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When is the category of flat modules abelian?
by

J. L. Garcia and J. Martinez Herndndez (Murcia)

Abstract. Let FI(R) denote the category of flat right modules over an associative
ring R. We find necessary and sufficient conditions for F1(R) to be a Grothendieck category,
in terms of properties of the ring R.

1. Introduction. Let R be an associative ring with identity and denote
by Mod(R) the category of all right R-modules, and by FI(R) the full sub-
category of Mod(R) whose objects are all the flat right R-modules. While, in
general, F1(R) need not be an abelian category, it might be so: for instance,
let A be a ring with a finite number of isomorphism classes of finitely pre-
sented indecomposable right modules, and such that every finitely presented
right A-module is a direct sum of indecomposables, and consider then the
direct sum Uy of all the indecomposable finitely presented right A-modules
(up to isomorphism). Then Uy is finitely presented, and, if R denotes the
endomorphism ring R = End(Uj4), then the category F1(R) is equivalent to
Mod(A) [15, Corollary 2.9], so that it is abelian. In [10, p. 29], Jgndrup and
Simson pointed out that it would be interesting to have a characterization
of all rings R such that F1(R) is abelian, and they conjectured therein that
all such rings R having a decomposition into a direct sum of indecomposable
right ideals are Morita equivalent to a ring of the form End(U4) for A and
U as above.

On the other hand, Tachikawa [17] studied in 1974 the rings R such that
the category A of all projective right R-modules is a Grothendieck category.
He obtained two characterizations of such rings R:

e They are the semiprimary and QF-3 rings R such that the dominant
dimension of Rg is > 2, and the global dimension of R is < 2.

e They are the semiprimary QF-3 rings R which are the endomorphism
rings End(U ) of the direct sum of all the finitely generated indecomposable
modules over a ring A of finite representation type.
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Since the rings R appearing in Tachikawa’s paper are right perfect, the
category A is, in that case, the same as FI(R) and hence the problem in
Jondrup—Simson’s paper may be viewed as a generalization of the problem
solved by Tachikawa. Our aim in this paper is to answer the problem of
Jondrup and Simson, stating a characterization for the rings R such that
FI(R) is an abelian category (see Theorem 3). As a consequence, we get
Corollary 5, which asserts that the category FI(R) over a (left and right)
coherent ring is abelian if and only if R is of weak global dimension < 2, and
the flat-dominant dimension of Rg is > 2. However, the conjecture stated
in [10] which has been just mentioned remains open.

2. Main results. One important step in the solution is to consider
the class of FTF-rings which was introduced by Gémez Torrecillas in [7].
So, we begin by recalling the definition of such rings, which are more fully
investigated in [7] and [8].

DEFINITION 1 ([7, p. 61], [8, p. 531]). A ring R is a right FTF-ring if
the class of right R-modules which are (isomorphic to) submodules of flat
modules is the torsionfree class for a hereditary torsion theory 7 of Mod(R).

From now on, if R is assumed to be a right FTF-ring, then 7 will denote
the hereditary torsion theory of Mod(R) just defined. The following result
can be gathered in [7, Chapter 2.4], but, for the sake of completeness, we
indicate how the proof can be seen from results in [8]:

PRrROPOSITION 2. If R is a right perfect and right FTF-ring, then R is
QF-3. In that case, R is also semiprimary and T-artinian. Conversely, if R
is a perfect and QF-3 ring, then R is right FTF.

Proof. If R is right perfect and right FTF, then the same proof of
[8, Corollary 2.11] works to show that R is QF-3. Again, the proof of
[8, Corollary 2.11] along with [8, Theorem 2.7] shows that, in that
case, R is also semiprimary and 7-artinian. The converse follows from
[8, Corollary 2.11]. m

Recall also from [12, p. 1060] that if o is a hereditary torsion theory
of Mod(R), a right R-module My is called o-finitely generated if there is a
submodule L C M such that L is finitely generated and M /L is o-torsion.
A finitely generated module Mg is said to be o-finitely presented in case
there exists a short exact sequence

0O—-—K—-P—-M-—0

in Mod(R) such that P is finitely generated projective and K is o-finitely
generated.
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In [11, Definition 1.2], a ring R is called o-coherent in case every finitely
generated right ideal of R is o-finitely presented. By extending this def-
inition, we will say that the ring R is weakly o-coherent if every finitely
generated right ideal Ip of R such that R/I is o-torsion is o-finitely pre-
sented.

Finally, we will say that the ring R has flat-dominant dimension > n if
the first n terms of a minimal injective resolution of Rp are flat (see [9]).

We are now ready to state and prove our main result. In what follows,
A will denote the Lambek torsion theory of Mod(R) (i.e., the A-torsionfree
modules are exactly the right R-modules cogenerated by the injective enve-
lope of Rr, E(RR)).

THEOREM 3. Let R be a ring and F1(R) the full subcategory of Mod(R)
consisting of all flat right R-modules. Then F1(R) is an abelian category if
and only the following three conditions are satisfied:

(a) R is a right FTF-ring which is weakly \-coherent;
(b) The weak global dimension wD(R) of R is at most 2;
(¢) The flat-dominant dimension of Rr is >2.

Proof. Necessity. Assume that FI(R) is abelian. Since the direct sum
of a family of flat modules is flat, FI(R) is a cocomplete abelian category
having a generator, Rr. Moreover, since direct limits of flat modules are
flat [16, Proposition 1.10.3], one sees easily that direct limits are exact in
F1(R) and hence, the category FI(R) is in fact a Grothendieck category
[16, p. 114].

By applying the Gabriel-Popescu Theorem [16, Theorem X.4.1] to the
generator Ry of FI(R) and bearing in mind that Homp(g) (R, R) = R, we
deduce that the functor F' : FI(R) — Mod(R) with F(X) = Hompg(R, X)
& Xpg is full and faithful. Moreover, F' is naturally equivalent to the in-
clusion functor and establishes an equivalence between the category FI(R)
and the quotient category Mod(R, F) of Mod(R) whose F-closed objects are
precisely the flat modules. So, the class of F-torsionfree modules coincides
with the class of submodules of flat modules, so that R is right FTF, by
Definition 1, and F is the Gabriel topology corresponding to the torsion
theory .

By identifying the above functor F' and the inclusion functor from FI1(R)
to Mod(R), we see that FI(R) coincides with Mod(R,F) = Mod(R, 1),
and thus FI(R) is a Giraud subcategory of Mod(R) [16, Theorem X.2.1],
from which it follows that the inclusion functor has an exact left adjoint
G : Mod(R) — FI(R). If ¥ denotes the unit of the adjunction, there are
homomorphisms ¥y : M — G(M) such that the kernel and the cokernel of
W) are T-torsion modules. G(M) is obviously a flat module, and if Fg is
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any flat module and we have a diagram
M ™ GM)

!
F

then the diagram can be completed commutatively by a homomorphism
G(M) — F in a unique way. This implies that the homomorphism ¥, :
M — G(M) is a flat envelope of Mp [4] which completes the diagrams
in a unique way. It now follows from [1, Proposition 2.1] that R is a left
coherent ring and that the weak global dimension of R, wD(R), is < 2. This
proves (b).

Now, since the 7-closed modules coincide with the flat modules, we see
that the direct limit of 7-closed modules of Mod(R) is always 7-closed.
By [16, Exercise XIII.1.2], R is a finitely presented object of F1(R). Now,
let I be a finitely generated right ideal of R such that R/I is A-torsion.
Then the left annihilator I(I) = 0 [16, Proposition VI.6.4], and hence R/I
is also 7-torsion (because homomorphisms from R/I to flat modules have
to factor through a projective module [7, Proposicién 2.1.5]). Consider any
exact sequence 0 — K — P — [ — 0 in Mod(R), with Pgr projective
and finitely generated. If we apply the exact left adjoint G : Mod(R) —
F1(R) of the inclusion functor, then we obtain the following exact sequence
in the category FI(R): 0 — G(K) — P — R — 0. Since R and P are
finitely presented in F1(R), we deduce that G(K) is finitely generated in
FI(R) = Mod(R, 7). But this implies that Kp is 7-finitely generated by
[16, Proposition XIII.1.1]. Thus K/L is 7-torsion for some finitely generated
submodule L of K. Since R isright FTF, E(Rpg) is flat by [8, Proposition 2.1]
and hence Homp (K /L, E(Rr)) = 0. This means that K /L is also A-torsion
and I is Afinitely presented. This completes the proof of condition (a) by
showing that R is weakly A-coherent.

Finally, we have to consider the flat-dominant dimension of Ry in order
to prove condition (c). Let us look at the short exact sequence of Mod(R):

0— Rr— E(Rr) —Q—0

where E(Rp) is flat, as we saw above. Since both Rp and E(Rp) are 7-closed
modules, one may infer that Q must be T-torsionfree [16, Proposition IX.4.2].
Hence, @) is isomorphic to a submodule of a flat module and, therefore, to
a submodule of an injective flat module. So, we have an injective resolution

0— RR—>E0—>E1

where Fy and F; are flat injective modules. This shows that the flat-
dominant dimension of Rg is > 2.

Sufficiency. Since R is a right FTF-ring, by Definition 1 there is a hered-
itary torsion theory 7 of Mod(R) such that a module is 7-torsionfree if
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and only if it can be embedded in a flat module. To show that FI(R) is a
Grothendieck category, it will be enough to see that a right R-module is flat
if and only if it is 7-closed [16, Theorem X.1.6].

We note first that all flat injective left R-modules are 7-closed [16, Def-
inition, p. 198]. Thus, condition (c) of the hypotheses implies that Rp is a
submodule of a 7-closed module such that the quotient is 7-torsionfree. But
then Rp is 7-closed, by [16, Proposition IX.4.2]. As a consequence, every
finitely generated projective right R-module is also 7-closed.

Next we show that R is a finitely presented object of the quotient cat-
egory Mod(R, 7). To this end, let 0 - K — M — R — 0 be any short
exact sequence in Mod(R, 7), with M finitely generated. By applying the
inclusion functor from Mod (R, 7) to Mod(R), we obtain another short exact
sequence in Mod(R):

O K—-M-—>1—0

and now Ig is a right ideal of R such that the localization of I is Ry, so
that in particular, R/I is 7-torsion. By using [16, Proposition XIII.1.1], we
have a finitely generated submodule N C M such that M/N is T-torsion,
and a new short exact sequence in Mod(R):

0= KNN—->N-=I -0

where I}, has the same properties as Iy, i.e., R/I' is T-torsion. Since R is
right FTF, Homg(R/I', E(RRr)) = 0, and thus R/I’ is also A-torsion. By
condition (a), R is weakly A-coherent, so that I} is A-finitely presented.
Now, by [11, Lemma 2.4], there exists a short exact sequence in Mod(R),

0—-X—-Y—>I->0

such that Y is finitely presented and X is A-torsion. If Fgr is a flat
right R-module and FEpg is its injective envelope, which is also flat by
[8, Proposition 2.1], then any homomorphism ¢g : X — F could be ex-
tended to a homomorphism h : Y — E. Since EpR is flat, h factors through
a finitely generated projective, and therefore so does g followed by the in-
clusion /' — E. But then g must be 0, as Hompg (X, R) = 0. This implies
that X is also 7-torsion, and hence I’ has to be 7-finitely presented. By
[11, Proposition 2.3], K N N is 7-finitely generated and K/(K N N) is 7-
torsion, because M/N is. Consequently, K is the 7-localization of a finitely
generated submodule L of K N N. But this implies that there exists an
epimorphism ¢ : P — L with Pg finitely generated and projective, and
hence 7-closed. This epimorphism induces, by localization, an epimorphism
in Mod(R,7), P — K, which shows that K is a finitely generated object
of Mod(R, 7). Thus, R is finitely presented in Mod(R, 7). By [16, Exercise
XIIIL.1.2], every direct limit of 7-closed modules is 7-closed. Since every flat
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module is a direct limit of finitely generated projective modules and these
are 7-closed, we deduce that every flat module is 7-closed.

It remains to show that every 7-closed module My is a flat module. By
the definition of 7, Mz has to be a submodule of a flat module Fg, so that
we get an exact sequence

0O—-M—-F—N-—0

where Np, is also 7-torsionfree [16, Proposition 1X.4.2]. But this implies that
Npg is a submodule of a flat module F,, which gives the exact sequence

0—-M-—>F—->F —-L—-0.

The fact that the weak global dimension of R is < 2 now implies that Mg
is indeed flat, as was to be shown. m

We now remark that the first characterization in [17] of rings R for which
the class of projective modules is a Grothendieck category may be found as
a consequence of Theorem 3 above. Indeed, we can easily show the following;:

COROLLARY 4 (Tachikawa, 1974). The category A of all projective right
modules over a ring R is a Grothendieck category if and only if R is a
perfect and QF -3 ring such that the global dimension of R is at most 2, and
the dominant dimension of Rgr is > 2.

Proof. Suppose that R satisfies the conditions of the statement. Since R
is perfect, A = FI(R), so that it is enough to see that R satisfies conditions
(a), (b), (c) of Theorem 3. But, by Proposition 2, R is right FTF and
T-artinian, hence it is clearly weakly 7-coherent and weakly A-coherent, so
that R satisfies (a). Conditions (b) and (c) are immediate from the other
hypotheses.

Assume now that A is Grothendieck. Then it is easy to see, as in [17], that
R is right perfect. Thus, FI(R) is a Grothendieck category and R satisfies
conditions (a), (b), (¢) of Theorem 3. By (a) and Proposition 2, R is QF-3.
Then (b) and (c) imply the rest of the conditions in the corollary. m

We next show the following corollaries.

COROLLARY 5. Let R be left and right coherent. Then F1(R) is an abelian
category if and only if wD(R) < 2 and the flat-dominant dimension of Rpg
s > 2.

Proof. The conditions are necessary by Theorem 3. Conversely, if they
hold, then R is right FTF, by [8, Proposition 2.2], and it is obviously
A-coherent, since it is right coherent. By Theorem 3, F1(R) is abelian. =

COROLLARY 6. Let R be left and right noetherian. Then F1(R) is an
abelian category if and only if F1(RP) is also an abelian category. This
happens if and only if R is an Auslander ring (see [9]).



The category of flat modules 89

Proof. By [8, Proposition 2.3], the ring R°P is also left FTF, provided
FI(R) is abelian. Of course, wD(R°P) < 2, by the hypothesis. Finally, the
flat-dominant dimension of R°P is > 2 in view of [9, Theorem|. By Theorem
3, the category F1(R°P) is abelian. m

Recall from [3] that a ring R is said to be a right IF-ring in case each
injective right R-module is flat. The following characterization is immediate.

COROLLARY 7. Let R be a right IF-ring. Then F1(R) is an abelian cat-
egory if and only if R is a (von Neumann) regular ring.

Proof. If FI(R) is abelian, then by Theorem 3, R has finite weak global
dimension. By [3, Proposition 5], R has to be regular. m

COROLLARY 8. Let R be a commutative ring. Then F1(R) is abelian if
and only if R is a (von Neumann) regular ring.

Proof. Assume first that R is a local ring. Then, by Theorem 3, wD(R)
< 2 (and R is coherent, by the proof of the Theorem), and from [18, Corol-
lary 5.16], we see that R is a domain. The injective envelope of R is its field
of quotients, (), and, since the flat-dominant dimension of R has to be > 2,
we see that (/R must be torsion and torsionfree, from which it follows that
R =Q is a field.

Consider now the general case of a commutative ring R such that F1(R)
is a Grothendieck category. Let p be a prime ideal of R. The localization
functor b : Mod(R) — Mod(R,) induces a functor b’ : FI(R) — FI(R,),
which preserves kernels. Furthermore, b is a left adjoint of the inclusion
functor from FI(R,) to F1(R). Hence, FI(R,) is an abelian category by [16,
Proposition X.1.3]. Now, by the first part of the proof, R, is a field. We
deduce finally that R is (von Neumann) regular, from [13, Lemma 8 and
Theorem 6]. m

Finally, we give an example of an indecomposable ring R which is neither
regular nor perfect and for which FI(R) is abelian, thus exhibiting a case
not included in Tachikawa’s theorem.

ExamMpPLE. We start with a field £ and a finite-dimensional k-algebra
A with a connected Gabriel quiver such that A is not of finite representa-
tion type. By results in [2], A is not right pure-semisimple (that is, it is
not the case that every right A-module is a direct sum of finitely generated
indecomposable modules). Let {Ux},., be the family of all isomorphism
classes of finitely presented indecomposable right A-modules, and take T as
Gabriel functor ring, i.e., T'= @, Hom4(Ux, U,,) with the obvious multipli-
cation. We remark that T is a ring with enough idempotents [6, p. 138], but
without an identity. We denote by Mod(T') the category of all unitary right
T-modules. T' is also a k-algebra in a natural way, and we know that there
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is an equivalence between the category Mod(A) and the category F1(T') of
all right flat (and unitary) 7-modules (see [15]). Since A is not right pure-
semisimple, T is not right perfect (by [14] and [5, Theorem]). Also, F1(T')
does not coincide with the category Mod(7T"), because this would imply that
A is semisimple.
Define now the ring R = T x k, with multiplication given by
(t,a) - (s,0) = (ts +tB + sa, af).

Note that T is a twosided ideal of R satisfying the conditions of [16,
Proposition XI.3.13] on both sides, with & & R/T. Hence, all right k-modules
are flat as right R-modules, and, in particular, for every right R-module Mg,
M/MT is always a flat right R-module. This implies that MT is a pure sub-
module of Mg, so that Mg is flat if and only if MT is flat. On the other hand,
it is clear that the category Mod(7T') may be identified with the full subcate-
gory of Mod(R) consisting of all right R-modules M such that M = MT, and
this full subcategory is closed under submodules, quotient modules, direct
sums, extensions and direct limits. Also, a right R-module M is projective if
and only if MT is projective as a right T-module. Thus, the condition that
My be flat is equivalent to M T being flat in the category Mod(T').

Let us denote by 7 the class of right T-modules X satisfying Homp (X, F')
= 0 for every flat right T-module F. Then 7 is a hereditary torsion class
in Mod(T'). Define now the class 7’ exactly in the same way but in the
category Mod(R). Then we easily see that 7’ is contained in Mod(T") and,
in fact, coincides with 7—up to the obvious identification of Mod(T') as a
full subcategory of Mod(R). Therefore, 7' is a hereditary torsion class in
Mod(R) and hence R is right FTF. It is clear that wD(R) < 2, from which
it follows that every 7’-closed right R-module is flat. For the converse, note
that for each Mpg, the injective envelope of MT in Mod(T') is just E(M)T.
Since every flat module in Mod(T') is 7 -closed, it follows that if My is flat,
then it is also 7’ -closed. This shows that FI(R) is a Grothendieck category.

On the other hand, R is not von Neumann regular, because in that case,
every right unitary T-module would be flat. Also, R is not right perfect, be-
cause 1" is not right perfect. Finally, R has no nontrivial central idempotents,
because the quiver of A is connected. m

We finish with the following

PRrROBLEM. Is the condition that R be weakly A-coherent in Theorem 3
a consequence of the other hypotheses?
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