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Sierpiński’s hierarchy and locally Lipschitz functions

by

Michał M o r a y n e (Warszawa)

Abstract. Let Z be an uncountable Polish space. It is a classical result that if I ⊆ R
is any interval (proper or not), f : I → R and α < ω1 then f ◦ g ∈ Bα(Z) for every
g ∈ Bα(Z) ∩ ZI if and only if f is continuous on I, where Bα(Z) stands for the αth class
in Baire’s classification of Borel measurable functions. We shall prove that for the classes
Sα(Z) (α > 0) in Sierpiński’s classification of Borel measurable functions the analogous
result holds where the condition that f is continuous is replaced by the condition that
f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous
functions, which is the class S1(Z)). This theorem solves the problem raised by the work
of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside
Sα(Z) by outer superpositions.

1. Introduction. The classical Baire classification of Borel measurable
real functions defined on a metric space X is built as follows: B0(X) consists
of all continuous real functions on X and then, inductively, for 0 < α < ω1

we define

Bα(X) = {lim fn : the sequence (fn(x))n is convergent for every x ∈ X,
with each fn ∈ Bαn(X) for some αn < α, }.

The second classical classification, the one of Sierpiński, is built with the
use of absolutely convergent series of functions. We define S0(X) to consist
of all continuous real functions on X (thus S0(X) = B0(X) = C(X)) and
then, inductively, for 0 < α < ω1 we set

Sα(X) =
{ ∞∑
n=1

fn :
∞∑
n=1

|fn(x)| <∞ for every x ∈ X,

with each fn ∈ Sαn(X) for some αn < α
}
.
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Note that S1(X) is the class of differences of upper (or, equivalently,
lower) semicontinuous functions on X.

It is obvious that Sα(X) ⊆ Bα(X) for every α < ω1. In [Ke] Kempisty
posed the problem whether Sα([0, 1]) 6= Bα([0, 1]) for every 1 < α < ω1 (pre-
viously it was shown independently by Sierpiński (in [S1]) and Mazurkiewicz
(in [Maz]) that S1([0, 1]) 6= B1([0, 1])). Theorem 3.13 of [Mor] settled this
question: Sα(X) 6= Bα(X) for every 0 < α < ω1.

Let Z be an uncountable Polish space. It is a classical result that if
I ⊆ R is any interval, f : I → R and α < ω1, then f ◦ g ∈ Bα(Z) for
every g ∈ ZI ∩ Bα(Z) if and only if f is continuous on I. We shall prove
(Theorem 3.4) that for the classes Sα(Z), 0 < α < ω1, the analogous result
holds where the condition that f is continuous is replaced by the condition
that f is locally Lipschitz on I.

Finally, applying the above mentioned theorem on superpositions we
shall give a characterization of the positive functions in Sα(X). For example,
a positive function f is in S1([0, 1]) if and only if f = g ·h, where g is positive
and upper semicontinuous and h is positive and lower semicontinuous. Again
as an application of the theorem on superpositions we show that in this
statement we cannot replace “positive” by “nonnegative”.

2. Definitions and auxiliary facts. We shall use standard set-theoret-
ical notation. N will stand for the set of all positive integers, R will denote
the set of all reals. An interval in R will be any connected subset of R.
The term closed proper interval will only refer to intervals of the form [a, b],
where a, b ∈ R, a ≤ b. P (A) stands for the family of all subsets of a set A.
If A ⊆ P (A) and X ⊆ A then let A |X = {Y ∩X : Y ∈ A }. Suppose that
A ⊆ P (A). We say that A is a lattice of subsets of A if {∅, A} ⊆ A and
A is closed under finite unions and intersections. The range of a function
f will be denoted by Rg f . If A and B are sets then AB will denote the
set of all functions with domain A and range contained in B. If f ∈ AB
and C ⊆ A then f |C denotes the restriction of f to C. If f : A → R
then inf f = inf{f(x) : x ∈ A}, sup f = sup{f(x) : x ∈ A}. If H ⊆ DA
and B ⊆ A then let (H )B = {f ∈ H : Rg f ⊆ B}. For G ⊆ AR and
H ⊆ AR let G + H = {g + h : g ∈ G and h ∈H } and define G −H and
G ·H analogously. The space N{0, 1} with the usual product topology will
be denoted by C (it is homeomorphic to the classical Cantor set).

Let I be an interval. A function f : I → R is locally Lipschitz on I if for
each point x in I there are a neighbourhood U(x) of x and a constant Lx
such that f satisfies the Lipschitz condition with the constant Lx in U(x)∩I.

Let F ∈ X×YR and (x, y) ∈ X×Y . We put Fx(y) = F (x, y). A function
F ∈ X×YR is called a universal function for a class H ⊆ YR if H = {Fx :
x ∈ X}.
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Let A ⊆ P (A). By MA we denote the family of all functions f ∈ AR
such that f−1((−∞, c)) ∈ A for every c ∈ R. Similarly, MA is the family
of all functions f ∈ AR such that f−1((c,∞)) ∈ A for every c ∈ R. Note
that f ∈MA if and only if −f ∈MA . We put MA = MA ∩MA .

We use standard notation from Descriptive Set Theory. For example, for
X being a metric space Σ0

α(X) (Π0
α(X), resp.) denotes the αth additive

(multiplicative, resp.) class in the hierarchy of Borel subsets of X.
For X a metric space and α < ω1, let Bα(X) = {f ∈ XR : f−1(G) ∈

Σ0
1+α(X) for each G open in R}. We have Bα(X) = MΣ0

1+α(X). We shall
also write Lα(X) and Uα(X) to denote MΣ0

1+α(X) and MΣ0
1+α(X), re-

spectively. L0(X) and U0(X) are, obviously, the classes of lower and upper
semicontinuous functions on X with values in R. The class Lα(X) +Uα(X)
will be denoted by Sα(X).

We have the diagram

Uα(X)
↗ ↘

Bα(X) Sα(X)→ Bα+1(X),
↘ ↗

Lα(X)

where the arrows stand for inclusions (the properness of the first four in-
clusions in the case of X being an uncountable Polish space is classical; for
the last one, see [Mor, 3.13] or Corollary 4.1 of this paper). It is worth men-
tioning that Bα+1(X) is the closure of Sα(X) in the uniform convergence
topology for each α < ω1 (the method of proof is given in [S2], although this
result is formulated there for a more restrictive case; see also [H, IX, XVI],
[Mau, Th. 3.5] and [CM2, Th. 1] for more general results).

R e m a r k. The Lebesgue–Hausdorff theorem ([Ku, 31, IX]) says that
Bα(X) = Bα(X) for α < ω and Bα(X) = Bα+1(X) for α ≥ ω. It also
implies that Sα+1(X) = Sα(X) for α < ω and Sα(X) = Sα(X) for α ≥ ω.

Some of our considerations will have a more abstract setting where we
use a more general notion (introduced in [H]) than that of Baire’s classes.

A family F of real functions defined on a common domain D (we always
assume D 6= ∅) will be called a complete function system on D if

(a) every real function which is constant on D is in F ;
(b) the maximum and minimum of two functions from F is in F ;
(c) the sum, difference, product, and quotient (with nowhere vanishing

denominator) of two functions from F is in F ;
(d) the limit of a uniformly convergent sequence of functions from F is

in F .
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For us, the most important example of a complete function system is the
class Bα(X) for a metric space X.

Let

MF = {f−1((0,∞)) : f ∈ F} and NF = {f−1([0,∞)) : f ∈ F}.
For a complete function system F we have F = M(MF ) ([H, XII,

p. 275]) and MF is a lattice of sets closed under countable unions ([H, VIII,
p. 273]).

Let L (F ) = M(MF ) and U (F ) = M(MF ) and S (F ) = L (F ) +
U (F ) (= L (F )−L (F ) = U (F )−U (F )).

In the case of Baire classes defined on a metric space X for every α <
ω1 we have M (Bα(X)) = Σ0

1+α(X), L (Bα(X)) = Lα(X), U (Bα(X)) =
Uα(X) and S (Bα(X)) = Sα(X).

Theorem 2.A ([CM1, Prop. 1.1]). Let A ⊆ P (A) be a lattice of subsets
of A closed under countable unions and let B ⊆ A. Let I be a closed proper
interval. Then any function in (M(A |B))I has an extension to a function
in (MA )I .

Theorem 2.B is proved in [H, p. 278].

Theorem 2.B. Let F be a complete function system. A function g is
in S (F ) if and only if it can be represented as the sum of a pointwise
absolutely convergent series g =

∑∞
n=1 gn, where all functions gn belong

to F .

Theorem 2.B′. If in Theorem 2.B we assume that Rg g ⊆ I, where I is
an interval , then the functions gn can be taken in such a way that Rg sm ⊆ I,
where sm =

∑m
n=1 gn.

P r o o f. Let gn be the functions of Theorem 2.B. Write sm =
∑m
n=1 gn.

Let an be a nonincreasing sequence converging to inf I, bn be a nondecreasing
sequence converging to sup I, and an, bn ∈ I. Set

s∗n = min(max(sn, an), bn).

Then obviously

g(x) = s∗1 +
∞∑
n=1

(s∗n+1(x)− s∗n(x)).

We have

|s∗n+1(x)− s∗n(x)| ≤ max(|gn+1(x)|, an − an+1, bn+1 − bn).

If I is bounded this finishes the proof. When, say, inf I = −∞ then sn(x) >
an for n > n(x), for some n(x), and for n > n(x) we have

|s∗n+1(x)− s∗n(x)| ≤ max(|gn+1(x)|, bn+1 − bn).

An analogous argument for sup I =∞ finishes the proof.
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Theorem 2.C follows from [CM1, Th. 2.1] (applied to A = Σ0
1+α, in the

notation of [CM1]).

Theorem 2.C. Let Z be an uncountable Polish space and let I ⊂ R be
a closed proper interval. Then there exists a function G ∈ (Uα(C × Z))I
universal for (Uα(Z))I .

It follows from [Mor, Lemma 3.8] (applied to A = Σ0
1+α, in the notation

of [Mor]) that the following theorem holds.

Theorem 2.D. Let Z be an uncountable Polish space and let I ⊂ R be
a closed proper interval. Then there exists a function G ∈ (Uα(C × Z))I −
(Uα(C × Z))I universal for (Uα(Z))I − (Uα(Z))I .

Lemma 2.E. Let Z be an uncountable Polish space and let I ⊂ R be
a closed proper interval. Then there exist two functions Ψ ∈ (Uα(Z2))I
and Φ ∈ (Uα(Z2))I − (Uα(Z2))I such that for any ψ ∈ (Uα(Z))I and
φ ∈ (Uα(Z))I − (Uα(Z))I there is x ∈ Z such that ψ(y) = Ψ(x, y) and
φ(y) = Φ(x, y) for every y ∈ Z.

P r o o f. Let C ⊆ Z be homeomorphic to the Cantor set C , where C is
considered with the topology inherited from Z. As C is homeomorphic to C 2

we can choose a homeomorphism ζ : C → C 2. By Theorem 2.C there exists
a function F ∈ (Uα(C ×Z))I universal for (Uα(Z))I and, by Theorem 2.D,
there exists a function G ∈ (Uα(C × Z))I − (Uα(C × Z))I universal for
(Uα(Z))I − (Uα(Z))I . Let now Ψ∗ : C × Z → R and Φ∗ : C × Z → R be
defined as follows:

Ψ∗(c, z) = F (ζ1(c), z) and Φ∗(c, z) = G(ζ2(c), z),

where (ζ1(c), ζ2(c)) = ζ(c) ∈ C 2.
Obviously Ψ∗ ∈ (Uα(C×Z))I and Φ∗ ∈ (Uα(C×Z))I−(Uα(C×Z))I . By

Theorem 2.A the function Ψ∗ has an extension to a function Ψ ∈ (Uα(Z2))I ,
and Φ∗ has an extension to Φ ∈ (Uα(Z2))I − (Uα(Z2))I . It is now very easy
to see that Ψ and Φ have the properties desired.

From the equality F = M(MF ) which holds for any complete function
system we can immediately derive the following fact:

Fact 2.F. If F is a complete function system and f ∈ F then for any
function h continuous on Rg f we have h ◦ f ∈ F .

3. Superpositions with locally Lipschitz functions. This section
of the paper is divided into two parts. In the first one we prove a theo-
rem (Theorem 3.1) on superpositions with locally Lipschitz functions for
complete function systems. In the second one we prove its converse for the
particular case of Sierpiński’s classes of Borel measurable functions on un-
countable Polish spaces.
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A. A theorem on complete function systems

Theorem 3.1. Let I ⊆ R be an interval , and let f : I → R be a locally
Lipschitz function on I. Let F be a complete function system on D. Then
f ◦ g ∈ S (F ) for every g ∈ (S (F ))I .

P r o o f. By Theorem 2.B′ the function g can be represented as the sum
of a pointwise absolutely convergent series g =

∑∞
n=1 gn, where gn ∈ F and

Rg sn ∈ I, for each n, where sn =
∑n
i=1 gi. By continuity of f we have, for

every x ∈ D,

(f ◦ g)(x) = lim
n

(f ◦ sn)(x)

= (f ◦ s1)(x) +
∞∑
n=1

((f ◦ sn+1)(x)− (f ◦ sn)(x)).

By Fact 2.F the functions f ◦ sn, n ∈ N, belong to F .
As sn(x) tends to g(x) ∈ I and f satisfies locally the Lipschitz condition

on I we have, for n large enough,

|(f ◦ sn+1)(x)− (f ◦ sn)(x)| ≤ L|sn+1(x)− sn(x)|
with some constant L = Lg(x), whence

|(f ◦ s1)(x)|+
∞∑
n=1

|(f ◦ sn+1)(x)− (f ◦ sn)(x)| <∞.

Thus by Theorem 2.B, f ◦ g ∈ S (F ).

B. The converse of Theorem 3.1 for Borel measurable functions

Lemma 3.2. Let A be a lattice of subsets of A. Let u1 ∈MA , u2 ∈MA ,
|u1| < C, |u2| < C for some C ∈ R. Then for each ε > 0 there exist functions
w1 ∈MA and w2 ∈MA such that

2ε ≤ w1 ≤ 2C + 3ε, ε ≤ w2 ≤ 2C + 2ε, Rg(w1 − w2) ⊆ {0, ε}
and

w1(x)− w2(x) 6= u1(x)− u2(x),
for every x ∈ A (for short we shall write w1 − w2 ∩ u1 − u2 = ∅).

P r o o f. Let K = [C/ε] + 1. We put

Ai,j = {x : iε ≤ u1(x) < (i+ 1)ε and jε ≤ u2(x) < (j + 1)ε},
for −K ≤ i, j ≤ K − 1. For x ∈ Ai,j we put

w1(x) =
{

(K + 1 + max(i, j))ε if i 6= j,
(K + i+ 2)ε if i = j,

w2(x) = (K + 1 + max(i, j))ε.

It is easy to see that w1 and w2 satisfy the conditions desired.
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Lemma 3.3. Let F be a complete function system. Let ξ ∈ S (F ) and
suppose that f : [0, 1] → R does not satisfy the Lipschitz condition in
any neighbourhood of zero. Then there are functions h ∈ (U (F ))[0,1] −
(U (F ))[0,1] and h̃ ∈ (U (F ))[0,1] such that h ≥ 0 and (f ◦h−f ◦ h̃)∩ ξ = ∅.

P r o o f. By our assumption, for each n ∈ N there exist sequences xn, yn
in [0, 1] such that

(i) xn < 1/n, xn > yn ≥ 0, y1 ≥ y2 ≥ . . . ,
(ii) |f(xn)− f(yn)| > n(xn − yn).

Without loosing generality we can assume that

(iii) f(xn) > f(yn).

Let ξ = u1 − u2, where u1 ∈ U (F ) and u2 ∈ U (F ).
Assume first that at least one of the functions u1, u2 is not bounded.

For n ∈ N, let

Λn = u−1
1 ((−n, n)) ∩ u−1

2 ((−n, n))

and write Λn =
⋃∞
m=1 Λn,m, where Λn,m ∈ NF . Order all the sets Λn,m into

a sequence Γ1, Γ2, . . . , and put Ak =
⋃k
i=1 Γi.

Let i(1) = min{i : Ai 6= ∅}. Then inductively for k > 1, set i(k) =
min{i : i > i(k−1) and Ai\Ai−1 6= ∅}. Because at least one of the functions
u1, u2 is unbounded the numbers i(k) are defined for all k ∈ N. Let Bk =
Ai(k)\Ai(k)−1.

The functions u1 and u2 are bounded on each set Bk, k ∈ N. Let
|u1|Bk| < Ck and |u2|Bk| < Ck, for some Ck ∈ R.

Let now m1 ∈ N be chosen in such a way that (compare (i))

(1) 2C1m
−1
1 + 4xm1 < 1

and, inductively, let mk > mk−1, k > 1, satisfy

(2) 2Ckm−1
k + 4xmk < xmk−1 − ymk−1 .

By Lemma 3.2, taking there ε = f(xmk) − f(ymk) and C = Ck, there
are functions w(k)

1 ∈M(MF |Bk) and w
(k)
2 ∈M(MF |Bk) such that

(w(k)
1 − w(k)

2 ) ∩ (u1 − u2) = ∅,(3)

Rg(w(k)
1 − w(k)

2 ) ⊆ {f(xmk)− f(ymk), 0},(4)

2(f(xmk)− f(ymk)) ≤ w(k)
1 ≤ 2Ck + 3(f(xmk)− f(ymk))(5)

and

(6) f(xmk)− f(ymk) ≤ w(k)
2 ≤ 2Ck + 2(f(xmk)− f(ymk)).

For z ∈ Bk, let
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(7) v
(k)
1 (z) = w

(k)
1 (z)

xmk − ymk
f(xmk)− f(ymk)

+ ymk

and

(8) v
(k)
2 (z) = w

(k)
2 (z)

xmk − ymk
f(xmk)− f(ymk)

.

Then, by (i)–(iii), (1), (2), (5) and (6) we get

1 > sup v(1)
1 ≥ inf v(1)

1 > sup v(2)
1 ≥ inf v(2)

1 > . . . ≥ 0,(9)

1 > sup v(1)
2 ≥ inf v(1)

2 > sup v(2)
2 ≥ inf v(2)

2 > . . . ≥ 0(10)

and v
(k)
1 ≥ v(k)

2 .
Now, put

(11) vi(z) = v
(k)
i (z),

for z ∈ Bk, i = 1, 2, and

(12) h(z) = v1(z)− v2(z),

and

(13) h̃(z) =
∞∑

k=1

ymkχBk(z),

for z ∈ Z.
We now check that h and h̃ satisfy the conclusion of our lemma.
Let z ∈ Bk. By (4), (7), (8) and (11)–(13) we get

f(h(z))− f(h̃(z))

= f

(
(w(k)

1 (z)− w(k)
2 (z))

xmk − ymk
f(xmk)− f(ymk)

+ ymk

)
− f(ymk)

=

{
f(ymk)− f(ymk) = 0 if w(k)

1 (z)− w(k)
2 (z) = 0,

f(xmk)− f(ymk) if w(k)
1 (z)− w(k)

2 (z) = f(xmk)− f(ymk),

= w
(k)
1 (z)− w(k)

2 (z),

whence (f(h)− f(h̃)) ∩ ξ = ∅.
It follows from (9) and (10) that v1 ∈ U (F )[0,1] and v2 ∈ U (F )[0,1].

By the definition of the sets Bk and by (i) one can easily see that h̃ ∈
(U (F ))[0,1].

If u1 and u2 are bounded, we put B1 = D in the above reasoning and
the construction consists of only one stage.

Theorem 3.4. Let I ⊆ R be an interval , f : I → R and α < ω1. Let Z
be any uncountable Polish space. Then f ◦g ∈ Sα(Z) for every g ∈ (Sα(Z))I
if and only if f is locally Lipschitz on I.

P r o o f. The easier “if” implication is contained in Theorem 3.1.
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We now prove the “only if” part. Assume for contradiction that f ◦ g ∈
Sα(Z) for every g ∈ (Sα(Z))I and that f is not locally Lipschitz. It is enough
to consider the case where I = [0, 1] and f does not satisfy the Lipschitz
condition in any neighbourhood of 0. By Lemma 2.E there are functions

Φ ∈ (Uα(Z2))I − (Uα(Z2))I and Ψ ∈ (Uα(Z2))I
such that for any φ ∈ (Uα(Z))I − (Uα(Z))I and ψ ∈ (Uα(Z))I there is
x ∈ Z for which φ(y) = Φ(x, y) and ψ(y) = Ψ(x, y) for every y ∈ Z. Let now

ξ(x) = f(max(Φ(x, x), 0))− f(Ψ(x, x)).

By our assumption ξ ∈ Sα(Z), but by Lemma 3.3 applied to F = Bα(Z)
there are h ∈ (Uα(Z))I − (Uα(Z))I and h̃ ∈ (Uα(Z))I , h ≥ 0, such that

(f ◦ h− f ◦ h̃) ∩ ξ = ∅.
But there is x ∈ Z such that h(y) = Φ(x, y) and h̃(y) = Ψ(x, y) for each
y ∈ Z and then f(h(x))− f(h̃(x)) = ξ(x), which is a contradiction.

R e m a r k. Theorem 3.4 settles the question about the class of functions
not leading outside Sα by outer superpositions, raised by the work of Lin-
denbaum (see [L] and [L, Corr.]).

4. Corollaries to Theorems 3.1 and 3.4

A. Baire’s and Sierpiński’s classifications of Borel measurable functions.
Theorems 3.4 and 3.1 imply the following corollary solving the problem of
Kempisty (mentioned in the introduction) in a different way than it was
done in [Mor].

Corollary 4.1. Let Z be an uncountable Polish space. Then Bα+1(Z)\
Sα(Z) 6= ∅. Moreover , we can find f ∈ Bα+1(Z)\Sα(Z) such that Z =
X ∪ Y , X ∩ Y = ∅ and f |X ∈ Sα(X) and f |Y ≡ 0.

P r o o f. By Theorem 3.4 there is a function h : Z → [0,∞), h ∈ Sα(Z),
such that f =

√
h 6∈ Sα(Z). Let X = {x : h(x) > 0} and Y = {x : h(x) = 0}.

By Theorem 3.1, f |X ∈ Sα(X) and, obviously, f |Y ≡ 0. On the other hand,
by [Ku, 31, III, Th. 2], f ∈ Bα+1(Z).

B. The class L (F ) ·U (F ). Let F be a complete function system. The
class S (F ) is defined as L (F ) + U (F ). It is of interest to look at the
class L (F ) ·U (F ). Since S (F ) is closed under multiplication, it contains
L (F ) ·U (F ). We shall show, using Theorem 3.1, that a positive function
belongs to S (F ) if and only if it belongs to L (F ) ·U (F ) (Corollary 4.2).
However, we shall apply Theorem 3.4 to show that this is not the case for
nonnegative functions (Corollary 4.3).

Corollary 4.2. Let F be a complete function system on D. Then

(S (F ))(0,∞) = (L (F ))(0,∞) · (U (F ))(0,∞).
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P r o o f. Let f ∈ (S (F ))(0,∞). By Theorem 3.1, log f ∈ S (F ). Thus
log f = g + h for some g ∈ L (F ) and h ∈ U (F ). Since ex is continuous
increasing, it follows that eg ∈ L (F )(0,∞) and eh ∈ U (F )(0,∞), and clearly
f = egeh.

Corollary 4.3. If Z is an uncountable Polish space then (Sα(Z))[0,∞)\
Lα(Z) ·Uα(Z) 6= ∅.

P r o o f. By Theorem 3.4 there exists a function f ∈ (Sα(Z))[0,∞) such
that f1/3 6∈ Sα(Z). If f = g · h where g ∈ Lα(Z) and h ∈ Uα(Z), then
f1/3 = g1/3 · h1/3. But g1/3 ∈ Lα(Z) and h1/3 ∈ Uα(Z), whence f1/3 ∈
Lα(Z) ·Uα(Z) ⊆ Sα(Z) and this is a contradiction.
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