is to be shown that
(Sm;≤), where ≤ denotes the restriction of the usual ordering of Bm+4 × 3
to Sm, is a pseudocomplemented semilattice. By way of example, (S0;≤) is

Fig. 1. S0 with distinguished elements
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diagrammed in Figure 1; for an explanation of the notation, see the para-
graph following Lemma 3.2, and for an explanation of the different shapes
used to denote elements, see the first paragraph of §4.

Lemma 3.1. For m < ω, (Sm;≤) is a semilattice such that , for (p, i),
(q, j) ∈ Sm, (p, i) ∧ (q, j) = (p ∧ q, k) where k = 0 if p ∧ q = 0, k = 1 if
p ∧ q = a and i = j = 2, and i ∧ j otherwise.

P r o o f. For (p, i), (q, j) ∈ Sm, consider (r, k) ∈ Sm such that (r, k) ≤
(p, i) and (q, j). Clearly, (r, k) ≤ (p ∧ q, i ∧ j) and, in the event that (p ∧ q,
i ∧ j) ∈ Sm, (p, i) ∧ (q, j) = (p ∧ q, i ∧ j). Suppose (p ∧ q, i ∧ j) 6∈ Sm.

By hypothesis, p ∧ q 6= 1.
If p ∧ q = 0, then r = 0 and it follows that, as required, (r, k) = (0, 0).
If p ∧ q = a, then i ∧ j = 2 and, hence, i = j = 2. Consequently,

(r, k) = (0, 0), (a, 0), or (a, 1), whereupon (p, i) ∧ (q, j) = (a, 1).
It remains to consider p ∧ q 6∈ {0, a, 1}. To complete the proof it is

sufficient to show that (under the hypothesis (p ∧ q, i ∧ j) 6∈ Sm) this can
never occur. Suppose p∧q 6∈ {0, a, 1}. Then, since (p∧q, i∧j) 6∈ Sm, i∧j = 1.
Without loss of generality, we may assume i = 1. Since (p, i) ∈ Sm, either
p = a or p >− a. Because j ≥ i, it would follow that (p∧q, i∧j) = (p, i) ∈ Sm
were q ≥ p. Thus, q 6≥ p and, as a consequence, p ∧ q = a or 0, which is
absurd.

Lemma 3.2. For m < ω, (Sm;≤) is a pseudocomplemented semilattice
where (1, 2)∗ = (0, 0), (a∗, 0)∗ = (a∗, 2)∗ = (a, 1), and , for p 6= a∗ or 1,
(p, i)∗ = (p∗, 2).

P r o o f. By Lemma 3.1, for (p, i), (q, j) ∈ Sm, (p, i)∧ (q, j) = (0, 0) if and
only if p ∧ q = 0 and, in particular, q ≤ p∗. Consequently, (p, i)∗ = (p∗, 2),
(0, 0), or (a, 1) for p∗ 6= 0 or a, p∗ = 0, or p∗ = a, respectively.

By Lemma 3.2, for m < ω, S∗m = {(0, 0), (a, 1)} ∪ {(p, 2) : p 6= 0 or a},
|[(0, 0)]Γ | = |[(1, 2)]Γ | = 1, |[(a, 1)]Γ | = 2, |[(p, 2)]Γ | = 3 if p >− a, and
|[(p, 2)]Γ | = 2 otherwise. Rather than consider n-tuples of ordered pairs, we
will now, in the forthcoming interests of clarity, identify (p, i) ∈ S∗m with p.
Thus, (0, 0), (a, 1), and (p, 2) will be identified with 0, a, and p, respectively.
Further, the smallest element of [p]Γ will be denoted by µp. Thus, (1, 2) and
(p, 0) for p 6= 1 will be identified with µ1 and µp, respectively. Finally, if
p ∈ S∗m and |[p]Γ | = 3, then the remaining element of [p]Γ will be denoted
by νp. To summarize, for p ∈ S∗m, µp ≤ p where the inequality is strict
unless p = 0 or 1. Furthermore, |[p]Γ | > 2 if and only if p >− a, in which
case [p]Γ = {µp, νp, p} where µp < νp < p.

We shall need the following result in order to show that, for m < ω,
Sm ∈ Q(B̂1).
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Proposition 3.3 ([13]; cf. [14]). For a finite pseudocomplemented semi-
lattice (S;∧, ∗, 0, 1), s ∈ S, and µs the smallest element of [s]Γ , if θ ⊆ S×S
is given by (t, r) ∈ θ if and only if both t and r belong to [s), [µs) \ [s), or
S\[µs) and , in addition, t∗∗∧s = r∗∗∧s also holds for the case t, r ∈ S\[µs),
then θ is a congruence. Furthermore, S/θ ∼= B̂m for some m ≥ 1 if and only
if s 6= µs.

For m < ω and an atom p of S∗m, let θp be the congruence given by
Proposition 3.3 with s = p. Since p 6= µp and t∗∗ ∧ p = 0 for all t ∈ S \ [µp),
it follows that if p is an atom of S∗m, then, for all t, r ∈ Sm, (t, r) ∈ θp if
and only if both t and r belong to [p), [µp) \ [p), or to Sm \ [µp). In other
words, the equivalence classes of θp are [p), [µp) \ [p), and Sm \ [µp) and, in
particular, Sm/θp ∼= B̂1.

Lemma 3.4. For m < ω, Sm ∈ Q(B̂1).

P r o o f. For q ∈ S∗m distinct from 0 and 1, there exists an atom p of S∗m
such that p ≤ q. In particular, µq 6≡ q (θp). Furthermore, if q >− a, then p
may be chosen so that q = a ∨ p. It follows that νq 6≡ q (θp) and µq 6≡ νq
(θa). Since S∗m is a Boolean algebra and S∗m ∼= Sm/Γ , it follows that Sm is
a subdirect product of suitably many copies of B̂0 and B̂1.

We are now ready to define an infinite family (SW : W ∈ Pfin(ω)) of
finite pseudocomplemented semilattices. Recall that, for m < ω, b is a
distinguished atom of S∗m distinct from a. For W ∈ Pfin(ω) where W =
{m1, . . . ,mn}, let SW denote the subset of

∏
(Smi : mi ∈ W ) whose ele-

ments are precisely those (s1, . . . , sn) for which si ∈ [b) for all 1 ≤ i ≤ n,
or si ∈ [µb) \ [b) for all 1 ≤ i ≤ n, or si ∈ Sm \ [µb) for all 1 ≤ i ≤ n. It is
readily seen that SW is a subalgebra of

∏
(Smi : mi ∈ W ). By Lemma 3.4,

for every W ∈ Pfin(ω), SW ∈ Q(B̂1).

4. Homomorphisms of SX . Let X be a non-empty member of Pfin(ω).
For each i ∈ X the projection map πi : SX → Si sends each member of SX
to its ith component. Recalling the elements a, b, c, d, e, 0 and 1 of each Si
we specify elements a,b, c,d, e,0, and 1 of SX by stipulating that for each
s ∈ {a, b, c, d, e, 0, 1} the corresponding s ∈ SX satisfies πi(s) = s for all
i ∈ X. Since SX is the subalgebra of

∏
(Si : i ∈ X) whose elements are those

r ∈ ∏(Si : i ∈ X) for which πi(r) ∈ [b) for all i ∈ X, or πi(r) ∈ [µb) \ [b)
for all i ∈ X, or πi(r) ∈ Si \ [µb) for all i ∈ X, it is evident that, for
s ∈ {a, b, c, d, e, 0, 1}, s ∈ SX . Clearly, for r ∈ SX , the conditions πi(r) ∈ [b)
for all i ∈ X, or πi(r) ∈ [µb) \ [b) for all i ∈ X, or πi(r) ∈ Si \ [µb) for
all i ∈ X determine a partition of SX . The classes of this partition will
be referred to as the b-class, µb-class, and 0-class, respectively. Evidently,
b and 0 are the smallest members of their respective classes. Since SX is
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finite, for every r ∈ SX , the element µr exists in SX . One may also observe
that, for any r ∈ SX , the element µr satisfies πi(µr) = µπi(r) for all i ∈ X
unless πi(r) = 1 for some i ∈ X, in which case µr = r. In particular, µb
is also the smallest member of its class. Note further that νd ∈ SX exists
where πi(νd) = νd for all i ∈ X. (By way of example, observe that, of the
remaining elements distinguished thus far, d and 1 belong to the b-class,
νd belongs to the µb-class, and a, c, and e belong to the 0-class.) In Sm,
the b-class, µb-class, and 0-class are defined likewise. See Figure 1, where,
for S0, members of its b-class, µb-class, and 0-class are indicated by circles,
diamonds, and boxes, respectively.

Further, for r ∈ S∗X and j ∈ X the element µjr ∈
∏

(Si : i ∈ X) is
defined so that πj(µjr) = µπj(r) and πi(µjr) = πi(r) for i ∈ X \ {j}: since
there exist r ∈ S∗X such that µj(r) 6∈ SX (for example, r = b), this notation
will be used only when µjr ∈ SX . For any Boolean algebra B, let At(B)
denote the set of atoms of B. Then, for any j ∈ X and p ∈ At(S∗j ) \ {b},
ζjp denotes the element of S∗X for which πj(ζjp) = p and πi(ζjp) = 0 for
i ∈ X \ {j}. Note that, for every j ∈ X and p ∈ At(S∗j ) \ {b}, ζjp exists in
SX and that the atoms of S∗X are precisely all elements of this form together
with b.

Finally, for each i ∈ ω, set Ci(a) = {a ∨ p : p ∈ At(S∗i ) \ {a}}. If r ∈ S∗X
satisfies πj(r) ∈ Cj(a) \ {d} for some j ∈ X, let νjr denote the element of
SX defined by πj(νjr) = νπj(r) and πi(νjr) = πi(r) for i ∈ X \ {j}; since
πj(r) ∈ Cj(a) \ {d} for some j ∈ X, it is always the case that νjr exists
in SX .

In this section we shall develop properties of homomorphisms defined on
SX that separate e and νje. The key properties are expressed in Propositions
4.3, 4.5, and 4.6.

The first lemma is a clear consequence of the construction of Sm.

Lemma 4.1. For m ∈ ω, r ∈ S∗m, and s ∈ Sm \ S∗m, the following hold :

(i) if r ≤ s, then r ∈ {0, a};
(ii) if s ≥ a and s ∈ [r]Γ , then r ∈ Cm(a).

Lemma 4.2. Let X ∈ Pfin(ω), j ∈ X, and m ∈ ω. If ϕ : SX → Sm is a
homomorphism such that ϕ(e) 6= ϕ(νje), then the following hold :

(i) ϕ(a) = a, ϕ(e) ∈ Cm(a), and ϕ(c) ∈ At(S∗m);
(ii) if r ∈ S∗X satisfies πi(r) ∈ Ci(a) \ {d} for all i ∈ X, then ϕ(r) 6=

ϕ(νjr) and ϕ(r) ∈ Cm(a);
(iii) ϕ(b) 6= ϕ(µb), ϕ(d) 6= ϕ(νd), ϕ(b) ∈ At(S∗m), and ϕ(d) ∈ Cm(a);
(iv) ϕ(µζjp) 6= ϕ(ζjp) ∈ At(S∗m) for p ∈ At(S∗j ) \ {b}, ϕ(ζip) = 0 for

i ∈ X \ {j} and p ∈ At(S∗i ) \ {b}, and , in particular , ϕ(ζja) = a.
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P r o o f. (i) Because ϕ(e) and ϕ(νje) are distinct and share a Glivenko
class, ϕ(νje) ∈ Sm \ S∗m. Thus, since a ≤ νje, Lemma 4.1(i) implies that
ϕ(a) ∈ {0, a}. Suppose ϕ(a) = 0. Immediately ϕ(a∗) = 1, whence the
triviality of [1]Γ yields ϕ(µa∗) = 1, and therefore ϕ(µc) = ϕ(µa∗ ∧ c) =
ϕ(µa∗) ∧ ϕ(c) = ϕ(c), forcing ϕ(µjc) = ϕ(c). Since µjc < νje, it then
follows that ϕ(c) = ϕ(µjc) ≤ ϕ(νje), whence ϕ(c) ∈ {0, a} by Lemma
4.1(i). Inasmuch as the hypothesis entails 0 < ϕ(e) = ϕ(a) ∨ ϕ(c) = ϕ(c),
it follows that ϕ(c) = a = ϕ(e). Thus a = ϕ(c) = ϕ(µjc) ≤ ϕ(νje) ≤
ϕ(e) = a, forcing ϕ(νje) = ϕ(e), contrary to hypothesis. Hence, ϕ(a) =
a. Because ϕ(e) and ϕ(νje) are distinct and share a Glivenko class, and
ϕ(νje) ≥ ϕ(a) = a, Lemma 4.1(ii) now implies that ϕ(e) ∈ Cm(a). Since
ϕ(e) = ϕ(a) ∨ ϕ(c) = a ∨ ϕ(c) and 0 = ϕ(0) = ϕ(a) ∧ ϕ(c) = a ∧ ϕ(c), it
follows that ϕ(c) ∈ At(S∗m).

(ii) For each i ∈ X choose qi ∈ At(S∗i ) \ {a} such that πi(r) = a∨ qi. Let
q denote the element of SX satisfying πi(q) = qi for all i ∈ X: notice that q
exists in SX . If ϕ(r) = ϕ(νjr), then ϕ(q) = ϕ(r∧q) = ϕ(r)∧ϕ(q) = ϕ(νjr)∧
ϕ(q) = ϕ(νjr ∧ q) = ϕ(µjq). Thus, ϕ(µjb∗) ≥ ϕ(µjq) = ϕ(q). Either
ϕ(µjb∗) = ϕ(b∗) or, by Lemma 4.1(i), ϕ(q) ∈ {0, a}. If ϕ(µjb∗) = ϕ(b∗),
then ϕ(e) = ϕ(e ∧ b∗) = ϕ(e) ∧ ϕ(b∗) = ϕ(e) ∧ ϕ(µjb∗) = ϕ(e ∧ µjb∗) =
ϕ(µje) and, since µje ≤ νje ≤ e, ϕ(e) = ϕ(νje), contrary to hypothesis. If
ϕ(q) = a, then, by (i), 0 = ϕ(0) = ϕ(a ∧ q) = a ∧ a = a. Thus, ϕ(q) = 0.
In particular, ϕ(q∗) = 1, whence the triviality of [1]Γ yields ϕ(µq∗) = 1,
and therefore ϕ(b∗) = ϕ(µq∗) ∧ ϕ(b∗) = ϕ(µq∗ ∧ b∗) = ϕ(µq∗ ∧ µb∗) =
ϕ(µq∗) ∧ ϕ(µb∗) = ϕ(µb∗). Since ϕ(µb∗) ≤ ϕ(µjb∗) ≤ ϕ(b∗), ϕ(µjb∗) =
ϕ(b∗), which we have already seen to be impossible. Thus, ϕ(r) 6= ϕ(νjr),
whereupon, as ϕ(νjr) ≥ ϕ(a) = a, Lemma 4.1(ii) implies that ϕ(r) ∈ Cm(a).

(iii) For each i ∈ X choose qi ∈ At(S∗i )\{a, b, c}. Let q denote the element
of SX satisfying πi(q) = qi for all i ∈ X. If ϕ(q∗) = ϕ(µq∗), then, as q∗ ≥ e,
ϕ(e) = ϕ(q∗ ∧ e) = ϕ(q∗) ∧ ϕ(e) = ϕ(µq∗) ∧ ϕ(e) = ϕ(µq∗ ∧ e) = ϕ(µe),
contradicting the hypothesis. Hence, ϕ(q∗) 6= ϕ(µq∗). If ϕ(b) = ϕ(µb),
then, as ϕ(q∗) > ϕ(µq∗) ≥ ϕ(µb) = ϕ(b), Lemma 4.1(i) implies that
ϕ(b) ∈ {0, a}. Since ϕ(a) = a and a ∧ b = 0, it follows that ϕ(b) = 0
and, hence, ϕ(b∗) = 1. By the triviality of [1]Γ , ϕ(µb∗) = ϕ(b∗) and,
arguing as above, ϕ(e) = ϕ(µe), in contradiction to the hypothesis. Thus,
ϕ(b) 6= ϕ(µb).

If ϕ(d) = ϕ(νd), then ϕ(b) = ϕ(b)∧ϕ(d) = ϕ(b)∧ϕ(νd) = ϕ(b∧νd) =
ϕ(µb), contradicting the above conclusion. Consequently, ϕ(d) 6= ϕ(νd).
Since ϕ(νd) ∈ Sm \ S∗m and ϕ(νd) ≥ ϕ(a) = a, Lemma 4.1(ii) implies
that ϕ(d) ∈ Cm(a). Since ϕ(a ∨ b) = ϕ(d), ϕ(a ∧ b) = 0, ϕ(a) = a, and
ϕ(d) ∈ Cm(a), it follows that ϕ(b) ∈ At(S∗m).

(iv) Initially, suppose p ∈ At(S∗j ) \ {a, b} and, for i ∈ X \ {j}, choose
qi ∈ At(S∗i ) \ {a, b} and let q denote the element of SX satisfying πj(q) = 0



Pseudocomplemented semilattices 303

and πi(q) = qi for all i ∈ X \ {j}. By (ii), ϕ(a ∨ (ζjp ∨ q)) ∈ Cm(a).
Since ϕ(a) = a by (i) and ϕ(a ∧ (ζjp ∨ q)) = 0, it must be the case that
ϕ(ζjp ∨ q) ∈ At(S∗m) \ {a}. Because ϕ(ζjp ∧ q) = 0, it follows that either
ϕ(ζjp) = 0 and ϕ(q) ∈ At(S∗m)\{a} or ϕ(ζjp) ∈ At(S∗m)\{a} and ϕ(q) = 0.
Since νj(a ∨ (ζjp ∨ q)) ≥ q and q =

∨{ζiqi : i ∈ X \ {j}} ∈ S∗X , (ii)
and Lemma 4.1(i) imply ϕ(q) ∈ {0, a}, which, in turn, since ϕ(a) = a
(by (i)) and a ∧ q = 0, yields ϕ(q) = 0. Hence, for p ∈ At(S∗j ) \ {a, b},
ϕ(ζjp) ∈ At(S∗m) \ {a}.

Let q ∈ SX be given by πj(q) = 0 and πi(q) = a for all i ∈ X \ {j}.
Since ϕ(a) = a, ζja ∨ q = a, and ζja ∧ q = 0, we have either ϕ(ζja) = a
and ϕ(q) = 0 or ϕ(ζja) = 0 and ϕ(q) = a. We wish to show that ϕ(q) 6= a.
Suppose not and that, to the contrary, ϕ(q) = a. As argued in the proof of
(ii), ϕ(µjb∗) 6= ϕ(b∗). However, µjb∗ ≥ q and, hence, ϕ(µjb∗) ≥ ϕ(q) = a.
By Lemma 4.1(ii), ϕ(b∗) ∈ Cm(a). Since b∨b∗ = 1 and ϕ(b) ∈ At(S∗m) (see
(iii)), it follows that the unit in S∗m is a join of 3 atoms, which is impossible
by the definition of Sm. Hence, ϕ(q) 6= a and, as required, ϕ(ζja) = a. Thus,
for p ∈ At(S∗j ) \ {b}, ϕ(ζjp) ∈ At(S∗m).

Let i ∈ X \ {j} and p ∈ At(S∗i ) \ {b}. If p 6= a, then choose p′ ∈
At(S∗j ) \ {a, b} and qk ∈ At(S∗k) \ {a, b} for k ∈ X \ {i, j}. Let q be given by
πi(q) = p, πj(q) = 0, and πk(q) = qk for k ∈ X \ {i, j}. Then, arguing as
above, ϕ(ζjp′∨q) ∈ At(S∗m), which in turn (see the above) implies ϕ(q) = 0.
Hence, ζip ≤ q implies ϕ(ζip) = 0. Were p = a, let πj(q) = 0 and πi(q) = a
for all i ∈ X \ {j}. Since ζja ∨ q = a, ζja ∧ q = 0, and ϕ(a) = ϕ(ζja) = a,
we have ϕ(q) = 0. Thus, ζia ≤ q yields ϕ(ζia) = 0. Hence, for i ∈ X \ {j}
and p ∈ At(S∗i ) \ {b}, ϕ(ζip) = 0.

As already seen, ϕ(e) 6= ϕ(νje) implies ϕ(b∗) 6= ϕ(µjb∗). Since µζjp ≤
µjb∗ for p ∈ At(S∗j ) \ {b}, if ϕ(µζjp) = ϕ(ζjp), then ϕ(b∗) ∈ Cm(a) by
Lemma 4.1(i), (ii). As argued above, this is impossible since the unit of S∗m
is not the join of 3 atoms. Thus, for p ∈ At(S∗j ) \ {b}, ϕ(µζjp) 6= ϕ(ζjp).

Proposition 4.3. Let X ∈ Pfin(ω), j ∈ X, and m ∈ ω. If ϕ : SX → Sm
is a homomorphism such that ϕ(e) 6= ϕ(νje), then j = m and there is an
automorphism η of Sm such that ϕ = ηπm.

P r o o f. Because At(S∗X) = {b} ∪ {ζip : p ∈ At(S∗i ) \ {b} and i ∈ X},
1 = ϕ(1) = ϕ(

∨
At(S∗X)) = ϕ(b)∨∨{ϕ(ζip) : p ∈ At(S∗i ) \ {b} and i ∈ X},

which, by Lemma 4.2(iv), is ϕ(b) ∨∨{ϕ(ζjp) : p ∈ At(S∗j ) \ {b}}. Also by
Lemma 4.2(iii), (iv), each of ϕ(b) and ϕ(ζjp) for p ∈ At(S∗j )\{b} is a distinct
element of At(S∗m). Thus, the unit element of S∗m is a join of |At(S∗j )| atoms,
whence S∗j and S∗m have the same number of atoms, whereupon j = m.

We now show that, for r, s ∈ SX , ϕ(r) = ϕ(s) if and only if πjr = πjs.
If r ∈ S∗X , then r is the join of all members of At(S∗X) that lie below it.

Let I = {p ∈ At(S∗j )\{b} : ζjp ≤ r}. Then, as above, it follows from Lemma
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4.2(iv) that ϕ(r) = ϕ(b)∨∨{ϕ(ζjp) : p ∈ I} or
∨{ϕ(ζjp) : p ∈ I} depending

on whether r is a member of the b-class or not. Similarly, for s ∈ S∗X , if
J = {p ∈ At(S∗j ) \ {b} : ζjp ≤ s}, then ϕ(s) = ϕ(b) ∨ ∨{ϕ(ζjp) : p ∈ J}
or
∨{ϕ(ζjp) : p ∈ J} depending on whether s is a member of the b-class

or not. In particular, it follows from Lemma 4.2(iii), (iv) that ϕ(r) = ϕ(s)
if and only if I = J and r ≥ b is equivalent to s ≥ b. Thus, for r, s ∈ S∗X ,
ϕ(r) = ϕ(s) if and only if πjr = πjs.

Let r, s ∈ SX . If πj(r∗∗) 6= πj(s∗∗), then, by the above, ϕ(r∗∗) 6= ϕ(s∗∗),
which implies that ϕ(r) 6= ϕ(s). Assume πj(r∗∗) = πj(s∗∗). If πj(r) 6= πj(s)
and, say, πj(r) > πj(s), then either r ≥ b and s ∧ b = µb or there exists
p ∈ At(S∗j )\{b} such that r ≥ ζjp and s∧ζjp = µζjp. By Lemma 4.2(iii) or
(iv), respectively, ϕ(r) 6= ϕ(s). It remains to show that ϕ(r) = ϕ(s) whenever
πj(r) = πj(s). Suppose πj(r) = πj(s) and ϕ(r) 6= ϕ(s). By the above,
ϕ(r) ≡ ϕ(s) (Γ ). Say, with no loss in generality, ϕ(r) > ϕ(s). Hence, there
exists p ∈ At(S∗m) such that ϕ(r) ≥ p and ϕ(s)∧p = µp. Since SX/Ker(πj) ∼=
Sj where Ker(πj) denotes the congruence kernel of the homomorphism πj ,
j = m, and, as seen above, Ker(ϕ) ≤ Ker(πj) where Ker(ϕ) denotes the
congruence kernel of the homomorphism ϕ, it follows that ϕ is onto. Thus,
p = ϕ(t) for some t ∈ S∗X . Since p ∈ At(S∗m) and t is the join of all
members of At(S∗X) that lie below it, p = ϕ(u) for some u ∈ At(S∗X).
This, by Lemma 4.2(iii), (iv), implies that either ϕ(b) = p or there exists
q ∈ At(S∗j ) such that ϕ(ζjq) = p. Since πj(r) = πj(s), we have r∧b = s∧b
or r ∧ ζjq = s ∧ ζjq, respectively. Thus, p = ϕ(r ∧ b) = ϕ(s ∧ b) = µp or
p = ϕ(r ∧ ζjq) = ϕ(s ∧ ζjq) = µp, which is absurd.

Define η : Sm → Sm by η(r) = ϕ(s), where s is any element of SX with
πm(s) = r. Since m = j and, for all r and s ∈ SX , ϕ(r) = ϕ(s) if and only
if πj(r) = πj(s), η is well-defined and indeed is an automorphism. Clearly,
as required, ϕ = ηπm.

In the following lemma the term quasi-atom refers to any r ∈ SX such
that πi(r) ∈ At(S∗i ) for all i ∈ X.

Lemma 4.4. Let X,Y ∈ Pfin(ω), j ∈ X, and n ∈ Y . If ψ : SX → SY is
a homomorphism such that ψ(e) 6= ψ(νje), then the following hold :

(i) if r is a quasi-atom of SX , then πnψ(r) 6= 0 and either πnψ(r∗) 6=
πnψ(µr∗) or πnψ(r∗) ≤ b∗;

(ii) there exists a quasi-atom p of SX such that p ∈ (b∗] and πnψ(p∗) 6=
πnψ(µp∗).

P r o o f. (i) Because ψ(e) 6= ψ(νje), there exists m ∈ Y such that
πmψ(e) 6= πmψ(νje). Proposition 4.3, when applied to the homomorphism
πmψ : SX → Sm, implies that j = m and there is an automorphism η of Sm
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such that πmψ = ηπm. (The indicated projection maps have domains SY
and SX , respectively.) In particular, πmψ(µr∗) = ηπm(µr∗) ∈ Sm \ S∗m.

If πnψ(r) = 0, then πnψ(r∗) = 1, whence πnψ(µr∗) = 1 by the triviality
of [1]Γ . Thus, ψ(µr∗) belongs to the b-class of SY , whence πmψ(µr∗) belongs
to the b-class of Sm, which is a subset of S∗m. Since this conclusion contradicts
our finding that πmψ(µr∗) ∈ Sm \ S∗m, we have πnψ(r) 6= 0.

If πnψ(r∗) = πnψ(µr∗), then πnψ(µr∗) ∈ S∗n, and since πmψ(µr∗) ∈ Sm\
S∗m, it follows that ψ(µr∗) belongs to the 0-class of SY . That is, ψ(µr∗) ≤ b∗,
and therefore ψ(r∗) ≤ b∗. Thus πnψ(r∗) 6= πnψ(µr∗) or πnψ(r∗) ≤ b∗.

(ii) Because At(S∗i ) \ {b} ⊆ (b∗] for all i ∈ X, there exist in SX quasi-
atoms r, s ∈ (b∗] such that r∧s = 0. Since 1 = πnψ(1) = πnψ(r∗)∨πnψ(s∗),
it is impossible to have both πnψ(r∗) ≤ b∗ and πnψ(s∗) ≤ b∗, whereupon (i)
yields p ∈ {r, s} such that πnψ(p∗) 6= πnψ(µp∗).

Proposition 4.5. Let X,Y ∈ Pfin(ω) and j ∈ X. If there is a homo-
morphism ψ : SX → SY such that ψ(e) 6= ψ(νje), then j ∈ Y and Y ⊆ X.

P r o o f. If ψ(e) 6= ψ(νje), then there exists m ∈ Y such that πmψ(e) 6=
πmψ(νje). Hence, for the homomorphism πmψ : SX → Sm, Proposition 4.3
implies that j = m and, in particular, j ∈ Y . Likewise, to obtain Y ⊆ X
by means of Proposition 4.3 it suffices to prove that for every n ∈ Y there
exists i ∈ X such that πnψ(e) 6= πnψ(νie) and, so, i = n ∈ X.

Suppose, on the contrary, that there exists n ∈ Y such that πnψ(e) =
πnψ(νie) for all i ∈ X. For notational convenience set ϕ = πnψ.

For νe =
∧{νie : i ∈ X}, we have ϕ(e) = ϕ(νe). It follows that ϕ(c) ≤

ϕ(µb∗) because ϕ(c) = ϕ(e) ∧ ϕ(c) = ϕ(νe) ∧ ϕ(c) = ϕ(µc) ≤ ϕ(µb∗).
Next we show that ϕ(b∗) = ϕ(µb∗). Supposing the contrary, ϕ(µb∗) ∈

Sn \S∗n. Since ϕ(c) ≤ ϕ(µb∗) it now follows from Lemma 4.1(i) that ϕ(c) ∈
{0, a}, hence Lemma 4.4(i) yields ϕ(c) = a, whereupon, by Lemma 4.1(ii),
ϕ(b∗) ∈ Cn(a) and, hence, there exists p ∈ At(S∗n) \ {a} such that ϕ(b∗) =
a ∨ p. Since a ≤ b∗, it follows that ϕ(a) ∈ {0, a, p, a ∨ p}. Inasmuch as
ϕ(a) 6= 0 by Lemma 4.4(i), and 0 = ϕ(a) ∧ ϕ(c) = ϕ(a) ∧ a, we conclude
that ϕ(a) = p. Choose a quasi-atom r of SX such that, for all i ∈ X, πi(r) 6∈
{a, b, c}. It follows that r ≤ b∗ and, hence, ϕ(r) ≤ ϕ(b∗). By Lemma 4.4(i),
ϕ(r) ∈ {a, p, a ∨ p}. Since ϕ(a) = p, ϕ(c) = a, ϕ(r) ∧ ϕ(a) = ϕ(r ∧ a) = 0,
and ϕ(r) ∧ ϕ(c) = ϕ(r ∧ c) = 0, this is absurd. Therefore ϕ(b∗) = ϕ(µb∗).

For any s ∈ SX such that s ≤ b∗ we now have ϕ(s) = ϕ(µs). (Indeed,
ϕ(µs) = ϕ(s) ∧ ϕ(µb∗) = ϕ(s) ∧ ϕ(b∗) = ϕ(s).) In particular, ϕ(s) = ϕ(µs)
for s = p, where p is a quasi-atom obtained from Lemma 4.4(ii). This
contradiction concludes the proof.

Proposition 4.6. Let X ∈ Pfin(ω) and m ∈ ω. If ϕ : SX → Sm is a
homomorphism such that ϕ(e) = ϕ(νie) for all i ∈ X, then ΓX ≤ Ker(ϕ)
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where ΓX denotes the Glivenko congruence on SX and Ker(ϕ) denotes the
congruence kernel of the homomorphism ϕ.

P r o o f. Suppose ϕ(b∗) 6= ϕ(µb∗). Since µb∗ =
∧{µib∗ : i ∈ X},

ϕ(b∗) 6= ϕ(µib∗) for some i ∈ X. By hypothesis ϕ(e) = ϕ(νie) and, conse-
quently, νie∧c = µic implies ϕ(c) = ϕ(e∧c) = ϕ(e)∧ϕ(c) = ϕ(νie)∧ϕ(c) =
ϕ(νie∧c) = ϕ(µic). Since µic ≤ µib∗, ϕ(c) = ϕ(µic) ≤ ϕ(µib∗) ∈ Sm \S∗m.
By Lemma 4.1(i), ϕ(c) = 0 or ϕ(c) = a. Further, if ϕ(c) = a, then it fol-
lows from Lemma 4.1(ii) that ϕ(b∗) ∈ Cm(a) and, since ϕ(c) ≤ ϕ(µib∗),
ϕ(µib∗) = νϕ(b∗).

We show that neither ϕ(c) = 0 nor ϕ(c) = a may occur.
If ϕ(c) = 0, then ϕ(c∗) = 1. The triviality of [1]Γ reveals that ϕ(c∗) =

ϕ(µc∗). For every quasi-atom r such that πj(r) ∈ At(S∗j ) \ {b, c} for all
j ∈ X, r ≤ c∗ and r ∧ µc∗ = µr. Thus, ϕ(r) = ϕ(µr) and, in particular,
ϕ(µir) = ϕ(r). From b∗ ≥ r and µib∗ ≥ µir it follows, by Lemma 4.1(i),
that ϕ(r) = 0 or ϕ(r) = a. Further, in the event that ϕ(r) = a, then, by
Lemma 4.1(ii), ϕ(b∗) ∈ Cm(a). Since b∗ = c∨∨{r : πj(r) ∈ At(S∗j ) \ {b, c}
for all j ∈ X}, either ϕ(b∗) = 0 or ϕ(b∗) = a. Because ϕ(b∗) 6= ϕ(µb∗),
it follows that ϕb∗ 6= 0. Thus, ϕ(b∗) = a. However, this is absurd since
ϕ(b∗) = a only if ϕ(r) = a for some suitable r, which, in turn, implies
ϕ(b∗) ∈ Cm(a). Hence, contrary to the supposition, ϕ(c) 6= 0.

If ϕ(c) = a, ϕ(b∗) ∈ Cm(a), and ϕ(µib∗) = νϕ(b∗), then, for some
p ∈ At(S∗m), ϕ(b∗) = a ∨ p and ϕ(a) ∈ {0, a, p, a ∨ p}. Since a ∧ c = 0,
it follows that ϕ(a) ∈ {0, p}. If ϕ(a) = 0, then ϕ(a∗) = 1. Arguing as
above, ϕ(a∗) = ϕ(µa∗), ϕ(r) = ϕ(µir) for every quasi-atom r such that
πj(r) ∈ At(S∗j ) \ {a, b}, and, hence, ϕ(r) = 0 or a. As before, it follows
that ϕ(b∗) = a, which is absurd. Thus, ϕ(a) = p and, as a ∧ µib∗ = µia
and ϕ(µib∗) = νϕ(b∗), ϕ(µia) = ϕ(a) ∧ ϕ(µib∗) = p ∧ νϕ(b∗) = µp.
In particular, ϕ(µia) 6= ϕ(a). Choose a quasi-atom r such that πj(r) ∈
At(S∗j )\{a, b, c}. Since r ≤ b∗, ϕ(r) ∈ {0, a, p, a∨p} and, as a∧r = c∧r = 0,
ϕ(r) = 0. Hence, ϕ(r∗) = 1, ϕ(µir∗) = ϕ(r∗) and, since r∗ ≥ a, it follows
that ϕ(µia) = ϕ(a), which is absurd. Thus, contrary to hypothesis, ϕ(c) 6= a.

We conclude that ϕ(b∗) = ϕ(µb∗).
Since r ≤ b∗ for every r in the 0-class, it remains to show that, for r

in the b-class, ϕ(r) = ϕ(µr). Let r in the b-class be such that r 6= µr.
Then, since πi(r) < 1 for every i ∈ X, there exists a quasi-atom s in the
0-class such that r ≤ s∗. It is sufficient therefore to show that, for each
quasi-atom s in the 0-class, ϕ(s∗) = ϕ(µs∗). Suppose that for some such s,
ϕ(s∗) 6= ϕ(µs∗). For every quasi-atom t ≤ s∗ that belongs to the 0-class,
we now know that ϕ(t) = ϕ(µt). Hence, by Lemma 4.1, either ϕ(t) = 0 or
else ϕ(t) = a and ϕ(s∗) ∈ Cm(a). Since there are distinct such quasi-atoms
which meet to 0, we may assume that ϕ(t) = 0 for some such t. Thus,
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ϕ(t∗) = 1 and, so, ϕ(t∗) = ϕ(µt∗), which implies that ϕ(b) = ϕ(µb). By
Lemma 4.1, either ϕ(b) = 0 or else ϕ(b) = a and ϕ(s∗) ∈ Cm(a). However,
s∗ = b ∨∨{t : t is a quasi-atom in the 0-class and t ≤ s∗}. Hence, either
ϕ(s∗) = 0 or else ϕ(s∗) = a and ϕ(s∗) ∈ Cm(a), each of which is absurd.

5. Verification of (P1)–(P4). We can now prove Theorem 1.1 by
verifying that the family (SW : W ∈ Pfin(ω)) satisfies the postulates (P1)–
(P4) of Proposition 2.1.

Since (P1) and (P2) clearly hold, we need only establish (P3) to conclude
the following.

Proposition 5.1. The family (SW : W ∈ Pfin(ω)) of finite pseudocom-
plemented semilattices satisfies the postulates (P1)–(P3).

P r o o f. Let X,Y ∈ Pfin(ω) be such that X 6= ∅ and SX ∈ Q(SY ). There
is an embedding ϕ : SX → (SY )I for some finite set I. For each j ∈ X,
ϕ(e) 6= ϕ(νje) and hence there exists i ∈ I such that the projection map
πi : (SY )I → SY satisfies πiϕ(e) 6= πiϕ(νje). Proposition 4.5 (applied to
πiϕ : SX → SY ) yields j ∈ Y and Y ⊆ X. Since this holds for all j ∈ X, we
have Y = X.

Lemma 5.2. If X ∈ Pfin(ω), ∅ 6= Y ⊆ X, and Θ is a congruence rela-
tion on SX with ΓX ≤ Θ, then SY is embeddable into SX/(Θ ∧ Ker(πY )),
where ΓX denotes the Glivenko congruence on SX , πY denotes the projec-
tion map from SX onto SY , and Ker(πY ) denotes the congruence kernel of
the homomorphism πY .

P r o o f. Let Ψ denote the congruence relation on SX where, for r, s ∈ SX ,
r ≡ s (Ψ) if and only if πY (r) ≡ πY (s) (ΓY ) where ΓY denotes the Glivenko
congruence on SY . We shall need the following:

Lemma 5.3. Ψ = ΓX ◦Ker(πY ).

P r o o f. Since ΓX ≤ Ψ and Ker(πY ) ≤ Ψ , ΓX ◦Ker(πY ) ≤ Ψ . To see that
Ψ ≤ ΓX ◦Ker(πY ), suppose r, s ∈ SX and r ≡ s (Ψ). It must be shown that
there exists t ∈ SX such that rΓXt and t Ker(πY )s.

Clearly, for any such t, it must be the case that πj(t) = πj(s) for j ∈ Y .
Thus, to determine a suitable t, it is necessary to define πi(t) for i ∈ X \Y .
There are several cases depending on whether r and s belong to the b-class,
µb-class, or 0-class of SX :

Let r belong to the b-class. If s belongs to the b-class, then set πi(t) =
πi(r). When s belongs to the µb-class, then let πi(t) = µπi(r). For s to
belong to the 0-class is not possible as πY (r) ≡ πY (s) (ΓY ).

Let r belong to the µb-class. If s belongs to the b-class, then set πi(t) =
(πi(r))∗∗. If s belongs to the µb-class, then let πi(t) = πi(r). As above, it is
not possible for s to belong to the 0-class.
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Let r belong to the 0-class. As above, the only possibility is that s also
belongs to the 0-class. In which case πi(t) = πi(r) will suffice.

P r o o f o f L e m m a 5.2 c o n t i n u e d. Clearly, the set

{([r]Θ, [r] Ker(πY )) : r ∈ SX}
is a subalgebra of SX/Θ×SX/Ker(πY ). Denote this p-subsemilattice by S.
Since SX/(Θ ∧Ker(πY )) is isomorphic to S via the isomorphism

[r](Θ ∧Ker(πY )) 7→ ([r]Θ, [r] Ker(πY )),

to complete the proof of Lemma 5.2 it suffices to show that SY is embeddable
into S.

Define ϕ : SY → S where, for s ∈ SY , ϕ(s) = ([r]Θ, [r] Ker(πY )) is
such that xΓXr and r Ker(πY )x′ for suitably defined x and x′ ∈ SX . The
existence of such an r is guaranteed by Lemma 5.3 providing xΨx′. The
choice of x and x′ depends on whether s belongs to the b-class, µb-class, or
0-class of SY . There are three cases:

Let s belong to the b-class of SY . Then x,x′ ∈ SX , where, for i ∈ Y ,
πi(x) = πi(s)∗∗ and πi(x′) = πi(s) and, for i ∈ X \ Y , πi(x) = 1 and
πi(x′) = 1.

Let s belong to the µb-class of SY . Since s∗∗ belongs to the b-class,
x,x′ ∈ SX where, for i ∈ Y , πi(x) = πi(s)∗∗ and πi(x′) = πi(s) and, for
i ∈ X \ Y , πi(x) = 1 and πi(x′) = µb.

Let s belong to the 0-class of SY . Since s∗∗ also belongs to the 0-class,
x, x′ ∈ SX where, for i ∈ Y , πi(x) = πi(s)∗∗ and πi(x′) = πi(s) and, for
i ∈ X \ Y , πi(x) = 0 and πi(x′) = 0.

In each case xΨx′. Thus, since ΓX ≤ Θ, ϕ is well-defined. It remains to
show that ϕ is a one-to-one homomorphism.

To see that ϕ is one-to-one, suppose ϕ(s) = ϕ(t) for some s, t ∈ SY . Let
ϕ(s) = ([r]Θ, [r] Ker(πY )) and ϕ(t) = ([u]Θ, [u] Ker(πY )). Thus, [r] Ker(πY )
= [u] Ker(πY ). In particular, πY (r) = πY (u). However, by the definition of
ϕ, πY (r) = πY (s) and πY (u) = πY (t). Hence, s = t as required.

To show that ϕ is ∧-preserving, we must establish that, for s, t ∈ SY ,
ϕ(s ∧ t) = ϕ(s) ∧ ϕ(t). Let ϕ(s ∧ t) = ([r]Θ, [r] Ker(πY )), ϕ(s) =
([u]Θ, [u] Ker(πY )), and ϕ(t) = ([v]Θ, [v] Ker(πY )), where x,x′,y,y′, z, z′ ∈
SX determine appropriate r,u,v ∈ SX , respectively. Since ΓX ≤ Θ, it is
sufficient to show that rΓXu ∧ v and r Ker(πY )u ∧ v in order to conclude
that ϕ(s ∧ t) = ϕ(s) ∧ ϕ(t). There are several cases depending on whether
s and t belong to the b-class, µb-class, or 0-class of SY .

Let s belong to the b-class of SY .
If t belongs to the b-class, then so does s ∧ t. Thus, for i ∈ Y , πi(x) =

πi(s∧ t)∗∗, πi(y) = πi(s)∗∗, and πi(z) = πi(t)∗∗ and, for i ∈ X \ Y , πi(x) =
πi(y) = πi(z) = 1. Since (s ∧ t)∗∗ = s∗∗ ∧ t∗∗, x = y ∧ z. Consequently, as
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xΓXr, yΓXu, and zΓXv, it follows that rΓXu ∧ v. Similarly, since in this
case x = x′, y = y′, and z = z′, we have r Ker(πY )u ∧ v.

If t belongs to the µb-class, then so does s∧ t. Thus, for i ∈ Y , πi(x) =
πi(s∧ t)∗∗, πi(y) = πi(s)∗∗, and πi(z) = πi(t)∗∗ and, for i ∈ X \ Y , πi(x) =
πi(y) = πi(z) = 1. As before, it follows that rΓXu ∧ v. For i ∈ Y , πi(x′) =
πi(s ∧ t), πi(y′) = πi(s), and πi(z′) = πi(t) and, for i ∈ X \ Y , πi(x′) = µb,
πi(y′) = 1, πi(z′) = µb. In particular, x′ = y′ ∧ z′ and, as x′Ker(πY )r,
y′Ker(πY )u, and z′Ker(πY )v, it follows that r Ker(πY )u ∧ v.

If t belongs to the 0-class, then so does s ∧ t. Hence, for i ∈ Y , πi(x) =
πi(s∧t)∗∗, πi(y) = πi(s)∗∗, and πi(z) = πi(t)∗∗ and, for i ∈ X\Y , πi(x) = 0,
πi(y) = 1, and πi(z) = 0. As above, rΓXu∧v. For i ∈ Y , πi(x′) = πi(s∧ t),
πi(y′) = πi(s), and πi(z′) = πi(t) and, for i ∈ X \Y , πi(x′) = 0, πi(y′) = 1,
and πi(z′) = 0. Once more, r Ker(πY )u ∧ v.

Let s belong to the µb-class of SY .
Since ∧ is commutative, it is now no longer necessary to consider t a

member of the b-class.
If t belongs to the µb-class of SY , then so does s ∧ t. Consequently, for

i ∈ Y , πi(x) = πi(s ∧ t)∗∗, πi(y) = πi(s)∗∗, and πi(z) = πi(t)∗∗ and, for
i ∈ X \Y , πi(x) = πi(y) = πi(z) = 1. For i ∈ Y , πi(x′) = πi(s∧ t), πi(y′) =
πi(s), and πi(z′) = πi(t) and, for i ∈ X \ Y , πi(x′) = πi(y′) = πi(z′) = µb.
In particular, x = y∧z and x′ = y′∧z′. Hence rΓXu∧v and r Ker(πY )u∧v.

If t belongs to the 0-class, then so does s∧t. For i ∈ Y , πi(x) = πi(s∧t)∗∗,
πi(y) = πi(s)∗∗, πi(z) = πi(t)∗∗, πi(x′) = πi(s ∧ t), πi(y′) = πi(s), and
πi(z′) = πi(t) and, for i ∈ X \Y , πi(x) = 0, πi(y) = 1, πi(z) = 0, πi(x′) = 0,
πi(y′) = µb, and πi(z′) = 0. Clearly, once more x = y ∧ z and x′ = y′ ∧ z′,
as required.

Let s belong to the 0-class of SY .
By the commutativity of ∧, it only remains to consider t a member of

the 0-class. Obviously, s ∧ t is also a member of the 0-class. For i ∈ Y ,
πi(x) = πi(s ∧ t)∗∗, πi(y) = πi(s)∗∗, πi(z) = πi(t)∗∗, πi(x′) = πi(s ∧ t),
πi(y′) = πi(s), and πi(z′) = πi(t) and, for i ∈ X \ Y , πi(x) = πi(y) =
πi(z) = πi(x′) = πi(y′) = πi(z′) = 0. Thus, in this case, as for every case,
rΓXu ∧ v and r Ker(πY )u ∧ v. In particular, ϕ is ∧-preserving.

To see that ϕ is ∗-preserving, it is necessary to establish that, for
s ∈ SY , ϕ(s∗) = ϕ(s)∗. Let ϕ(s∗) = ([r]Θ, [r] Ker(πY )) and ϕ(s) =
([u]Θ, [u] Ker(πY )), where r and u are determined by x,x′,y,y′ ∈ SX . As
above, it is sufficient to show that rΓXu∗ and r Ker(πY )u∗.

If s is in the b-class, then s∗ is in the 0-class. Thus, for i ∈ Y , πi(x) =
πi(s∗)∗∗ and πi(y) = πi(s)∗∗ and, for i ∈ X \ Y , πi(x) = 0 and πi(y) = 1.
Since x = y∗, xΓXr, and yΓXu, it follows that rΓXu∗. For i ∈ Y , πi(x′) =
πi(s∗) and πi(y′) = πi(s). Since x′Ker(πY )y′∗, we have r Ker(πY )u∗.
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If s is in the µb-class, then s∗ is in the 0-class. Thus, for i ∈ Y , πi(x) =
πi(s∗)∗∗ and πi(y) = πi(s)∗∗ and, for i ∈ X \ Y , πi(x) = 0 and πi(y) = 1.
Since x = y∗, we have rΓXu∗. For i ∈ Y , πi(x′) = πi(s∗) and πi(y′) = πi(s).
Since x′Ker(πY )y′∗, we obtain r Ker(πY )u∗.

If s is in the 0-class, then s∗ is in the b-class. Thus, for i ∈ Y , πi(x) =
πi(s∗)∗∗ and πi(y) = πi(s)∗∗ and, for i ∈ X \ Y , πi(x) = 1 and πi(y) = 0.
Hence, x = y∗ and, so, rΓXu∗. For i ∈ Y , πi(x′) = πi(s∗) and πi(y′) =
πi(s). Hence, x′Ker(πY )y′∗ which implies r Ker(πY )u∗. Consequently, ϕ is
∗-preserving.

Proposition 5.4. The family (SW : W ∈ Pfin(ω)) of finite pseudocom-
plemented semilattices satisfies the postulate (P4).

P r o o f. Let X ∈ Pfin(ω) and B,C ∈ Q({SW : W ∈ Pfin(ω)}) be finite
algebras such that SX is a subalgebra of B × C. We must exhibit Y, Z ∈
Pfin(ω) with SY ∈ Q(B), SZ ∈ Q(C), and X = Y ∪Z. Clearly, with no loss
in generality, we may assume that either B or C is a non-trivial algebra.

Let πB and πC denote the projections of SX into B and C, respectively.
Define

Y = {i ∈ X : πB(e) 6= πB(νie)}, Z = {i ∈ X : πC(e) 6= πC(νie)}.
Since SX is a subalgebra of B × C, X = Y ∪ Z. Observe, in passing, that
Ker(πB)∧Ker(πC) is the identity on SX . Further, as B×C does not contain
a trivial subalgebra, it follows that X 6= ∅ and, hence, either Y 6= ∅ or Z 6= ∅.

To begin with, suppose that either Y = ∅ or Z = ∅, say Z = ∅, and so
Y = X. Since S∅ ∈ Q(C), it is sufficient to show that SX is embeddable in B,
which implies SY = SX ∈ Q(B). Because B ∈ Q({SW : W ∈ Pfin(ω)}) and
Q({SW : W ∈ Pfin(ω)}) = Q({Si : i ∈ ω}), there exists a set W ∈ Pfin(ω)
and an embedding ϕ of B in

∏
(Si : i ∈W ). Thus,

SX
πB
↪→ B

ϕ7−→
∏

(Si : i ∈W ).

Since X = Y , Proposition 4.3 implies that X ⊆ W and, for each i ∈ X,
the map πi ◦ ϕ ◦ πB : SX → Si satisfies Ker(πi ◦ ϕ ◦ πB) = Ker(π′i) where
πi refers to the projection from

∏
(Si : i ∈ W ) into Si and π′i refers to

the projection from SX into Si. Let r, s ∈ SX and r ≡ s (Ker(πB)). Thus,
πi ◦ ϕ ◦ πB(r) = πi ◦ ϕ ◦ πB(s) for all i ∈ X. Therefore πi(s) = πi(r) for all
i ∈ X, which means that r = s. It follows that Ker(πB) is the identity on
SX , and so SX is embeddable in B. In particular, SX ∈ Q(B).

Suppose that both Y 6= ∅ and Z 6= ∅. As before, there exists a set W
and an embedding ϕ of B in

∏
(Si : i ∈W ) and, likewise, there exists a set

V and an embedding ψ of C in
∏

(Si : i ∈ V ). It is sufficient to show that
SY embeds in SX/Ker(πB) and that SZ embeds in SX/Ker(πC) since this
implies that SY ∈ Q(B) and SZ ∈ Q(C). We only show that SY embeds
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in SX/Ker(πB); the proof that SZ embeds in SX/Ker(πC) is similar. By
Proposition 4.3, Y ⊆ W and, for each i ∈ Y , the map πi ◦ ϕ ◦ πB : SX →
Si satisfies Ker(πi ◦ ϕ ◦ πB) = Ker(π′i) where πi and π′i are as above. In
particular,

∧
(Ker(πi ◦ ϕ ◦ πB) : i ∈ Y ) = Ker(πY ) where πY denotes the

projection on SX . Since
∧

(Ker(πi ◦ ϕ ◦ πB) : i ∈ W ) = Ker(πB), it follows
that

(†) Ker(πB) =
∧

(Ker(πi ◦ ϕ ◦ πB) : i ∈W \ Y ) ∧Ker(πY ).

However, from Proposition 4.3 it follows that, for each i ∈ W \ Y , πi ◦
ϕ ◦ πB(e) = πi ◦ ϕ ◦ πB(νje) for all j ∈ X. Thus, by Proposition 4.6,
ΓX ≤ Ker(πi ◦ϕ ◦πB) for each i ∈W \Y , and so ΓX ≤

∧
(Ker(πi ◦ϕ ◦πB) :

i ∈W \Y ). By Lemma 5.2, SY is embeddable in SX/
∧

(Ker(πi◦ϕ◦πB) : i ∈
W \Y )∧Ker(πY ), which, by (†), implies SY is embeddable in SX/Ker(πB),
as required.
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