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The minimum uniform compactification
of a metric space

by

R. Grant W o o d s (Winnipeg, Man.)

Abstract. It is shown that associated with each metric space (X, d) there is a com-
pactification udX of X that can be characterized as the smallest compactification of X to
which each bounded uniformly continuous real-valued continuous function with domain
X can be extended. Other characterizations of udX are presented, and a detailed study
of the structure of udX is undertaken. This culminates in a topological characterization
of the outgrowth udRn \ Rn, where (Rn, d) is Euclidean n-space with its usual metric.

1. Introduction. Let X be a completely regular Hausdorff (i.e.
Tikhonov) topological space. As usual, a compactification of X is a compact
Hausdorff space αX that contains X as a dense subspace. Two compactifica-
tions αX and γX are called equivalent if there is a homeomorphism h from
αX onto γX such that h(x) = x for each x ∈ X. (We denote this by writing
αX ∼= γX.) Equivalent compactifications of X are “the same” (except for
notation); if we identify equivalent compactifications of X then the class
K(X) of compactifications of X can be regarded as a set, and partially or-
dered as follows: αX ≤ γX if there is a continuous surjection f : γX → αX
such that f(x) = x for each x ∈ X. Thus ordered, (K(X),≤) is a complete
upper semilattice whose largest member is the Stone–Čech compactification
βX. (It is a complete lattice iff X is locally compact.) Let C∗(X) denote
the set of all bounded real-valued continuous functions with domain X; then
βX can be characterized (up to equivalence) as the compactification X to
which each member of C∗(X) can be continuously extended.

[Everything in the preceding paragraph is well known; the reader is re-
ferred to [GJ], [Wa], [PW], and [Ma] for more details.]

Now let (X, d) be a fixed metric space. We also regard it as a topological
space with the metric topology τd induced by d.
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Define a binary relation δd on the power set P(X) of X as follows:

AδdB if d(A,B) = 0.

[Here, as usual, d(A,B) = inf{d(a, b) : a ∈ A and b ∈ B}.] It is well known
that δd is a separated Efremovich proximity on X (see Chapter 1 of [NW]).
The theory of proximities then tells us that there exists a compactification
udX ofX, called the Smirnov or Samuel compactification ofX. We formalize
its known properties in the following theorem.

Theorem 1.1. Let (X, d) be a metric space. Then the topological space
(X, τd) has a compactification udX with these properties:

(a) If A,B ∈ P(X) then cludX A ∩ cludX B 6= ∅ iff d(A,B) = 0.
(b) If (X, d) and (Y, %) are metric spaces and f : X → Y is uniformly

continuous, then there is a continuous function fu : udX → u%Y such that
fu|X = f .

(c) Let U∗d (X) denote the ring of all bounded real-valued uniformly con-
tinuous functions with domain (X, d). If f ∈ U∗d (X) then there is a (neces-
sarily unique) continuous function f∗ : udX → R such that f∗|X = f .

The above results are essentially straightforward applications of the the-
ory of proximity spaces as expounded in [Wi], [PW], and especially [NW].
(I have also benefited from consulting the unpublished monograph [R] by
my colleague Dr. M. C. Rayburn.) Specifically, a proof of (a) above appears
in 7.7 of [NW], and (b) can be proved by combining 4.8 and 7.10 of [NW].
Clearly (c) is a special case of (b) with Y = clR f [X].

We shall call udX the minimum uniform compactification of the metric
space (X, d) (see Theorem 2.3(a) for the rationale behind this terminology).
We will sometimes write “uX” instead of “udX” when it is clear what metric
d is under consideration. Similarly we shall write U∗(X) rather than U∗d (X).

The purpose of this paper is to investigate the properties of this compact-
ification, particularly in the case where (X, d) is a locally compact separable
metric space. Although partial results have been known for some time (e.g.
see [M]), to our knowledge no systematic extensive study of the compact-
ification has been undertaken. Perhaps the most interesting result in this
paper is the structure theorem (4.9) which tells us that uRn \ Rn can be
written as a union of 2n copies of [0, 1]n×(βω\ω) (where ω is the countably
infinite discrete space) “glued together” in a nontrivial fashion. (Here, and
throughout this paper, N will denote the set of positive integers and Rn will
denote Euclidean n-space with the usual metric.) We also investigate the
structure of uR \ R in more detail, and discuss its relation to βR \ R.

I would like to thank the referee and Prof. Jorge Martinez for a number
of useful suggestions.
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2. Characterizations of udX. In this section we develop several char-
acterizations of the compactification udX of the metric space (X, d).

Definition 2.1. Let (X, d) be a metric space. If A ⊆ X, define the
function gA : X → R by gA(x) = min{d(x,A), 1}.

Clearly if A ⊆ X then gA ∈ U∗d (X). In what follows we shall frequently
make use of Tăımanov’s theorem (see, for example, 4.2(h) of [PW]), as fol-
lows.

Theorem 2.2. Let X be a Tikhonov space and let αX, γX ∈ K(X).
The following are equivalent :

(a) αX ≥ γX.
(b) If A and B are disjoint closed subsets of X and if clγX A∩clγX B =

∅, then clαX A ∩ clαX B = ∅.
We now characterize uX (up to equivalence).

Theorem 2.3. Let (X, d) be a metric space. Then

(a) uX is the smallest compactification of X (in the poset (K(X),≤))
to which each member of U∗(X) can be continuously extended.

(b) uX = max{αX ∈ K(X) : if A and B are subsets of X and
d(A,B) = 0 then clαX A ∩ clαX B 6= ∅}.

P r o o f. (a) As noted in Theorem 1.1(b), each f ∈ U∗(X) can be contin-
uously extended to uf∗ ∈ C∗(uX). Suppose that αX is another compactifi-
cation of X to which each member of U∗(X) can be continuously extended.
We will prove that αX ≥ uX. To do this it suffices by Theorem 2.2 to show
that if A and B are disjoint closed subsets of X for which cluX A∩cluX B = ∅
then clαX A ∩ clαX B = ∅. If cluX A ∩ cluX B = ∅ then by 1.1(a) there ex-
ists r > 0 such that d(A,B) > r. As gA ∈ U∗(X), by hypothesis it can be
continuously extended to f : αX → R. Suppose that p ∈ clαX A ∩ clαX B
and let f(p) = s. Then there exist a ∈ A ∩ f←[(s − r/8, s + r/8)] and b ∈
B∩f←[(s−r/8, s+r/8)], and so |f(a)−f(b)| < r/4. Thus d(b, A) < r/4, con-
tradicting the definition of r. Consequently, clαX A∩clαX B = ∅ as required.

(b) By Theorem 1.1(a), uX belongs to the set whose maximum we are
taking. Suppose that αX is any other member of the set. Let A and B be
subsets of X for which clαX A ∩ clαX B = ∅. By hypothesis d(A,B) > 0, so
by Theorem 1.1(a), cluX A ∩ cluX B = ∅. Hence by Theorem 2.2, it follows
that αX ≤ uX.

Corollary 2.4. The compactification uX is characterized uniquely (up
to equivalence) by the fact that it has the following two properties:

(i) If f ∈ U∗(X) then f extends continuously to uf ∈ C∗(uX).
(ii) If A and B are subsets of X and d(A,B)=0 then cluX A∩cluX B 6= ∅.
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P r o o f. If αX ∈ K(X) and αX has both (i) and (ii), by Theorem 2.3(a),
αX ≥ uX and by Theorem 2.3(b), αX ≤ uX. Hence αX is equivalent
to uX.

We can also characterize uX in the following ways.

Theorem 2.5. Let (X, d) be a metric space and let αX ∈ K(X). The
following are equivalent :

(a) αX ∼= uX (as compactifications of X).
(b) If A,B ⊆ X then clαX A ∩ clαX B 6= ∅ iff d(A,B) = 0.
(c) {f ∈ C∗(X) : f can be continuously extended to αX} = U∗d (X).

P r o o f. We know, from Theorem 1.1(a), that if A,B ⊆ X then cluX A∩
cluX B = ∅ iff d(A,B) > 0. But as noted on p. 42 of [NW], Smirnov [S]
has proved that uX is equivalent to αX iff {(A,B) ∈ P(X) × P(X) :
clαX A ∩ clαX B = ∅} = {(A,B) ∈ P(X) × P(X) : cluX A ∩ cluX B = ∅}.
The equivalence of (a) and (b) now follows.

To prove that (a) and (c) are equivalent, first note that by Theo-
rem 1.1(c), U∗d (X) ⊆ {f ∈ C∗(X) : f can be continuously extended to
uX}. Conversely, suppose g ∈ C(uX) and let K = g[uX]. As uX and K
are compact, they have unique compatible proximities (see 3.7 of [NW]) and
the subspace proximity inherited from uX by X is just δd (see 7.9 of [NW]).
Hence by 7.7 of [NW], g|X : X → K is a proximity map from (X, δd) to
(K, δ%), where % is the subspace metric induced onK by the Euclidean metric
on R. Hence by 4.8 of [NW], g is uniformly continuous. Thus g|X ∈ U∗d (X)
and so {f ∈ C∗(X) : f can be continuously extended to uX} = U∗d (X).
But as a compactification αX of a Tikhonov space X is determined (up to
equivalence of compactifications of X) by {f |X : f ∈ C(αX)} (see 4.5(q) of
[PW], for example), it follows that (a) and (c) are equivalent.

One useful consequence of Theorem 2.5 is the following.

Corollary 2.6. Let (X, d) be a metric space. If A ⊆ X and x ∈
uX \ cluX A then there exists a closed subset B of X such that x ∈ cluX B
and d(A,B) > 0.

P r o o f. There exist disjoint open sets U and V of uX such that x ∈
U and cluX A ⊆ V . One quickly verifies that x ∈ cluX(clX(U ∩ X)) and
that cluX(clX(U ∩X)) ∩ cluX A = ∅. Let B = clX(U ∩X); it follows from
Theorem 2.5 that d(A,B) > 0.

A zero-set of a space Y is a subset of the form Z(f) = f←(0), where
f ∈ C∗(Y ). As in [GJ], [Wa] and [PW] we denote the set of zero-sets of
Y by Z(Y ). If (X, d) is a metric space and f ∈ U∗d (X), we will denote the
(unique) continuous extension of f to uX by uf .
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We now analyze the zero-sets of uX, and use them to provide an alternate
characterization of uX.

Theorem 2.7. Let (X, d) be a metric space and let A ⊆ X. Then:

(a) Z(ugA) = cluX A (see Definition 2.1 and Corollary 2.4(i) for nota-
tion).

(b) Let B(n) = {x ∈ X : d(x,A) ≥ 1/n}. Then

cluX A =
⋂
{uX \ cluX B(n) : n ∈ N}.

(c) Let S = {S ⊆ uX : S is the intersection of countably many sets of
the form cluX E, where E is a subset of X}. Then Z(uX) = S.

P r o o f. (a) Suppose that x ∈ cluX A. Then ugA(x) ∈ ugA[cluX A] =
cl[0,1] gA[A] = {0} so x ∈ Z(ugA). Conversely, suppose that x 6∈ cluX A. By
Corollary 2.6 there exists a closed subset B of X such that x ∈ cluX B and
d(A,B) = r > 0. Thus B ⊆ g←A [[r, 1]]. Consequently, ugA(x) ∈ cluX gA[B] ⊆
[r, 1] and so x 6∈ Z(ugA). The result follows.

(b) Clearly d(B(n), A) ≥ 1/n so cluX A ∩ cluX B = ∅. Hence cluX A ⊆⋂{uX \ cluX B(n) : n ∈ N}. Conversely, suppose x 6∈ cluX A. By Corol-
lary 2.6 there exists a closed subset F of X and k ∈ N such that x ∈
cluX F and d(A,F ) > 1/k. Thus F ⊆ B(k) and so x ∈ cluX B(k). Thus
x 6∈ ⋂{uX \ cluX B(n) : n ∈ N} and the result follows.

(c) By (a) we see that Z(uX) ⊇ S. If αX is any compactification of X,
and if f ∈ C(αX), then Z(f) =

⋂{clαX(X ∩ f←[(−1/n, 1/n)]) : n ∈ N}; in
particular Z(uX) ⊆ S. The result follows.

Theorem 2.8. Let (X, d) be a metric space. Then the compactifica-
tion uX is characterized uniquely (up to equivalence) by the fact that for
each closed subset A of X, the function gA extends continuously to ugA ∈
C∗(uX) and cluX A = Z(ugA).

P r o o f. The proof of Theorem 2.3 shows that uX is the smallest com-
pactification of X to which each gA can be extended. Now suppose that γX
were a compactification of X for which gA could be extended continuously
to γgA ∈ C(γX) and for which clγX A = Z(γgA). By the above, uX ≤ γX.
Now suppose that A and B were closed subsets of X such that d(A,B) = 0.
For each n ∈ N choose an ∈ A and bn ∈ B for which d(an, bn) ≤ 1/n.
As γX is compact there exists p ∈ clγX{bn : n ∈ N}. Thus p ∈ clγX B. If
γgA(p) = ε > 0, find j ∈ N such that 1/j < ε/4 and bj ∈ (γgA)←(ε/2, 3ε/2).
Thus d(bj , A) > ε/2 while d(bj , aj) < ε/4, which is a contradiction. Thus
p ∈ Z(γgA) and so by hypothesis p ∈ clγX B∩clγX A. Thus γX belongs to a
set of compactifications of which uX was shown in Theorem 2.3(b) to be the
maximum. Thus γX ≤ uX and so uX and γX are equivalent as claimed.
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If Z ∈ Z(X) it is not in general true that clβX Z ∈ Z(βX), so Theo-
rem 2.8 gives a way in which βX and uX behave differently. Also, if A and
B are disjoint noncompact closed subsets of X for which d(A,B) = 0, then
cluX A ∩ cluX B is a nonempty zero-set of uX that is disjoint from X, so
not every zero-set of uX need be of the form cluX A in general, where A is
a closed subset of X.

Theorem 2.9. If (X, d) is a metric space, and if S ⊆ X, then cludX S∼= uS (up to equivalence), where uS is the minimum uniform compactifica-
tion of the metric space (S, d|S).

P r o o f. By a theorem in [K] (as quoted in 2.3 of [LR]) if f ∈ U∗(S) then
f can be extended to f# ∈ U∗(X). But f# extends to f∗ ∈ C∗(uX) and
f∗|cluX S extends f to C∗(cluX S). Observe that δ|S, the subspace proximity
on S induced by δ, is given by A(δ|S)B iff (d|S)(A,B) = 0 (where A and
B are subsets of S). Hence we see that if (d|S)(A,B) = 0 then AδB and so
cluX A∩cluX B = ∅ whence clcluX S A∩clcluX S B = ∅. Thus by Corollary 2.4
our result follows.

Finally, recall that if (X, d) and (Y, s) are metric spaces then a bijection
f : X → Y is called a uniform isomorphism if both f and f−1 are uniformly
continuous (see, for example, 35.10 of [Wi]). In this case we say that the
metric spaces (X, d) and (Y, s) are uniformly equivalent. If X = Y , then the
metrics d and s on the common underlying set X are said to be uniformly
equivalent. Clearly this happens iff the identity function id : (X, d)→ (X, s)
is a uniform isomorphism; it is well known that this is true iff there are
positive constants m and M such that for all x, y ∈ X, md(x, y) ≤ s(x, y) ≤
Md(x, y). This implies that τd = τs, but the converse implication fails.

The following is an immediate consequence of Theorem 1.1(b).

Theorem 2.10. If (X, d) and (Y, s) are metric spaces and if f : X → Y
is a uniform isomorphism, then f extends to a homeomorphism F : udX →
usY ; in particular , udX \X is homeomorphic to usY \ Y .

P r o o f. By Theorem 1.1(b), f continuously extends to F : udX → usY
and f−1 continuously extends to G : usY → udX. Then G ◦ F |X is the
identity on X, so G ◦ F is the identity on udX. The theorem follows.

Let (X, τ) be a metrizable topological space. DefineM(X) to be {udX :
d is a metric for X such that τd = τ}. We conclude this section by inves-
tigating the order-theoretic properties of M(X) when viewed as a subset
of the poset K(X) of compactifications of X. As usual, if (X, d) is a metric
space and x ∈ X we denote by Sd(x, ε) the open sphere with centre x and
radius ε; we write “S(x, ε)” if there is only one metric d under discussion.
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Theorem 2.11. Let (X, τ) be a metrizable topological space. Then:

(a)
∨M(X) = βX (where the supremum is taken in K(X)).

(b) If (X, τ) is locally compact and noncompact then the one-point com-
pactification of X belongs to M(X) iff X is second countable.

P r o o f. (a) Let d be a metric on X for which τd = τ . Let A and B be
disjoint nonempty closed sets of X. Then there exists f ∈ C∗(X) for which
f [A] = {0}, f [B] = {1}, and 0 ≤ f ≤ 1. Define dA,B : X ×X → R by

dA,B(x, y) = max{|f(x)− f(y)|, d(x, y)}.
It is straightforward to verify that dA,B is a metric on X. Clearly dA,B(x, y)
≥ d(x, y) if x, y ∈ X, and consequently τd ⊆ τdA,B . Conversely, let p ∈ X
and let ε > 0 be given. As f ∈ C∗(X) there exists δ(p, ε) > 0 such that
d(p, x) < δ(p, ε) implies |f(p)− f(x)| < ε. Let α(p, ε) = min{ε, δ(p, ε)}. It is
easy to verify that

Sd(p, α(p, ε)) ⊆ SdA,B (p, ε), and so τdA,B ⊆ τd.
Hence udA,BX ∈ M(X) and as dA,B(A,B) = 1, by Theorem 2.5(b) it fol-
lows that cludA,BX A ∩ cludA,BX B = ∅. Hence by Tăımanov’s theorem (see
Theorem 2.2) we see that if A and B are any pair of disjoint closed sets
of (X, τ), then cl∨M(X)A ∩ cl∨M(X)B = ∅. But this is the characterizing
property of the Stone–Čech compactification of a normal space (see 6.5 of
[GJ]), and so

∨M(X) ∼= βX.
(b) Let µX denote the one-point compactification of X. If there is a

metric s on X such that τs = τ and µX ∼= usX then |usX \X| = 1 and so,
by Theorem 3.3 below, usX is the metric completion of (X, s). Hence µX
is compact and metrizable and hence second countable; consequently, X is
second countable.

Conversely, if X is second countable then so is µX, and hence µX is
metrizable. If s is a compatible metric on µX then it is easily seen that
(µX, s) is a complete metric space in which (X, s|X) is densely and iso-
metrically embedded. Hence (µX, s) is the metric completion of (X, s|X)
and by Theorem 3.3 it follows that µX ∼= us|XX. Clearly τs|X = τ and so
µX ∈M(X).

3. Elementary properties of uX. We begin by noting that the mini-
mum uniform compactification of a metric space is “the same as” the mini-
mum uniform compactification of its metric completion. This means that we
can confine our attention to studying minimum uniform compactifications
of complete metric spaces.
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Definition 3.1. Let (X, d) be a metric space.

(a) If ε > 0 the subset D of X is said to be ε-discrete if S(x, ε)∩D = {x}
for each x ∈ D.

(b) The metric completion of (X, d) will be denoted by (X∗, d∗).

Theorem 3.2. Let (X, d) be a metric space. Then ud∗X
∗ is equivalent

(as a compactification of X) to udX.

P r o o f. This follows immediately from Theorem 2.9.

Part (b) of Theorem 3.3 below is a special case of 2.4 of [C], and essen-
tially also of 3.1 of [M].

Theorem 3.3. Let (X, d) be a metric space.

(a) If (X, d) is totally bounded then udX is the metric completion of X.
(b) If (X, d) is not totally bounded then udX \ X contains a copy of

βω \ ω (and hence udX is not metrizable).

P r o o f. (a) As (X, d) is totally bounded, it follows that (X∗, d∗) is com-
pact. Consequently, ud∗X∗ = X∗, so by Theorem 3.2, udX = X∗.

(b) As (X, d) is not totally bounded, it contains, for some ε > 0, a
countably infinite ε-discrete subset D. If A and B are disjoint subsets of D
then d(A,B) ≥ ε and by Theorem 2.5(b) it follows that cludX A ∩ cludX B
= ∅. Hence (by 6.5 of [GJ], for example) D is C∗-embedded in cludX D and
so cludX D ∼= βD ∼= βω. As D is closed in X, cludX D \ D is a subset of
udX\X and is homeomorphic to βω\ω. As βω\ω is not metrizable, udX\X
cannot be.

An obvious task is to characterize those metric spaces (X, d) for which
uX ∼= βX. This is easily accomplished using results in [A] and [Ra].

Theorem 3.4. The following are equivalent for a metric space (X, d):

(a) uX ∼= βX.
(b) C∗(X) = U∗(X).
(c) C(X) = U(X).
(d) There is a compact subset K of X such that X \ K consists of

isolated points of X, and for each r > 0 there exists εr > 0 such that
{x ∈ X : d(x,K) > r} is εr-discrete.

P r o o f. As βX is characterized up to equivalence as the compactification
of X in which X is C∗-embedded (see 6.5 of [GJ]), the equivalence of (a) and
(b) follows from Theorem 2.5(c). The equivalence of (c) and (d) is proved
in [A]. The equivalence of (b) and (c) is proved in [Ra].

Recall (see [BSw]) that a Tikhonov space X is called Oz if every open
subset of X is z-embedded in X (a subset S of X is z-embedded in X if each
zero-set of S is the intersection with S of a zero-set of X). Considerable
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attention has been devoted to characterizing those X for which βX is Oz.
Corollary 3.5 below, which characterizes when βX is Oz if X is metrizable,
is due to the referee.

Corollary 3.5. The following conditions are equivalent for a metrizable
space X:

(a) There exists a compatible metric d on X such that βX = udX.
(b) βX is Oz.
(c) The set of nonisolated points of X is compact.

P r o o f. (a) implies (b): By Theorem 2.7(a) and problem 3B of [PW],
any regular closed subset of udX is a zero-set of udX. By Theorem 5.1 of
[Bl], a space Y is Oz iff each regular closed subset of Y is a zero-set of Y .
It immediately follows that (a) implies (b).

(b) implies (c): We refer the reader to [BSw] for undefined terminology
used herein. By Theorem 6.4 of [BSw], X is extremally pseudocompact.
Hence by Theorem 5.2 of [BSw], X = E∪F , where X is an open extremally
disconnected subset of X and f |F is bounded for each f ∈ C(X). But as
extremally disconnected metrizable spaces are discrete (see 14N(2) of [GJ],
for example), the points of E are isolated in X, so the set K of nonisolated
points of X is a subset of F . Consequently, f |K is bounded for each f ∈
C(X), and as K is C-embedded in X (as K is closed and X is normal), K
is pseudocompact. But pseudocompact metrizable spaces are compact; the
implication follows.

(c) implies (a): Let σ be a compatible metric on X that is bounded by 1.
For each n ∈ N let Kn = {x ∈ X : σ(x,K) < 1/n}. Define dn : X ×X → R
as follows:

dn(x, y) =





1 if x 6= y and {x, y} \Kn 6= ∅,
0 if x = y,
σ(x, y) if {x, y} ⊆ Kn.

Let d(x, y) =
∑∞
n=1 2−n dn(x, y). It is straightforward to verify that d is

a compatible metric on X satisfying condition (d) of Theorem 3.4. Conse-
quently, (a) holds by Theorem 3.4.

Let (X, d) and (Y, s) be two metric spaces. One defines two “standard”
metrics σ and t on X ×Y by σ((x1, y1), (x2, y2)) =

√
d(x1, x2)2 + s(y1, y2)2

and t((x1, y1)(x2, y2)) = d(x1, x2)+s(y1, y2). Since (a+b)/
√

2 ≤ √a2 + b2 ≤
a + b if a ≥ 0 and b ≥ 0, it follows that σ and t are uniformly equivalent
metrics onX×Y and so uσ(X×Y ) ∼= ut(X×Y ) (see the discussion preceding
Theorem 2.10, and also Theorem 2.10 itself). If C is the category of metric
spaces and uniformly continuous mappings, then uniform isomorphisms are
isomorphisms in the category-theoretic sense and (X×Y, t) is easily checked
to be the category-theoretic product (in C) of (X, d) and (Y, s) (see, for
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example, Chapter 10 of [Wa] or Chapter 9 of [PW]). So t (or equivalently σ)
is the “correct” metric to put on X × Y to form the product of the spaces
(X, d) and (Y, s); in what follows we will use t for the ease of computation
that it affords.

If (X, d) and (Y, s) are two metric spaces then udX×usY and ut(X×Y )
are both compactifications of the space X × Y (observe that the product
topology induced on X × Y by τd and τs is just τt, so there is no ambi-
guity about what topology X × Y is to carry). An obvious question is to
determine under what conditions these compactifications of X×Y are equiv-
alent. Recall (see 4AG of [PW] or 8.12 of [Wa]) that “Glicksberg’s theorem”
answers the corresponding question for the Stone–Čech compactification:
β(X × Y ) ∼= (βX) × (βY ) iff X × Y is pseudocompact. Also note that the
completion ((X × Y )∗, t∗) of (X × Y, t) is uniformly equivalent to the prod-
uct (X∗×Y ∗, t̂ ) of the completions (X∗, d∗) and (Y ∗, s∗), where t̂ is defined
from d∗ and s∗ in the same way in which t was defined from d and s; the map
f that takes the equivalence class [(xn, yn)n∈N] (where (xn)n∈N and (yn)n∈N
are Cauchy in (X, d) and (Y, s) respectively) to ([(xn)n∈N], [(yn)n∈N]), and
is the identity on X×Y , is a uniform isomorphism from ((X×Y )∗, t∗) onto
(X∗ × Y ∗, t̂ ).

I have been informed by Professor M. Hušek that a version of the fol-
lowing theorem (couched in the language of uniformities) may be found in
[Če]. I have been unable to locate it, and hence include the proof below for
completeness.

Theorem 3.6. The following are equivalent for two metric spaces (X, d)
and (Y, s):

(a) ut(X × Y ) ∼= udX × usY (where t is as described above).
(b) At least one of (X, d) and (Y, s) is totally bounded.

P r o o f. Suppose that (b) fails. Then neither (X, d) nor (Y, s) is totally
bounded so there exist positive numbers δ1 and δ2 such that (X, d) has an
infinite δ1-discrete set D1 and (Y, s) has an infinite δ2-discrete subset D2. Let
δ = min{δ1, δ2}; then D1×D2 is an infinite δ-discrete subset of (X×Y, t). By
the proof of Theorem 3.3(b) it follows that cludX D1

∼= βD1 and clusY D2
∼=

βD2; thus cludX×usY D = cludX D1 × clusY D2
∼= βD1 × βD2. However,

clut(X×Y )D ∼= βD = β(D1 × D2) (also by the proof of 3.3(b)). Thus if
udX × usY ∼= ut(X ×Y ) it would follow that βD1× βD2

∼= β(D1×D2) (as
compactifications of D1×D2), which would contradict Glicksberg’s theorem
as D1 ×D2 is not pseudocompact. Hence (a) fails; thus (a) implies (b).

To show that (b) implies (a) let us first assume that (a) holds whenever
the totally bounded factor (say (Y, s)) is compact. Then if (b) holds and
(Y, s) is totally bounded, we see that ut(X × Y ) = ut∗((X × Y )∗) (by
Theorem 3.2). But ((X × Y )∗, t∗) is uniformly equivalent to (X∗ × Y ∗, t̂ )
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as noted in the remarks preceding this theorem, and so ut∗((X∗×Y )∗) and
ut̂(X

∗ × Y ∗) are equivalent compactifications of X × Y (here, of course,
X∗ and Y ∗ carry the metrics d∗ and s∗ respectively.) But (Y, s) is totally
bounded by hypothesis, so its completion (Y ∗, s∗) is compact; since we are
assuming that (a) holds when dealing with a product whose one factor is
compact, we know that ut̂(X

∗ × Y ∗) ∼= ud∗X
∗ × us∗Y ∗. Thus ut(X × Y ) =

ut∗((X × Y )∗) ∼= ut̂(X
∗ × Y ∗) ∼= ud∗X

∗ × us∗Y ∗. But ud∗X∗ ∼= udX and
us∗Y

∗ ∼= usY by Theorem 3.2, so we conclude that ut(X×Y ) ∼= udX×usY .
So it suffices to prove that (b) implies (a) in the special case where (Y, s) is
compact.

So assume that (Y, s) is compact, and let A and B be subsets of X × Y
such that t(A,B) = 0. We will show that cluX×Y A∩cluX×Y B 6= ∅ (of course
udX × usY = udX × Y since (Y, s) is compact). For each n ∈ N there exist
an ∈ A and bn ∈ B such that t(an, bn) < 1/n. Consider {pY (an) : n ∈ N},
where pY is the projection map fromX×Y onto Y . Since Y is compact, there
is an infinite subset I of N and a point of q ∈ Y such that {pY (an) : n ∈ I}
converges to q. Now consider {pX(an) : n ∈ I}. If this is finite there exists
an infinite subset J of I and there exists p ∈ X such that pX(an) = p for
each n ∈ J . Then for each n ∈ J we have

t(an, (p, q)) = t((pX(an), pY (an)), (p, q))

= d(pX(an), p) + s(pY (an), q) = s(pY (an), q);

as n ∈ J becomes large, this approaches zero. Hence (p, q) ∈ cluX×Y A. As
t(an, bn) < 1/n, it follows that t(bn, (p, q)) < s(pY (an), q) + 1/n for each
n ∈ J and similarly we conclude that (p, q) ∈ cluX×Y A ∩ cluX×Y B.

If {pX(an) : n ∈ I} (henceforth denoted by S) is infinite, denote
{pX(bn) : n ∈ I} by T . As d(pX(an), pX(bn)) ≤ t(an, bn) < 1/n for each
n ∈ I it follows that d(S, T ) = 0 and so there exists p ∈ cluX S ∩ cluX T .
We now claim that (p, q) ∈ cluX×Y A ∩ cluX×Y B. Let (p, q) ∈ V × W
where V is open in uX and W is open in Y . As lim{pY (an) : n ∈ I} = q
and s(pY (an), pY (bn)) ≤ t(an, bn) < 1/n, we see that pY (an) ∈ W and
pY (bn) ∈ W for all but finitely many n ∈ I. As p ∈ V ∩ cluX S we see that
pX(an) ∈ V for infinitely many n ∈ I. Hence there exists n ∈ I such that
an ∈ V ×W and so (p, q) ∈ cluX×Y A. As p ∈ V ∩cluX T a similar argument
shows that (p, q) ∈ cluX×Y B. Thus we have shown that if t(A,B) = 0 then
cluX×Y A ∩ cluX×Y B 6= ∅.

Next we claim that if f ∈ U∗t (X × Y ) then f extends continuously to
uX × Y . For each q ∈ Y we define fq : X → R by fq(x) = f(x, q). Then
fq ∈ U∗d (X) and so fq extends to ufq ∈ C(udX). Define f∗ : uX × Y → R
by f∗(x, q) = ufq(x) for each (x, q) ∈ uX × Y . Clearly f∗|X × Y = f so it
remains to show that f∗ is continuous. To do this it suffices to show that
if a ∈ uX \X and q ∈ Y then f∗|(X × Y ) ∪ {(a, q)} is continuous (see 6H
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of [GJ], for example). Let ε > 0 be given. We must find V open in uX and
W open in Y for which (a, q) ∈ V × W and f∗[(V × W ) ∩ (X × Y )] ⊆
(f∗(a, q)− ε, f∗(a, q) + ε). As ufq is continuous there exists an open subset
V of uX such that a ∈ V and ufq[V ] ⊆ (ufq(a)− ε/4, ufq(a) + ε/4). Thus,
if x ∈ V then

(∗) f∗(x, q) ∈
(
f∗(a, q)− ε

4
, f∗(a, q) +

ε

4

)
.

As f is uniformly continuous there exists δ > 0 such that if (x, y) and
(s, w) are in X×Y and t((x, y), (v, w)) < δ then |f(x, y)−f(v, w)| < ε/4. So,
let W = Ss(q, δ). Then if (x, y) ∈ (V ∩X)×W then |f(x, y)−f(x, q)| < ε/4.
Combine this with (∗) and conclude that f∗[(V ×W )∩(X×Y )] ⊆ (f∗(a, q)−
ε, f∗(a, q) + ε). Thus f∗ is continuous as claimed. Hence by Corollary 2.4 it
follows that u(X × Y ) ∼= uX × uY when Y is compact; as noted above, the
theorem follows from this.

4. The minimum uniform compactification of a locally compact
σ-compact metric space. In this section we investigate the structure of
udX\X in the case where (X, d) is a locally compact σ-compact noncompact
metric space. It is well known (see 11.7.2 of [D], for example) that if X is a
locally compact σ-compact noncompact Hausdorff space then there exists a
sequence {K(n) : n ∈ N} of nonempty compact subsets of X such that K(n)
is a proper subset of intK(n + 1), K(n) = cl intK(n), and X =

⋃{K(n) :
n ∈ N}. Observe that this means that a closed subset of X is compact iff it
is a subset of some K(n). We will use the following notation.

Notation 4.1. If A is a subspace of the metric space (X, d) we will denote
clβX A \X (resp. cludX A \X) by A∗ (resp. Au). Clearly (clX A)∗ = A∗ and
(clX A)u = Au if A ⊆ X.

Theorem 4.2. Let (X, d) be a locally compact σ-compact metric space,
and let A and B be two closed noncompact subsets of X. The following are
equivalent :

(a) limn→∞ sup{d(x,A) : x ∈ B \K(n)} = 0,
(b) Bu ⊆ Au.

P r o o f. (a) implies (b): Suppose (b) fails, and let p ∈ Bu \ Au. By
Theorem 2.5 and Corollary 2.6 there exists a closed subset F of X such
that p ∈ cluX F and cluX A ∩ cluX F = ∅. Hence there exists r > 0 such
that d(A,F ) > r by our choice of F (see Theorem 2.5). Clearly p ∈ (B \
K(n))u ∩ (F \K(n))u for each n ∈ N, so it follows by Theorem 1.1(a) that
d(B \K(n), F \K(n)) = 0 for each n ∈ N. Thus for each n ∈ N there exist
x(n) ∈ B \K(n) and y(n) ∈ F \K(n) for which d(x(n), y(n)) < r/2. Hence
d(x(n), A) ≥ r/2 by our choice of r. Consequently, (a) fails.
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(b) implies (a): Suppose (a) fails. Then there exists some r > 0 such that
for each n ∈ N there exists an x(n) ∈ B \K(n) for which d(x(n), A) ≥ r.
Let L = {x(n) : n ∈ N}. It is not hard to see that L is a closed discrete
noncompact subset of X (see the comments preceding the statement of this
theorem) and that d(L,A) ≥ r. Thus Lu ∩ Au = ∅ by Theorem 1.1, and
∅ 6= Lu ⊆ Bu. Thus (b) fails.

Recall (see 6.5(a) of [PW], for example) that a continuous closed surjec-
tion f : Y → Z is called irreducible if proper closed subsets of Y are taken
to proper subsets of Z by f . If there is an irreducible continuous surjection
from one compact space onto another then those spaces share many topolog-
ical properties (see 6.5(d) and 6B of [PW]); consequently, it is of interest to
know under what conditions a continuous surjection with compact domain
will be irreducible.

Corollary 4.3. Let (X, d) be locally compact and σ-compact. Let f :
βX → uX extend the identity map and let g = f |βX \X. The following are
equivalent :

(a) g is not an irreducible map from βX \X onto uX \X.
(b) There is an open subset V of X whose X-closure is noncompact and

for which limn→∞ sup{d(x,X \ V ) : x ∈ X \K(n)} = 0.

P r o o f. (a) implies (b): There is a proper closed subset H of βX \ X
for which g[H] = uX \ X. By 6.5(b) of [GJ] there is a closed subset A
of X for which A∗ 6= βX \ X but g[A∗] = uX \ X. Let V = X \ A. As
A∗ 6= βX \X there is a noncompact closed subset of X disjoint from A, and
so the X-closure of V is noncompact. Clearly g[A∗] = Au and so Xu ⊆ Au.
The result now follows from Theorem 4.2.

(b) implies (a): Let A = X \V . By hypothesis clX(X \A) is not compact
and hence not pseudocompact. It follows from 2.5 of [Wo2] that A∗ 6= X∗.
As above, g[A∗] = Au, and by (b) and Theorem 4.2 it follows that Au =
Xu = uX \X.

Example 4.4. (a) If X = Rn (Euclidean n-space) then g : βRn \ Rn →
uRn \ Rn is not irreducible as we can let K(j) = {x ∈ Rn : ‖x‖ ≤ j} and
V =

⋃{{x ∈ Rn : k < ‖x‖ < k + 1/k} : k ∈ N}.
(b) If X is ω with the discrete metric (distinct points are a distance 1

apart) then uX = βX and so g is the identity and hence irreducible.

Theorem 4.5. Let (X, d) be a locally compact σ-compact complete space.
Then every nonempty Gδ-subset of uX \X contains a copy of βω \ ω.

P r o o f. Let G be a nonempty Gδ-set of uX \X. As X is σ-compact, G
is a Gs-set of uX. Hence there exists f ∈ C(uX) such that ∅ 6= Z(f) ⊆ G.
Consequently, one can inductively choose a sequence (xn)n∈N of points of



52 R. G. Woods

X, and a subsequence {mn : n ∈ N} of N such that n < j implies mn < mj ,
such that xn ∈ f←[(1/mn+1, 1/mn)] \K(n). Then clX{xn : n ∈ N} = L is
not compact (see the remarks preceding Theorem 4.2), but is complete (as X
is), and hence is not totally bounded. Hence there exists ε > 0 and an infinite
ε-discrete subset D of L. Clearly cluX D \X ⊆ cluX L \X ⊆ Z(f) ⊆ G. It
follows from the proof of Theorem 3.3(b) that cluX D \X is homeomorphic
to βω \ ω. The result follows.

Next we show that if (X, d) is a locally compact σ-compact noncompact
metric space, we can find a discrete metric space (X,σ) for which uσY \ Y
is “the same” as udX \X. Specifically:

Theorem 4.6. Let (X, d) be a locally compact σ-compact noncompact
metric space. Then there is a countable set D and a metric σ on D such
that τσ is the discrete topology and udX \X is homeomorphic to uσD \D.

P r o o f. Clearly {K(n+1)\ intK(n), d|K(n+1)\ intK(n)} is a compact
metric space for each n ∈ N (here K(n) is as defined in the paragraph
preceding Notation 4.1). Consequently, it has a finite (1/n)-net D(n) (since
it is totally bounded). Now let D =

⋃{D(n) : n ∈ N} and let σ = d|D. By
Theorem 2.9, uσD = cludX D. Let ε > 0 and choose nε ∈ N so that nε ≥ 2
and 1/nε < ε. Observe that X \K(nε) ⊆

⋃{K(n+ 1) \ intK(n) : n > nε};
hence if x ∈ X \K(nε) there exists k > nε such that x ∈ K(k+1)\ intK(k).
There exists y ∈ D(k) such that d(x, y) < 1/k; hence d(x,D) < ε. It follows
that limn→∞ sup{d(x,D) : x ∈ X \K(n)} = 0 and hence by Theorem 4.2
that uσD \ D = cludX D \ D ⊇ udX \ X. If z ∈ X find nz ∈ X such
that z ∈ intK(nz); then

⋃{D(n) : n ≤ nz} = F is a finite set and so
(intK(nz))\(F \{z}) is a neighborhood of z disjoint from D. Consequently,
D is a closed discrete subset of (X, τd); it follows that τσ is the discrete
topology and that cludX D \X ⊆ udX \X. Hence uσD \D = cludX D \D =
udX \X and the theorem follows.

Observe that this means that if (X, d) is a locally compact σ-compact
noncompact metric space without isolated points then udX has no “remote
points”; in other words, each point of udX \ X is in the udX-closure of a
closed nowhere dense subset of (X, d). (By contrast, it is known (see [vD])
that βX \X has a dense subset of 2c remote points).

Now we investigate the structure of udRn \Rn, where (Rn, d) is the usual
Euclidean space. We begin with a lemma.

Lemma 4.7. Let (K, d) be a compact metric space, let Z denote the set
of all integers and let s be the metric on Zn given by

s((i1, . . . , in), (j1, . . . , jn)) =
n∑

k=1

|ik − jk|.
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If t is the metric on K × Zn defined by

t((k, i1, . . . , in), (x, j1, . . . , jn)) = d(k, x) +
n∑

k=1

|ik − jk|

then ut(K × Zn) ∼= K × β(Zn), which is homeomorphic to K × βω.

P r o o f. By Theorem 3.4, us(Zn) ∼= β(Zn) which is homeomorphic to βω.
Hence by Theorem 3.5, ut(K ×Zn) ∼= K ×usZn, which is homeomorphic to
K × βω.

Theorem 4.9 below is one of the principal results of this paper. Its proof
will be by induction, so we begin by proving the special case of Theorem 4.9
in which n = 1 (see Theorem 4.8 below). As the proof of Theorem 4.9 is
motivated by geometric considerations, our ability to visualize R and its
subsets will assist in an understanding of the general situation. Throughout
what follows, I will denote the closed unit interval and d will denote both
the Euclidean metric on R and its restriction to I.

Theorem 4.8. The space udR \ R can be written as a union of two
copies of I × (βω \ ω); each is a regular closed subset of udR \R, and their
intersection is a nowhere dense copy of βω \ ω.

P r o o f. Let (K, d) be (I, d) and define t as in Lemma 4.7 (with n = 1);
thus t((k, i), (x, j)) = |k − x|+ |i− j|. Define a function f : I × Z→ R by

f(r, i) = r + i.

Clearly f is a well-defined surjection. Let ε > 0 and set δ = min{1/2, ε}. If
t((k, i), (x, j)) < δ then i = j and d(f(k, i), f(x, j)) = |(k + i) − (x + i)| =
|k − x| < ε. Hence f is uniformly continuous and hence by Theorem 2.10 it
has a continuous extension F : ut(I × Z)→ udR.

Let A = I × {2j : j ∈ Z} and B = I × {2j + 1 : j ∈ Z}. Clearly
I × Z = A ∪B. Observe that

f [A] = {r + 2j : j ∈ Z and r ∈ [0, 1]} =
⋃
{[2j, 2j + 1] : j ∈ Z}.

Evidently f |A : A → f [A] is a bijection, and is uniformly continuous as
f is. Now (f |A)−1 : (f [A], d|f [A]) → (A, t|A) is also uniformly continuous;
for if ε > 0 is given, let δ = min{ε, 1/2}. If i, j ∈ Z and r, x ∈ I, suppose
d(r + 2i, x + 2j) < δ; then i = j and t((f |A)←(r + 2i), (f |A)←(s + 2j)) =
t((r, 2i), (x, 2i)) = |r − x| = d(r + 2i, x + 2i) < ε. Thus (f |A)← is uni-
formly continuous and hence f |A is a uniform isomorphism from (A, t|A)
onto (f [A], d|f [A]). A similar proof shows that f |B is a uniform isomor-
phism from B onto

⋃{[2j − 1, 2j] : j ∈ Z} (equipped with the subspace
metric inherited from d).

It now follows from Theorems 2.9 and 2.10 that the restrictions
F |clut(I×Z)A and F |clut(I×Z)B are respectively homeomorphisms from
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clut(I×Z)A and clut(I×Z)B onto cludR f [A] and cludR f [B]. But since Z
is 1-discrete, it follows from Theorems 3.4, 3.6 and 2.9 that clut(I×Z)(I ×
{s ∈ Z : s is even}) = clut(I×Z)A and clut(I×Z)(I × {s ∈ Z : s is odd})
= clut(I×Z)B are both homeomorphic to I × βω. From this it readily fol-
lows that (clut(I×Z)A) \A and (clut(I×Z)B) \B are each homeomorphic to
I × (βω \ ω). Consequently, f [A]u and f [B]u are both homeomorphic to
I × (βω \ω). Hence udR \R can be written as the union of these two copies
of I × (βω \ ω), since R = f [A] ∪ f [B].

Next we show that f [A]u is a regular closed subset of uR\R. To do this,
it suffices to show that if L ⊆ R and p ∈ f [A]u \ Lu then ((uR \ R) \ Lu) ∩
((uR \ R) \ f [B]u) 6= ∅, since clearly (uR \ R) \ f [B]u ⊆ intuR\R f [A]u. In
other words, by Theorem 4.2 it suffices to show that

(∗) if p ∈ f [A]u \ Lu then lim
n→∞

sup{d(x, L ∪ f [B]) : |x| > n} 6= 0.

Suppose that (∗) fails; we will derive a contradiction. Since p 6∈ Lu, by
Corollary 2.6 there exist G ⊆ R and δ ∈ (0, 1/4) such that p ∈ Gu and
d(G,L) ≥ δ. Since (∗) fails, there exists n(δ) ∈ N such that if |x| > n(δ)
then d(x, L ∪ f [B]) < δ/4. Consequently, we would have

(∗∗)
⋃{[

2n+
δ

4
, 2n+ 1− δ

4

]
: n ≥ n(δ)

}
⊆
{
x : d(x, L) <

δ

4

}
.

Since d(G,L) ≥ δ it would follow that

(∗∗∗) G \ [−n(δ), n(δ)] ⊆
⋃{[

2n− 1 +
3δ
4
, 2n− 3δ

4

]
: n ∈ Z

}
.

However, as p ∈ uR \ R and p ∈ Gu ∩ f [A]u, it is clear that

p ∈ [G \ (−n(δ), n(δ))]u ∩ [f [A] \ (−n(δ), n(δ))]u,

and so

d(G \ (−n(δ), n(δ)), f [A] \ (−n(δ), n(δ))) = 0.

But it follows from (∗∗∗) that d(G \ (−n(δ), n(δ)), f [A] \ (−n(δ), n(δ))) ≥
3δ/4, which is a contradiction. This shows that (∗) holds, and so f [A]u is a
regular closed subset of uR \R. Clearly f [B]u is also a regular closed subset
of uR \ R.

Finally, note that as Z = f [A] ∩ f [B], it immediately follows that Zu ⊆
f [A]u ∩ f [B]u. Conversely, if p ∈ (uR \R) \Zu, by Corollary 2.6 there exists
D ⊆ R such that p ∈ Du and d(D,Z) = r > 0.

Let C =
⋃{[n − r/2, n + r/2] : n ∈ Z}. Clearly d(D,C) = r/2 so

by Theorem 2.5, p 6∈ Cu. Thus p ∈ f [B]u ∩ f [A]u would imply that p ∈
(f [B]\C)u∩(f [A]\C)u. But d(f [B]\C, f [A]\C) = r, which by Theorem 2.5
is a contradiction. It follows that Zu = f [B]u ∩ f [A]u. By Theorems 2.9 and
3.4 we see that Zu ∼= βω \ ω, and by Theorem 4.2, intuR\R Zu = ∅. Thus
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f [B]u = cluR\R((uR \ R) \ f [A]u) and the common boundary of f [B] and
f [A] is homeomorphic to βω \ ω.

Observe that not every subset of uR \ R of the form Au, where A is a
regular closed subset of R, is a regular closed subset of uR\R. For example,
let A =

⋃{[n, n+ 1/(2n)] : n ∈ N}. Clearly Nu ⊆ Au and it follows quickly
from Theorem 4.2 that Au ⊆ Nu; consequently, Au = Nu (and Nu ∼= βω \ ω
by Theorems 2.9 and 3.4). But (R \ N)u = uR \ R by Theorem 4.2, and
so intuR\RAu = intuR\RNu = ∅. Thus Au is nowhere dense in uR \ R, and
hence not regular closed.

We now prove the “general case” (Theorem 4.9) below. The reader is
advised to “draw pictures” for the case n = 2 to aid intuitive understanding.

Theorem 4.9. Let n ∈ N, and let d denote both the Euclidean metric
on Rn and its restriction to In. Then:

(a) Rn can be written as a union of 2n regular closed subsets, each of
which (with the subspace metric induced by d) is uniformly isomorphic to
(In × Zn, t) (where t is the metric described in Lemma 4.7) and any two of
which intersect in a nowhere dense subset of Rn.

(b) udRn \Rn can be written as the union of 2n copies of In × (βω \ω);
each copy is a regular closed subset of udRn \ Rn, and the intersection of
any two copies is a nowhere dense subset of udRn \ Rn.

P r o o f. By Theorem 4.8 the result holds when n = 1. Assume inductively
that it holds when n = k; we will prove that it holds when n = k+ 1. So, let
Rk =

⋃{Ai : 1 ≤ i ≤ 2k}, where each Ai is a regular closed subset of Rk,
i 6= j implies intRk(Ai ∩ Aj) = ∅, and (Ai, d|Ai) is uniformly isomorphic to
(Ik×Zk, t) (as described in Lemma 4.7). Let C =

⋃{[2j, 2j+1] : j ∈ Z} and
E =

⋃{[2j−1, 2j] : j ∈ Z}. Then R = C∪E, and C and E are regular closed
subsets of R with intR(C∩E) = ∅. Also, (C, σ|C) and (E, σ|E) are uniformly
isomorphic to I ×Z (by Theorem 4.8); here σ denotes the Euclidean metric
on R.

Then Rk+1 =
⋃{Gj : 1 ≤ j ≤ 2k+1}, where Gj = C × Aj and G2k+j =

E × Aj if 1 ≤ j ≤ 2k. It is routine to verify that each Gj is a regular
closed subset of Rk+1 and that intRk+1(Gi ∩Gj) = ∅ if i 6= j. As products of
uniform isomorphisms are uniform isomorphisms and as the subspace metric
m induced on Gj from Rk+1 is uniformly equivalent to the product metric
induced on Gj by σ|C and d|Aj or σ|E and d|Aj (as the case may be), it is
easily seen that (Gj ,m) is uniformly equivalent to (C, σ|C)× (Aj , d|Aj) and
hence to (I×Z)×(Ik×Zk) = (Ik+1×Zk+1, t) where t is the metric described
in Lemma 4.7. Hence by Theorems 2.9, 3.4 and 3.6, and the fact that Zk+1

is 1-discrete (see 4.7 for details), it follows that cludRk+1 Gj is homeomorphic
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to Ik+1×βω so (cludRk+1 Gj)\Gj is homeomorphic to Ik+1× (βω \ω). Thus
cludRk+1 Gj \ Rk+1 is also homeomorphic to Ik+1 × (βω \ ω).

As Rk+1 =
⋃{Gj : 1 ≤ j ≤ 2k+1} it follows that udRk+1 \ Rk+1 can be

written as the union of 2k+1 copies of Ik+1 × (βω \ ω). A proof similar to
that used towards the end of the proof of Theorem 4.8 can be applied to
show that each of these copies is a regular closed subset of uRk+1 \ Rk+1,
and that the intersection of two distinct copies is a nowhere dense subset of
uRk+1 \ Rk+1. We omit the tedious details; the proof of Theorem 4.8 will
serve as a guide to those who wish to construct them. The inductive step of
the proof is now completed; it follows that the theorem holds for all n ∈ N.

We now turn to a more detailed examination of the structure of uR \R.
In what follows R is given the Euclidean metric and its subspaces are given
the restriction of that metric. It is known that βR \ R has two connected
components, namely clβR[0,∞) \ R and clβR(−∞, 0] \ R (see 6.10 of [GJ]).
Since R = (−∞,−1]∪ [−1, 1]∪ [1,∞) and d((−∞,−1], [1,∞)) = 2, it follows
that uR \ R = (−∞,−1]u ∪ [1,∞)u and (−∞,−1]u ∩ [1,∞)u = ∅. Since
[1,∞)u is a continuous image of clβR[1,∞) \ [0,∞) = clβR[0,∞) \ R, it is a
continuum. Thus uR \R also has two connected components. Clearly these
are homeomorphic.

Let [0,∞) = H. Then Hu = [0,∞)u is a continuum and one of the
connected components of uR \ R. By Theorem 2.9 it is clear that Hu =
uH \ H, so uR \ R is the topological sum of two copies of the continuum
uH \H. Hence to study uR \ R it suffices to study uH \H.

Let αX be a compactification of the Tikhonov space X and let f :
βX → αX be the Čech map fixing X pointwise. Recall that αX is called
a perfect compactification of X if f←(p) is a connected subspace of βX for
each p ∈ αX (equivalently, for each p ∈ αX \X).

Theorem 4.10. (a) uH is a perfect compactification of H.
(b) uR is a perfect compactification of R.

P r o o f (sketch). From the remarks above relating uH and uR it is clear
that (a) implies (b). We indicate the main outline of the proof of (a), but
omit verification of some tedious but routine details.

Let f : βH → uH be the Čech map. Let p ∈ uH \H and suppose f←(p)
were not connected. As f←(p) is compact, a routine compactness argument
(using the fact that {clβH Z : Z ∈ Z(X)} is a base for the closed sets of βH;
see 6.5 of [GJ]) shows that there exist disjoint zero-sets Z and S of H such
that

(1) f←(p) ∩ clβH Z 6= ∅ 6= f←(p) ∩ clβH S

and

(2) f←(p) ⊆ clβH(Z ∪ S).
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Now p ∈ f [clβH Z] ∩ f [clβH S] = cluH Z ∩ cluH S, so by Theorem 2.5(b),

(3) d(Z, S) = 0.

(Here d denotes the usual Euclidean metric on H.)
We can write H \ (S ∪ Z ∪ {0}) as the union of pairwise disjoint open

intervals, i.e.

H \ (S ∪ Z ∪ {0}) =
⋃
{(ak, bk) : k ∈ N}.

Let S∗ = S ∪{⋃(ak, bk) : ak ∈ S, bk ∈ S, k ∈ N} and Z∗ = Z ∪{⋃(ak, bk) :
ak ∈ Z, bk ∈ Z, k ∈ N}. A slightly involved but straightforward calculation
shows that S∗ and Z∗ are disjoint closed subsets of H containing S and Z
respectively. Hence we can replace S and Z by S∗ and Z∗ respectively in
(1), (2), and (3); in other words, we can assume that (1), (2), (3) hold and
also

(4) H \ (S ∪ Z) =
⋃
{(ak, bk) : k ∈ N}

where k 6= i implies (ak, bk) ∩ (ai, bi) = ∅ and for each k ∈ N, either ak ∈ S
and bk ∈ Z or else ak ∈ Z and bk ∈ S.

Let εk = bk − ak. We claim that if M > 0, and if we define J to be
{k ∈ N : (ak, bk) ⊆ [0,M ]}, then J is finite. To verify this, suppose not; then
limk→∞{εk : k ∈ J} = 0 (as is easily verified). Let q be an accumulation
point of {ak : k ∈ J}. It now follows from the fact that εk → 0, and (4),
that q ∈ clH S ∩ clH Z = S ∩ Z, which contradicts the fact that S ∩ Z = ∅.
Hence our claim holds.

Define α1 to be min{ε1/4, 1} and if k ∈ N and k > 1 define αk to be
min{εk/4, 1/k, αk−1}. Then let Ak = [ak+αk, bk−αk] (where ak and bk are
as in (4)). By the previous claim {Ak : k ∈ N} is a locally finite family of
closed subsets of H, so if we define A to be

⋃{Ak : k ∈ N} then A is closed,
and clearly A ∩ (Z ∪ S) = ∅.

By (2) above, f←(p) ⊆ clβH(Z∪S), so p 6∈ cluH A. Hence by Corollary 2.6
there exists a closed subset B of H and r > 0 such that p ∈ cluH B and
d(A,B) = r. As p 6∈ H, clearly B is unbounded.

Choose k0 ∈ N such that αk0 < r/4. By a previous claim, there is M ∈ H
such that k ≤ k0 implies (ak, bk) ⊆M and k > k0 implies (ak, bk) ⊆ [M,∞).

We now claim that if y ∈ B ∩ [M,∞) then d(y,H \ (S ∪ Z)) ≥ r/4; this
follows from the definition of the “αk”s and from the triangle inequality. We
omit the details.

Next we claim that d(B ∩ S ∩ [M,∞), Z) ≥ r/4. To see this, suppose
that x ∈ B ∩ S ∩ (M,∞) and y ∈ Z. If (x, y) ⊆ S ∪ Z then as S ∩ Z = ∅
and (x, y) is connected, either (x, y) ⊆ S (and so y ∈ S) or else (x, y) ∈ Z
(and so x ∈ Z). Either possibility yields S∩Z 6= ∅, which is a contradiction;
hence there exists q ∈ (x, y) \ (Z ∪S). As x ∈ B, by the previous paragraph
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q − x ≥ r/4. Thus y − x ≥ r/4 as x < q < y. Our claim therefore holds.
Similarly we can prove that d(B ∩ Z ∩ [M,∞), S) ≥ r/4.

By the paragraph before last, B ∩ [M,∞) ⊆ S ∪ Z. But p ∈ cluH(B ∩
[M,∞)) so either p ∈ cluH(B∩[M,∞)∩S) or p ∈ cluH(B∩[M,∞)∩Z). But
as p ∈ cluH S ∩ cluH Z, by Theorem 2.5 this contradicts the claim verified in
the previous paragraph. This ultimate contradiction yields the theorem.

In view of Theorem 4.10 it is natural to ask whether uRn is a perfect
compactification of Rn if n > 1. The methods of proof of Theorem 4.10 do
not generalize readily, and we leave this as an open question.

The space clβR[0,∞) \ R = βH \H is known to be an indecomposable
continuum—i.e. a compact connected space which cannot be written as the
union of two proper compact connected subspaces (see [Wo1] or [B] or 6AA
of [PW] for a proof of this). It follows from the next result that uH\H shares
this property. We thank the referee for drawing the following argument to
our attention; our original proof of this was considerably more involved.

Theorem 4.11. If αX is a perfect compactification of the Tikhonov
space X, and if βX \X is an indecomposable continuum, then so is αX \X.
Consequently , uH \H is an indecomposable continuum.

P r o o f. Let f : βX → αX be the Čech map. As f←(p) is a connected
subspace of βX for each p ∈ αX and f is a closed continuous surjection, it
follows from Theorem 6.1.29 of [E] that for every connected subset C of αX,
the inverse image f←[C] is a connected subspace of βX. Hence if αX \ X
is the union of proper subcontinua K and L, then βX \ X is the union
of proper subcontinua f←[K] and f←[L], in contradiction to hypothesis.
Consequently, αX \X is indecomposable; in particular, uH \H is.
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